微分中值定理的证明题[1](1)

合集下载

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

4-1 微分中值定理(一)

4-1 微分中值定理(一)

作辅助函数 (x) f (x)(f )(b) f (a) x
ba
显然 ,
在 [ a , b ] 上连续 ,在 ( a , b ) 内可导,且
(a) b f (a) a f (b) (b),由罗尔定理知至少存在一点
思路: 利用逆向b 思a维找出一即个定满理足结罗论尔成定立理条. 件证的毕函数
在 x0 , x1 之间至少存在一点

矛盾, 故假设不成立
二、拉格朗日中值定理 y
y f (x)
(1) 在区间 [ a , b ] 上连续 (2) 在区间 ( a , b ) 内可导
o a
bx
则至少存在一点
使 f ( ) f (b) f (a).
分析:问题转化为证f ( )f (bb) af (a) 0 b a
y f (x) B
D
2 b
x
推论: 若函数 在区间 I 上满足

在 I 上必为常数.
证: 在 I 上任取两点 格朗日中值定理 , 得
0
由 的任意性知,
在 I 上为常数 .
推论: 若函数
在区间 I 内导数恒相等,
则在 I 内有
推论: 若函数
的导数在区间 I 内不变号,
则 在 I 内严格单调.
例2
例3. 证明等式 证: 设
g(b) g(a)
则(x)在[a,b]上连续,在(a,b)内可导, 且
(a) f (b)g(a) f (a)g(b) (b)
g(b) g(a)
由罗尔定理知, 至少存在一点
f (b) f (a) f ( ) . g(b) g(a) g( )
思考: 柯西定理的下述证法对吗 ?
f (b) f (a) f ( )(b a), (a , b)

微分中值定理的证明

微分中值定理的证明

2014届本科毕业论文(设计)题目:微分中值定理的证明及其应学院:数学科学学院专业班级:数学09-3班学生姓名:迪丽尼格尔■艾来提指导教师:依力夏提答辩日期:2014年月日新疆师范大学教务处1引言 (2)1.1最大最小定理............................... 错误!未定义书签。

1.2介值性定理 .................................. 错误!未定义书签。

1.3根的存在性定理 .............................. 错误!未定义书签。

1.4 一致连续性定理 .............................. 错误!未定义书签。

1.5费马定理.................................... 错误!未定义书签。

1.6有界性定理.................................. 错误!未定义书签。

2微分中值定理错误!未定义书签。

2.1罗尔中值定理 ............................... 错误!未定义书签。

2.2拉格朗日中值定理 ............................ 错误!未定义书签。

2.3柯西中值定理 ............................... 错误!未定义书签。

3微分中值定理的证明.................................................. 错误!未定义书签。

3.1罗尔中值定理的证明......................... 错误!未定义书签。

3.2拉格朗日中值定理的证明..................... 错误!未定义书签。

3.3柯西中值定理的证明......................... 错误!未定义书签。

4微分中值定理的证明的几何解释........................ 错误!未定义书签。

微分中值定理例题

微分中值定理例题

理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。

12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

考研:微分中值定理的证明题汇总

考研:微分中值定理的证明题汇总
由零点定理可知: F ( x) 在 (0,1) 内至少存在一点 ,使得 F ( ) 0 ,即:
f ( )
唯一性: (反证法) 假设有两个点 1 , 2 (0,1) ,且 1 2 ,使得 F (1 ) F ( 2 ) 0
F ( x) 在 [0,1] 上连续且可导,且 [1 , 2 ] [0,1] F ( x) 在 [1 , 2 ] 上满足 Rolle 定理条件 必存在一点 (1 , 2 ) ,使得: F () f () 1 0
而 f (a) 0 故在 (a, a
f (a) ) 内 f ( x) 0 有唯一的实根 k
1 2 t0 t sin 12. 试问如下推论过程是否正确。对函数 f (t ) 在 [0, x] 上应用拉 t t 0 0
格朗日中值定理得:
f ( x ) f ( 0 ) x0 1 x2 s i n 0 1 1 1 x x s i n f ( ) 2 s in co s x) (0 x0 x
即: cos
1

2 sin
1

x sin
1 x
( 0 x )
因0 x, 故当 x 0 时, 由m i l 2 n s i 0 0,
0
1


x 0
lim x sin
1 0 x
得: lim cos
x 0
1

0 ,即 lim cos
0
【证明】令 G( x) f (a x) f ( x) , x [0, a] . G( x) 在[0,a]上连续,且
G(a) f (2a) f (a) f (0) f (a) G(0) f (a) f (0)

微分中值定理经典题型

微分中值定理经典题型
2
例2 设 f ( x)在U(a, )内具有二阶连续导数 ,
f (a) 0 , a h U (a, ),且
f (a h) f (a) hf (a h) (0 1),
证明:lim 1 / 2. h0
证明: f (a h) f (a) hf (a h)
f (a) h[ f (a) f (a 1 h) h] (0 1 1),
f
( x0 )
1 2
f
(1 ) x02
1 2
f
(2 )(1
x0 )2
f ( x) 1,
f
( x0 )
1 2
x02
1 (1 2
x0 )2
(
x0
1)2 2
1 4
又由 x0 [0,1] 知,
x0
1 2
1, 2
于是有
f
( x0 )
1 2
由 x0 的任意性,可知命题成立.
类似地, 若函数 f ( x) 在 [0,1] 上二阶可微,且 f ( x) a, f ( x) b,其中a, b是非负数. 证明 : x (0,1),有 f ( x) 2a b .
x
x
7 试证至少存在一点
使
证: 法2 用柯西中值定理 . 令
f ( x) sinln x , F ( x) ln x
则 f (x) , F(x) 在 [ 1 , e ] 上满足柯西中值定理条件,
因此
f (e) f (1) f ( ) , ( 1 , e ) F (e) F (1) F( )
故 方 程f ( x) 0,若 有 根必 有 唯 一 的 根,
以 下 只 须 证f (a f (a)) 0
方法1:
将f ( x)在[a,a

微积分中值定理习题课

微积分中值定理习题课

ek f ( ) ek kf ( ) 0
[e kx f ( x ) (e kx ) f ( x )]x 0
[e
kx
f ( x )]x 0.
1
设f (x)在[a, b]上连续, 在(a, b)内可导, 且
f (a ) f (b) 0, f ( x ) 0, x (a , b). 证明: f ( ) k. 对任意的实数k, 存在点 (a b), 使 f ( ) 证 设g( x ) ekx f ( x ) [e kx f ( x )]x 0 ; 则(1) g( x )在[a, b]上连续 ;(2) g( x )在(a, b)内可导
设函数 f (x)在[0, 3]上连续,在(0, 3)内可导, 且f (0) f (1) f ( 2) 3, f ( 3) 1. 试证必存在 (0,3), 使f ( ) 0. x 在 f[( 在 [0, 2]上连续 , 证 因为 因为 ff(( (x)在 cx , )3] 上连续 , c)) [0, 1 3] f上连续 ( 3), 且 ,f 所以 且在 2]上必有最大值 M和最小值 必存在 ,于是 在(c,[0, 3)内可导 , 所以由Rolle 定理知,m m (cf,3 (0 (M , ), m f f 1) 0 M (( )) 0,3 使 . , m f ( 2) M . f (0) f (1) f ( 2) m M. 故 3 由介值定理知,至少存在一点 c [0,2], 使
综上, 存在 (a, b), 使得h( ) 0.
6分
4
考研数学(一、二、三)11分
(1) 证明拉格朗日中值定理: 若函数 f (x)在
[a, b]上连续, 在(a, b)内可导, 则存在 (a , b ), 使得f (b) f (a ) f ( )(b a ). (2) 证明: 若函数f ( x )在x 0处连续, 在(0, ) ( x ) A, 则f (0)存在, ( 0)内可导, 且 lim f

微分中值定理题目

微分中值定理题目

例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。

数学分析简明教程答案数分5_微分中值定理及其应用

数学分析简明教程答案数分5_微分中值定理及其应用

壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。

证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。

那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。

因此有:方程为常数在区间内不可能有两个不同的实根。

当时,方程至多只可能有两个实根,满足所证。

当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。

那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。

当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。

微分中值定理的证明题660

微分中值定理的证明题660

微分中值定理的证明题1.若在上连续,在上可导,,证明:,使得:。

证:构造函数,则在上连续,在内可导,且,由罗尔中值定理知:,使即:,而,故。

2.设,证明:,使得。

证:将上等式变形得:作辅助函数,则在上连续,在内可导,由拉格朗日定理得:,即,即:。

3.设在内有二阶导数,且,有证明:在内至少存在一点,使得:。

证:显然在上连续,在内可导,又,故由罗尔定理知:,使得又,故,于是在上满足罗尔定理条件,故存在,使得:,而,即证4.设函数在[0,1]上连续,在(0,1)上可导,,.证明:(1)在(0,1)内存在,使得.(2)在(0,1)内存在两个不同的点,【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在使得,即.(II)在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是5.设在[0,2a]上连续,,证明在[0,a]上存在使得.【分析】在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。

辅助函数可如下得到【证明】令,.在[0,a]上连续,且当时,取,即有;当时,,由根的存在性定理知存在使得,,即.6.若在上可导,且当时有,且,证明:在内有且仅有一个点使得证明:存在性构造辅助函数则在上连续,且有,,由零点定理可知:在内至少存在一点,使得,即:唯一性:(反证法)假设有两个点,且,使得在上连续且可导,且在上满足Rolle定理条件必存在一点,使得:即:,这与已知中矛盾假设不成立,即:在内仅有一个根,综上所述:在内有且仅有一个点,使得7.设在[0,1]上连续,在(0,1)内可导,且==0,=1。

试证至少存在一个(0,1),使=1。

分析:=1=1=x=0令()=证明:令F()=()在[0,1]上连续,在(0,1)内可导,(1)=()=由介值定理可知,一个(,1),使()=0又(0)=0=0对()在[0,1]上用Rolle定理,一个(0,)(0,1)使=0即=18.设在上连续,在内可导,且试证存在和.满足,使。

微分中值定理的证明以及应用

微分中值定理的证明以及应用

微分中值定理的证明以及应用1 微分中值定理的基本内容微分中值定理是反映导数值与函数值之间的联系的三个定理 ,它们分别是罗尔(R olle )中值定理 、拉格朗日(Lagrange )中值定理和柯西(Cauchy )中值定理 .具体内容如下 :1.1 罗尔中值定理[2]如果函数f 满足:(1)在闭区间[,]a b 上连续 ; (2)在开区间(,)a b 内可导 ;(3)在区间端点的函数值相等,即()f a f b ()=,那么在区间(,)a b 内至少有一点a b ξξ(<<),使函数()y f x =在该点的导数等于零,即'()0f ξ=. 1.2 拉格朗日中值定理[2]如果函数f 满足: (1)在闭区间[,]a b 上连续;(2)在开区间,a b ()内可导.那么,在,a b ()内至少有一点a b ξξ(<<),使等式()()()=f a f b f b aξ-'-成立.1.3 柯西中值定理[2]如果函数f 及g 满足: (1)在闭区间[,]a b 上都连续; (2)在开区间,a b ()内可导; (3)'()f x 和'()g x 不同时为零; (4)()()g a g b ≠则存在,a b ξ∈(),使得 ()()()()g ()()f f b f ag b g a ξξ'-='-2 三定理的证明2.1 罗尔中值定理的证明[2]根据条件在闭区间[,]a b 上连续和闭区间上连续函数的最大值和最小值定理,若函数()f x 在闭区间上连续,则函数()f x 在闭区间[,]a b 上能取到最小值m 和最大值M ,即在闭区间[,]a b 上存在两点1x 和2x ,使12(),()f x m f x M==且对任意[,x a b ∈],有()m f x M ≤≤.下面分两种情况讨论:①如果m M =,则()f x 在[,]a b 上是常数,所以对(,)x a b ∀∈,有()=0f x '.即,a b ()内任意一点都可以作为c ,使()=0f c '. ②如果m M <,由条件()=()f a f b ,()f x 在[,]a b 上两个端点a 与b 的函数值()f a 与()f b ,不可能同时一个取最大值一个取最小值,即在开区间,a b ()内必定至少存在一点c ,函数()f x 在点c 取最大值或最小值,所以()f x 在点c必取局部极值,由费尔马定理,有'()=0f c .2.2 拉格朗日中值定理的证明[2]作辅助函数()()()()f b f a F x fx a b x f a a--=-()-(-) 显然,()()(0)F a F b ==,且F 在[,]a b 满足罗尔定理的另两个条件.故存在,a b ξ∈(),使 ()()''()f b f a F f b aξξ--()=-=0移项即得()()'()=f b f a f b aξ--2.3 柯西中值定理的证明[2]作辅助函数()()()g()-g()()g(f b f a F x f x f a x a g b a --()=-()-())易见F 在[,]a b 上满足罗尔定理条件,故存在(,)a b ξ∈,使得()()''()g'()=0()g(f b f a F f g b a ξξξ--()=-)因为g'()0ξ≠(否则由上式'()f ξ也为零),所以把上式改写成()'()()()g ()()f f b f ag b g a ξξ-='-证毕3 三定理的几何解释和关系3.1 几何解释[1]罗尔中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦(或x轴).拉格朗日中值定理在曲线()y f x=上存在这样的点,过该点的切线平行于过曲线两端点的弦.柯西中值定理在曲线()()f xyxg x=⎧⎨=⎩(其中x为参数,a x b<<)存在一点,使曲线过该点的切线平行于过曲线两端点((),()),((),())A f a g aB f b g b的弦.综上所述,这三个中值定理归纳起来,用几何解释为:在区间[,]a b上连续且除端点外每一点都存在不垂直于x轴的切线的曲线,它们有个共同的特征()y f x=在曲线上至少存在一点,过该点的切线平行于曲线端点的连线.3.2 三定理之间的关系[3]从这三个定理的内容不难看出它们之间具有一定的关系.利用推广和收缩的观点来看这三个定理.在拉格朗日中值定理中,如果()()f a f b=,则变成罗尔中值定理,在柯西中值定理中,如果()F x x=,则变成拉格朗日中值定理.因此,拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是拉格朗日中值定理的推广.反之,拉格朗日中值定理是柯西中值定理的特例,罗尔中值定理是拉格朗日中值定理的特例.总的来说,这三个定理既单独存在,相互之间又存在着联系.从上面的讨论中可以总结得到,罗尔中值定理是这一块内容的基石,而拉格朗日中值定理则是这一块内容的核心,柯西中值定理则是这一块内容的推广应用.4 三定理的深层阐述4.1 罗尔中值定理4.1.1 罗尔中值定理结论[8](1) 符合罗尔中值定理条件的函数在开区间,a b ()内必存在最大值或最小值. (2) 在开区间,a b ()内使'()=0f x 的点不一定是极值点. 例如 函数3()(53)4xf x x =-在闭区间[1,2]-上满足罗尔定理的三个条件, 由25'()3()4f x x x =- ,显然0x =,有'(0)=0f 成立,但0x =不是()f x 的极值点.如果加强条件, 可得如下定理:定理 1 若函数在闭区间,a b []上满足罗尔中值定理的三个条件,且在开区间,a b ()内只有唯一的一个点,使()=0f x '成立,则点x 必是()f x 的极值点.完全按照罗尔中值定理的证法,即可证得使()'=0f x 成立的唯一点x 就是()f x 在,a b ()内的最值点,当然是极值点. 4.1.2 逆命题不成立[3]罗尔中值定理的逆命题 设函数()y=f x 在闭区间,a b []上连续,在开区间,a b ()内可导,若在点x 在,a b ()处,有()=0f x ',则存在,[,]p q a b ∈,使得()()=fp f q .例 函数3y x =,[,](0)x a a a ∈->,显然3y x =在,a a [-]上连续,在a a (-,)内可导,()=0f x ',但是不存在,[,]p q a a ∈- ,p q <,使得()()=f p f q .但如果加强条件,下述定理成立:定理2 设函数y ()f x =在闭区间,a b []上连续,在开区间,a b ()内可导,且导函数()f x '是严格单调函数,则在点(,)x a b ∈处,有()=0f x '的充分必要条件是存在,[,]p q a b ∈,p q<,使得()()=f p f q .4.2 拉格朗日中值定理4.2.1 点x 不是任意的[7]拉格朗日中值定理结论中的点x 不是任意的. 请看下例:问题 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim ()x f x c →+∞=(c 为常数),则lim ()0x f x →+∞=这一命题正确吗?证明 设x 为任意正数,由题设知()f x 在闭区间[,2]x x 上连续,在开区间(,2)x x 内可导,由拉格朗日中值定理知,至少存在一点(,2)x x ξ∈,使得()(2)()=f x f x f xξ-',又因为li m ()x f x c →+∞=,故(2)()limx f x f x x→+∞-=.由于ξ夹在x与2x 之间,当x +→∞时,ξ也趋于+∞,于是lim '()lim '()0x x f x f ξ→+∞→+∞==.上述证明是错误的,原因在于ξ是随着x 的变化而变化,即()g x ξ=,但当+x →∞时,()g x 未必连续地趋于+∞,可能以某种跳跃方式趋于+∞,而这时就不能由()f ξ'趋于0推出lim ()0x f x →+∞=了.例如 函数()2s i n =x f x x满足l i m ()0x f x→+∞=,且2221'()2cos sin f x x xx=-在+∞(0,)内存在,但2221lim '()lim [2cos sin ]x x f x x x x→+∞→+∞=-并不存在,当然li m '()0x f x →+∞=不会成立.4.2.2 条件补充[5]定理 3 若函数()f x 在(,)a +∞(a 为任意实数)上可导,且lim '()x f x →+∞存在,若lim '()x f x c→+∞=(c 为常数),则lim '()0x f x →+∞=.4.3 柯西中值定理柯西中值定理的弱逆定理[8]设()()f x g x ,在[,]a b 上连续,在(,)a b 内可微,且'()'()f g ξξ严格单调,'()0g x ≠,则对于12,a b x x ξξ∀∈∃<<(), ,使得2121'()'()=[()()][()()]f g f x f x g x g x ξξ--成立.证明:对,a b ξ∀∈(),作辅助函数 '()'()F x f x f g x ξξ()=()-()g().显然,()f x 在[,]a b 上连续,在(,)a b 内可微,并且由()()f x g x ,严格单调易知'()F x 也严格单调.由拉格朗日定理知,对于12,a b x x ξξ∀∈∃<<(),,使得 2121()()'()()F x F x F x x ξ-=-成立.而'()='()('()'())'()0F f f g g ξξξξξ-=所以有21()()0F x F x -=即2211['()('()'())'()]['()('()'())'()]0f x f g g x f x f g g x ξξξξ---=整理得2121'()'()[()()][()()]f g f x f x g x g x ξξ=--证毕.5 定理的应用三个定理的应用主要有讨论方程根的存在性、求极限、证明等式不等式、求近似值等.以下主要以例题的形式分别展示三个定理的应用.5.1 罗尔中值定理的应用例1 设(1,2,3,,)i a R i n ∈= 且满足1200231n a a a a n ++++=+ ,证明:方程2012++++0n n a a x a a x x = 在(0,1)内至少有一个实根. 证明: 作辅助函数23+1120231n n a a a F x a x x x xn +++++ ()=则=0(0F (),=(1)F 0,Fx ()在[0,1]上连续,在(0,1)内可导,故满足罗尔中值定理条件,因此存在(0,1)ξ∈,使'()0F ξ=,又2012'()++++0nn F x a a x a x a x==由此即知原方程在(0,1)内有一个实根.例2 设函数()f x 在[,]a b 上连续,在,a b ()内可导,且()()0f a f b ==.试证: 在[,]0a b a >()内至少存在一点ξ,使得'()f f ξξ=(). 证明:选取辅助函数()()x F x f x e -=,则F x ()在[,]a b 上连续,在,a b ()内可导,(a)()0F F b ==,由R olle 定理,至少存在一点,a b ξ∈(),使'()'()e['()()]0F f f f f ξξξξξξξξ---=-=-=()e e因 0e ξ-> 即'()()=0f f ξξ-或'()=()f f ξξ.例 3 设函数()f x 于有穷或无穷区间,a b ()中的任意一点有有限的导函数()f x ',且0lim ()lim ()x a x b f x f x →+→-=,证明:'()0f c =,其中c 为区间,a b ()中的某点.证明: 当,a b ()为有穷区间时,设()(,)(),f x x a b F x A x a b ∈⎧=⎨=⎩,当时,当与时,其中0lim ()lim ()x a x b A f x f x →+→-==.显然()F x 在[,]a b 上连续,在,a b ()内可导,且有()()F a F b =,故由R o l l e 定理可知,在,a b ()内至少存在一点c ,使'()=0F c .而在,a b ()内,'()'()F x f x =,所以'()=0F c .下设,a b ()为无穷区间,若,a b =-∞=+∞,可设tan ()22x t t ππ=-<<,则对由函数()f x 与tan x t=组成的复合函数g()(tan )t f t =在有穷区间()22ππ-,内仿前讨论可知:至少存在一点0t (,)22ππ∈-,使20g '()'()sec 0t f c t =⋅=,其中t a n c t =,由于20s e c 0t ≠,故'()=0f c .若a 为有限数,b =+∞,则可取0m a x {,0}b a >,而令00()b a t x b t-=-.所以,对复合函数00()g()()b a t t f b t-=-在有穷区间0,a b ()上仿前讨论,可知存在00t ,a b ∈()使000200()g '()'()=0)b b a t fc b t -=⋅-(,其中0000()b a t c b t -=-,显然a c <<+∞由于00200())b b a b t ->-(,故'()=0fc .对于a =-∞,b 为有限数的情形,可类似地进行讨论.5.2 拉格朗日中值定理的应用例 4 证明0x >时,ln(1)1x x x x<+<+证明: 设()ln(1)f x x =+ , 则()f x 在[0,]x 上满足Lagrange 中值定理1ln(1)ln(10)ln(1)'(),(0,)10x x f x x xξξξ+-++===∈+-又因为111x ξ<+<+所以1111+1xξ<<+所以1ln(1)11+x xx+<<即ln(1)1x x xx<+<+例 5 已知()()()11112na n n n n n n n =++++++ ,试求lim n x na →.解: 令()2f x x=,则对于函数()f x 在()(),1n n k n n k +++⎡⎤⎣⎦上满足L a g r a n g e定理可得: ()()()()21211n n k n n k n n k n n k ξ++-+=++-+ ,()()()(),1n n k n n k ξ∈+++所以()()111221n k n k nnn n k n n k +++<-<+++当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:()()()()211111222121n n n n n n n n n n+++<-<+++++ ()()11221n n n n ++++-即112222n n a a n n<-<+-故11022212n a n ⎛⎫<--<- ⎪⎝⎭所以lim 222n n a →∞=-例 6 求0.97的近似值. 解: 0.97是()f x x=在0.97x =处的值, 令001,0.97x x x x ==+∆=,则0.03x ∆=-, 由Lagrange 中值定理,存在一点0.97,1ξ∈()(1)(0.97)'()0.03f f f ξ-=可取1ξ≈近似计算,得110.971+)'(0.03)1(0.03)0.9852x x =≈⋅-=+-=(5.3 柯西中值定理的应用例 7 设0x >,对01α<<的情况,求证1xx ααα-≤-.证明:当1x =时结论显然成立,当1x≠时,取[],1x 或[]1,x ,在该区间设()f x xα=,()F x x α=由Canchy 定理得:()()()()()()11f x f f F x F F ξξ'-='- (),1x ξ∈或()1,x ξ∈ 即111x x ααααξξααα---==-当1x >时,(),1x ξ∈,11αξ->即11x x ααα->-又()10x x ααα-=-<故1x x ααα->-即11x αα-<-当1x >时,()1,x ξ∈,11αξ-<则()10x x ααα-=->故1x x ααα->-即11x αα-<-证毕例 8 设()f x 在[,]a b 上连续,(,)a b 内可导,a b ≤≤(0),()()f a f b ≠ ,试证 ,a b ξη∃∈,(),使得'()'()2a b f f ξηξ+= .证明: 在等式'()'()2a b f f ξηξ+=两边同乘b a -,则等价于22'()'()()2f f b a b a ηξξ-=-(),要证明此题, 只需要证明上式即可.在[,]a b 上,取()()F x f x =,G x x ()=,当,a b ξ∈()时,应用Cauchy 中值定理()()'()()()'()f b f a f G b G a G ξξ-=-即()()'()1f b f a f b aξ-=-在[,]a b 上,再取()()F x f x =,2G x x ()= ,当,a b η∈()时,应用C a u c h y 中值定理()()'()()()'()f b f a f G b G a G ηη-=-即22()()'()2f b f a f b aηη-=-即22'()'()()()2f f b a b a ηξξ-=-即'()'()2a b f f ξηξ+=例 9 设函数f 在[,]0a b a >()上连续,在(,)a b 上可导.试证:存在(,)a b ξ∈使得()()'()lnb f b f a f aξξ-=证明: 设()ln g x x =,显然它在[,]a b 上与()f x 一起满足柯西中值定理条件,所以存在,a b ξ∈(),使得 ()()'()1ln ln f b f a f b aξξ-=-整理后即得()()'()lnb f b f a f aξξ-=6 定理的应用总结 6.1 三定理的应用关系一般来说, 能用R o l l e 定理证得的也可用Lagrange 定理或C a u c h y 定理证得,因此,在解题的过程中根据问题本身的特点能选取合适的中值定理,以取得事半功倍的效果.如上面例9 利用R olle 中值定理.令()[()()]ln ()(ln ln )F x f b f a x f x b a =---,则()()F a F b -,所以存在,a b ξ∈()使得'()0F x =, 即()()'()lnf b f a b f aξξ--=整理后即得所欲证明.上面的这个例子还不难看出在利用R olle 中值定理和Cauchy 中值定理证明的同一个不等式中,用R olle 中值定理时辅助函数的构造显然需要更多的观察和技术.相比之下,用Cauchy 中值定理则要简单得多.6.2 定理的应用方法技巧从定理应用的例题中不难发现,微分中值定理大多都是通过构造辅助函数来完成证明的.有的可以从函数本身出发构造辅助函数,有的需要利用指数、对数、三角函数等初等函数来构造辅助函数,还有的要根据需要证明的目标出发适当构造辅助函数.可见,在微分中值定理的应用中,广泛地使用辅助函数是做证明题的关键,在学习时应该掌握一些常用的构造辅助函数方法.在做证明题时一般先从要证的结论出发,观察目标式的特征,分析目标式可能要用的辅助函数,然后对目标式作相应的变形,这是构造辅助函数的关键.有了辅助函数就可以直接对辅助函数应用微分中值定理得到结论.7 结束语本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师及同学们的一起探讨下,了解到微分中值定理的内在联系,也对微分中值定理深层进行了探讨,还对微分中值定理的应用做了归纳总结.本课题主要是以罗尔中值定理、拉格朗日中值定理和柯西中值定理三个微分中值定理,感受到了定理来解决数学问题的方便快捷,学以致用得到充分体现.微分中值定理是微分学的基本定理,而且它是微分学的理论核心,有着广泛的应用.本课题主要是对微分中值定理证明等式不等式,方程根的存在性,求极限以及求近似值等的应用.应用微分中值定理证明命题的关键是构造辅助函数,构造满足某个微分中值定理的条件而得到要证明的结论.而构造辅助函数技巧性强,构造合适的辅助函数往往是困难的.因此,在构造辅助函数上本文没有深入系统论述,有待于研究.9 参考文献[1] 党艳霞. 浅谈微分中值定理及其应用[J]. 廊坊师范学院学报(自然科学版).2010,(1): 28-31.[2] 陈传璋. 数学分析[M]. 北京: 高等教育出版社. 2007.[3] 刘玉琏, 傅沛仁. 数学分析讲义[M]. 北京:高等教育出版社. 1982.[4] 林源渠, 方企勤等. 数学分析习题集[M]. 北京:高等教育出版社. 1986.[5] 赵香兰. 巧用微分中值定理[J]. 大同职业技术学院学报. 2004,(2):64-66.[6] 刘章辉. 微分中值定理及其应用[J]. 山西大同大学学报(自然科学版).2007.23(2): 12-15.[7] 何志敏. 微分中值定理的普遍推广[J]. 零陵学院学报. 1985. (1): 11-13.[8] 李阳, 郝佳. 微分中值定理的延伸及应用[J]. 辽宁师专学报. 2011.(3): 13-18.。

微分中值定理的证明题[1](1)

微分中值定理的证明题[1](1)

微分中值定理的证明题1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,(,)a b ξ∃∈使得:()()0f f ξλξ'+=。

证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ∃∈(,使()0F ξ'=即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。

2. 设,0a b >,证明:(,)a b ξ∃∈,使得(1)()b a ae be e a b ξξ-=--。

证:将上等式变形得:1111111111(1)()b ae e e b a b aξξ-=--作辅助函数1()xf x xe =,则()f x 在11[,]b a 上连续,在11(,)b a内可导,由拉格朗日定理得:11()()1()11f f b a f b aξ-'=- 1ξ11(,)b a ∈ , 即 11111(1)11b ae eba eb a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。

3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0F ξ''=。

证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ∃∈,使得0()0F x '=又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈⊂(0,1),即证4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f .(2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是,由问题(1)的结论有.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.【分析】)(x f 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。

微分中值定理有关证明

微分中值定理有关证明

☆例1 设)(x f 在[0,3]上连续,在(0,3)内可导,且3)2()1()0(=++f f f ,1)3(=f .试证:必存在)3,0(∈ξ,使()0f ξ'=证:∵ )(x f 在[0,3]上连续,∴ )(x f 在[0,2]上连续,且有最大值和最小值.于是M f m ≤≤)0(;M f m ≤≤)1(;M f m ≤≤)2(,故M f f f m ≤++≤)]2()1()0([31. 由连续函数介值定理可知,至少存在一点[0,2]c ∈使得1)]2()1()0([31)(=++=f f f c f ,因此)3()(f c f =,且)(x f 在[,3]上连续,(,3)内可导,由罗尔定理得出必存在)3,0()3,(⊂∈c ξ使得()0f ξ'=。

☆例2 设)(x f 在[0,1]上连续,(0,1)内可导,且⎰=132)0()(3f dx x f求证:存在)1,0(∈ξ使0)('=ξf证:由积分中值定理可知,存在2[,1]3c ∈,使得⎰-=132)321)(()(c f dx x f得到 ⎰==132)0()(3)(f dx x f c f对)(x f 在[0,c]上用罗尔定理,(三个条件都满足) 故存在)1,0(),0(⊂∈c ξ,使()0f ξ'=☆例3 设)(x f 在[0,1]上连续,(0,1)内可导,对任意1>k ,有⎰-=k x dx x f xe k f 11)()1(,求证存在)1,0(∈ξ使1()(1)()f f ξξξ-'=-证:由积分中值定理可知存在1[0,]c k∈使得)01)(()(1101-=--⎰k c f ce dx x f xe ck x令)()(1x f xex F x-=,可知)1()1(f F =这样1110(1)(1)()()()x c k F f kxe f x dx ce f c F c --====⎰,对)(x F 在]1,[c 上用罗尔定理(三个条件都满足)存在)1,0()1,(⊂∈c ξ,使()0F ξ'= 而111()()()()xx x F x ef x xe f x xe f x ---''=-+∴ 11()[()(1)()]0F ef f ξξξξξξ-''=--=又01≠-ξξe,则1()(1)()f f ξξξ'=-在例3的条件和结论中可以看出不可能对)(x f 用罗尔定理,否则结论只是()0f ξ'=,而且条件也不满足。

微分中值定理(1)

微分中值定理(1)
(1)若M=m, 则f ( x) C, x [a, b]
f ( x) C 0, 对于一切x (a, b). 取 x.
(2)若M m,则f ( x)在[a, b]上不是常数. f (a) f (b), 则M , m不可能同时在端点取得. 不妨设M f (a),
f ( x) f (b) f (a) x 0 ba

f (x)
f (b) f (a) ba
x

0
Proof. 设 F ( x) f ( x) f (b) f (a) x, x [a, b] ba
则 F ( x) 在[a, b] 上连续, 在 (a, b)内可导.
由 f ( x1 ) f ( x2 ),
至少存在一点1 ( x1, x2 ), 使得 f (1 ) 0.
由 f ( x2 ) f ( x3 ),
至少存在一点2 ( x2, x3 ), 使得 f (2 ) 0.
而 f ( x) 在 [1,2]上连续; f ( x) 在 (1,2 )内可导. f (1 ) 0 f (2 ).
ba
当b a时, f (a) f (b) f ( )(a b) f (b) f (a) f ( )(b a).
注意: (1) 令 f (a) f (b), 则 Lagrange 中值定理 Rolle定理.
(2) 在Lagrange 中值公式 f (b) f (a) f ( )(b a)中, a b, 0 a b a, 0 a 1,
几何意义: y
oa
b
Rolle定理指出在两个高度相同 的点之y 间的一段连续曲线上,若 除端点外,它在每一点都有不垂 直于 x 轴的切线,则在其中必有 一条切线平行于 x 轴.

3.1 微分中值定理

3.1 微分中值定理

2 1 3 4 2 1
4 4
(2) 设 f ( x) ( x 1)( x 2)( x 3)(x 4), 方程 f ( x) 0.
有 3 个根 , 它们分别在区间 (1, 2) , (2 , 3) , (3 , 4) 内.
高等数学
目录
上页
下页
返回
结束
(0 ,1) 可导,且 f (1) 0. 2 设 f ( x) 在 [0,1] 连续,
高等数学
目录 上页 下页 返回 结束
例3.1.6
x 证明不等式 1 x ln(1 x) x ( x 0) .
证明 设 f (t ) ln(1 t ) , 则 f (t ) 在[0, x] 上满足拉格朗日 中值定理条件, 因此
f ( x) f (0) f ( )( x 0)
即 因为 故
(0 x) (0 x)
x , ln(1 x) 1 x x x 1 x 1 x ln(1 x) x 1 x
( x 0)
目录 上页 下页 返回 结束
高等数学
内容小结
1. 微分中值定理的条件、结论及关系
f (b) f (a)

20 2 2 (0, 2). 3x 3 1, x 3
注 (1) 若 f (a) = f (b), Lagrange定理即为 Rolle定理
y
(2) Lagrange定理的几何意义:
若连续曲线 y f ( x) 的弧 AB
O
上除端点外处处具有不垂直于 x轴的切线,
a
b x
则弧上至少 有一点C 的切线平行于弦AB.
高等数学
目录 上页 下页 返回 结束

微分中值定理的证明与应用

微分中值定理的证明与应用

微分中值定理的证明与应用B09030124 孙吉斌一 中值定理及证明:1. 极值的概念和可微极值点的必要条件:定理 ( Fermat ) 设函数f 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为f 的极值点,则必有 0)(0='x f 罗尔中值定理:若函数f 满足如下条件:(i )f 在闭区间[a ,b]上连续;(ii )f 在开区间(a ,b )内可导;(iii ))()(b f a f =,则在(a ,b )内至少存在一点ξ,使得f '(ξ)=0。

证明:因为f 在[a,b ]上连续,所以有最大值与最小值,分别用M 与m 表示,现分两种情况讨论:(i)若M = m , 则 f 在[a,b ]上必为常数,从而结论显然成立。

(ii)若m < M ,则因 f (a)=f (b),使得最大值M 与最小值m 至少有一个在(a,b)内某点ξ处取得,从而ξ是f 的极值点,由条件(ii) f 在点ξ处可导,故由费马定理推知)(ξf '=0.注1:罗尔定理的几何意义:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线。

注2:习惯上把结论中的ξ称为中值,罗尔定理的三个条件是充分而非必要的,但缺少其中任何一个条件,定理的结论将不一定成立。

例如: ⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-<=2x 1,11x 2,01|x |,x F(x)x易见,F 在x=-1不连续,在x=±1不可导,F(-2)≠F (2), 即罗尔定理的三个条件均不成立,但是在(-2,2)内存在点 ξ, 满足 0)(='ξF注3:罗尔定理结论中的ξ值不一定唯一,可能有一个,几个甚至无限多个,例如:⎪⎩⎪⎨⎧=≠=0x 0,0x ,sin x f(x)x 142在 [-1,1] 上满足罗尔定理的条件,显然⎪⎩⎪⎨⎧=-='0x 0,cos sin 2x sin 4x (x)f x 1x 1x 1232在(-1,1)内存在无限多个 n c =)(21z n n ∈π使得)(n c f '=0。

与微分中值定理有关的几个问题

与微分中值定理有关的几个问题

与微分中值定理有关的几个问题Intro:有界性,最值定理,介值定理,零点定理,平均值定理。

以下定理(除1外)均需要开区间可导,闭区间连续。

不妨设(a,b)内可导,[a,b]内连续。

1.费马引理(Fermat Lemma):设f(x)在 x_{0} 的某邻域内有定义,且f(x)≥(≤)f( x_{0}),f(x)在 x_{0} 处可导,则 f^{,}(x_{0})=0 (即最值处导函数为0)证: f^{,}(x_{0})=\lim_{x \rightarrow0}{\frac{f(x_{0}+x)-f(x_{0})}{x}}当x从左侧趋近于0,则 f^{,}(x_{0})=f_{-}^{,}(x_{0})≥0;当x从右侧趋近于0,则 f^{,}(x_{0})=f_{-}^{,}(x_{0})\leq0 ;又因为f(x)在 x_{0} 处可导,根据可导的充要条件知:f_{-}^{,}(x_{0}),f_{+}^{,}(x_{0}) 存在且相等,即证。

2.罗尔中值定理(Rolle mean value Theorem):f(a)=f(b),则存在c∈(a,b),使得 f^{,}(c)=0证明:①若最大值M=最小值m,则f(x)为常值函数,即证;②若M≠m,因为f(a)=f(b),所以M,m中至少一个不会等于f(a),不妨设M≠f(a),因为f(c)=M为最大值,c∈(a,b),所以f(x)≤f(c),据费马引理即证。

罗尔定理的推论:若函数n阶导非零,则此函数最多n个零点。

证明:反证法。

3.拉格朗日中值定理(Lagrange's Mean Value Theorem):至少存在一点c∈(a,b),使得 f^{,}(c)=\frac{f(b)-f(a)}{b-a}证:令F(x)=f(x)- \frac{f(b)-f(a)}{b-a}x 或 F(x)=f(x)-f(a)- \frac{f(b)-f(a)}{b-a}(x-a) ,易知F(a)=F(b),且F(x)在(a,b)内可导,[a,b]内连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分中值定理的证明题[1](1)微分中值定理的证明题1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ∀∈,(,)a b ξ∃∈使得:()()0f f ξλξ'+=。

证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ∃∈(,使()0F ξ'=即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。

2. 设,0a b >,证明:(,)a b ξ∃∈,使得(1)()b a ae be e a b ξξ-=--。

证:将上等式变形得:1111111111(1)()b ae e e b a b aξξ-=--作辅助函数1()xf x xe =,则()f x 在11[,]b a 上连续,在11(,)b a内可导,由拉格朗日定理得:11()()1()11f f b a f b aξ-'=- 1ξ11(,)b a ∈ , 即 11111(1)11b ae eba eb a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。

3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0F ξ''=。

证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ∃∈,使得0()0F x '=又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈⊂(0,1),即证4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明:(1)在(0,1)内存在ξ,使得ξξ-=1)(f .(2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是,由问题(1)的结论有.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.【分析】)(x f 在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。

辅助函数可如下得到0)()(0)()()()(=-+→=-+→=+x f x a f f a f f a f ξξξξ【证明】令)()()(x f x a f x G -+=,],0[a x ∈.)(x G 在[0,a]上连续,且 )()0()()2()(a f f a f a f a G -=-=)0()()0(f a f G -=当)0()(f a f =时,取0=ξ,即有)()(ξξf a f =+;当)0()(f a f ≠时,0)()0(<a G G ,由根的存在性定理知存在),0(a ∈ξ使得,0)(=ξG ,即)()(ξξf a f =+.F (η)=0 又 F (0)=-)0(f 0=0对F (x )在[0,1]上用Rolle 定理,∃一个∈ξ(0,η)⊂(0,1)使 )('ξF =0 即 )('ξf =16. 设)(x f 在]1,0[上连续,在)1,0(内可导,且)1()0(f f =试证存在ξ和η.满足10<<<ηξ,使0)()(='+'ηξf f 。

证 由拉格朗日中值定理知,)(021)0()21(ξf f f '=-- )21,0(∈ξ)1,21()(211)21()1(∈'=--ηηf f f021)21()1(21)0()21()()(=-+-='+'f f f f f f ηξ 7. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη∃∈使得()().2a bf f ξηη+''= (1) 证: (用()b a -乘于(1)式两端,知)(1)式等价于22()()()().12f f b a b a ξηη''-=- (2)为证此式,只要取()(),F x f x =取()G x x =和2x 在[,]a b 上分别应用Cauchy 中值定理,则知22()()()()()(),12f f f b f a b a b a ξηη''-=-=-其中,(,)a b ξη∈.8. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,ba <<0,证明存在),(,b a ∈ηξ,使)()()(3/22/2ηξηf b ab a f ++=解:利用柯西中值定理332/)()(3)(a b a f b f f --=ηη而))(()()(/a b fa fb f -=-ξ 则22/33/332/)())(()()(3)(b ab a f a b a b f a b a f b f f ++=--=--=ξξηη(后面略)9. 设)(x f 在a x ≥时连续,0)(<a f ,当a x >时,0)(/>>k x f ,则在))(,(ka f a a -内0)(=x f 有唯一的实根 解:因为0)(/>>k x f,则)(x f 在))(,(ka f a a -上单调增加 0])(1)[()()()())((//>-=-=-kf a f k a f f a f k a f a f ξξ(中值定理)而0)(<a f 故在))(,(ka f a a -内0)(=x f 有唯一的实根 10. 试问如下推论过程是否正确。

对函数21sin0()00t t f t tt ⎧≠⎪=⎨⎪=⎩在[0,]x 上应用拉格朗日中值定理得:21sin 0()(0)111sin ()2sin cos 00x f x f x x f x x x ξξξξ--'====--- (0)x ξ<<即:111cos2sinsinx xξξξ=- (0)x ξ<<因0x ξ<<,故当0x →时,0ξ→,由01lim 2sin0ξξξ+→=1lim sin 0x x x+→= 得:0lim x +→1cos 0ξ=,即01lim cos0ξξ+→=解:我们已经知道,01lim cos0ξξ+→=不存在,故以上推理过程错误。

首先应注意:上面应用拉格朗日中值的ξ是个中值点,是由f 和区间[0,]x 的端点而定的,具体地说,ξ与x 有关系,是依赖于x 的,当0x →时,ξ不一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使1lim cos 0x ξ+→=成立,而01lim cos0ξξ+→=中要求ξ是连续地趋于零。

故由01lim cos 0x ξ+→=推不出1lim cos0ξξ+→=11. 证明:02x π∀<<成立2cos xx tgx x<<。

证明:作辅助函数()f x tgx =,则()f x 在[0,]x 上连续,在(0,)x 内可导, 由拉格朗日定理知:2()(0)1()0cos f x f tgx f x x ξξ-'===-(0,)x ξ∈ 即:2cos x tgx ξ=,因cos x 在(0,)2π内单调递减,故21cos x 在(0,)2π内单调递增,故222111cos 0cos cos x ξ<<即:22cos cos x xx xξ<< 即:21cos x tgx x<<。

注:利用拉格朗日中值定理证明不等式,首先由不等式出发,选择合适的函数)(x f 及相应的区间],[b a ,然后验证条件,利用定理得()()()()f b f a f b a ξ'-=-(,)a b ξ∈,再根据()f x '在(,)a b 内符号或单调 证明不等式。

12. 证明:当02x π<<时,sin 2x tgx x +>。

证明:作辅助函数()sin 2x x tgx x ϕ=+-(0,)2x π∈则2()cos sec 2x x x ϕ'=+-21cos 2cos x x=+- 221cos 2cos x x ≥-+21(cos )cos x x=-0>故()x ϕ在(0,)2π上单调递减,又因(0)0ϕ=,()x ϕ在(0,)2π上连续,故 ()(0)x ϕϕ>=0,即:sin 20x tgx x +->,即:sin 2x tgx x +>。

注:利用单调性证明不等式是常用方法之一,欲证当x I ∈时()()f x g x ≥,常用辅助函数()()()x f x g x ϕ=-,则将问题转化证()0x ϕ≥,然后在I 上讨论()x ϕ的单调性,进而完成证明。

13. 证明:若()f x 二阶可导,且()0f x ''>,(0)0f =,则()()f x F x x=在 (0,)+∞内单调递增。

证明:因2()()()xf x f x F x x'-'=,要证()F x 单调递增,只需证()0F x '>, 即证()()0xf x f x '->。

相关文档
最新文档