高考参数方程常见题型及解题技巧
高考数学如何应对含参数的方程组题目
高考数学如何应对含参数的方程组题目在高考数学中,含参数的方程组题目是一种较为常见的题型。
这类题目涉及到未知数和参数之间的关系,考察学生对于方程组的解法和参数的影响的理解。
本文将介绍如何应对含参数的方程组题目,帮助考生更好地解决这类难题。
一、理解参数的含义和作用在处理含参数的方程组题目时,首先要准确理解参数的含义和作用。
参数是方程中的变量,通过改变参数的取值可以得到不同的方程组。
因此,参数的取值范围和数值对于方程组的解的个数和性质有着重要的影响。
二、分类讨论参数取值的情况针对不同的参数取值情况,可以将题目分为以下几种情况进行讨论和求解。
1. 参数取值为特殊值当参数取值为特殊值时,方程组可能出现特殊的性质和解的形式。
此时可以通过代数运算和推理找到方程组解的规律,并根据特殊值的取值范围给出解的条件。
2. 参数取值范围问题有些题目会给出参数的取值范围,要求根据参数的范围来讨论方程组的解。
这时需要将参数的取值范围分为不同的区间,并对每个区间进行分析,得出方程组解的情况。
3. 参数关系的转化在有些题目中,参数之间可能存在一定的关系,需要通过将方程组中的变量进行替换或者代入来将方程组转化为一个更简单的形式,从而求出解的表达式或者性质。
4. 参数的限制条件有时方程组的解还需要满足一定的限制条件,这些限制条件可以是其他方程的引入,也可以是解的范围的限制等。
在解题过程中,需要将这些条件纳入考虑,并进行综合分析。
三、解题技巧和注意事项在应对含参数的方程组题目时,还需要掌握一些解题技巧和注意事项,以提高解题效率和完成度。
1. 灵活运用代数运算对于含参数的方程组,要善于利用代数运算进行化简和转化,以及利用代数关系来推导出解的形式或者性质。
同时可以采用待定系数法或者换元法等技巧,将方程组转化为更简单的形式。
2. 多角度思考在解题过程中,多角度思考问题有助于发现问题的规律和解的启示。
可以从代数、几何、函数等不同的角度来分析和解决问题。
专题75 参数方程(解析版)
2020年领军高考数学一轮复习(文理通用)专题75参数方程最新考纲1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.基础知识融会贯通1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程重点难点突破【题型一】参数方程与普通方程的互化【典型例题】已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:(t 为参数)距离的最小值.【解答】解:(Ⅰ)C1:(x+4)2+(y﹣3)2=1,C2:y2=1C1为圆心是(﹣4,3),半径是1的圆C2为中心是坐标原点,焦点在x轴上,长半轴长是,短半轴长是1的椭圆(Ⅱ)当t时,P(﹣4,4),Q(cosθ,sinθ),故M(﹣2cosθ,2)C3为直线x﹣y﹣5=0,M到C3的距离d|sin(θ)+9|,从而当sin(θ)=﹣1时,d取得最小值4.【再练一题】在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(1)求曲线C1和C2的普通方程;(2)直线l的参数方程是(t为参数),直线l过定点P(0,1)且与曲线C2交于A,B两点,求|P A|•|PB|的值.【解答】(1)线C1的参数方程为(φ为参数),得到:x2+y2=4.把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(φ为参数)转换为直角坐标方程为:.(2)把直线l的参数方程(t为参数),转换为标准的参数方程为:(t为参数)代入,得到:(t1和t2为A和B对应的参数),故:,故:.思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.【题型二】参数方程的应用【典型例题】已知直线l:(t为参数),曲线C1:(θ为参数).(1)设直线l与曲线C1相交于A,B两点,求劣弧AB的弧长;(2)若把曲线C1上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线C2,设点P是曲线C2上的一个动点,求点P到直线l的距离的最小值,及点P坐标.【解答】解:(1)由l:,得;由曲线C1:,得x2+y2=1;联立,解得或,则两交点为(1,0),(,).∴|AB |,则劣弧AB 的弧长为;(2)设P 点坐标为(,),点P 到直线l 的距离d . 当sin ()=﹣1时,d 取得最小值为,此时P (,).【再练一题】在平面直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t 为参数).(1)求曲线C 和直线l 的普通方程,(2)直线l 与曲线C 交于A ,B 两点,若|AB |=1,求直线l 的方程.【解答】解:(1)由曲线C 和直线l 的参数方程可知,曲线C 的普通方程为x 2+y 2=1. 直线l 的普通方程:当cos α=0时为x =2;当cos α≠0时为y =tan α(x ﹣2). (2)把x =2+t cos α,y =t sin α代入x 2+y 2=1,得t 2+4t cos α+3=0, 因为△=16cos 2α﹣12>0,所以cos 2α.设A ,B 对应的参数为t 1,t 2,因为t 1+t 2=﹣4cos α,t 1t 2=3,|AB |=|t 1﹣t 2|=1, 所以(t 1﹣t 2)2=(t 1+t 2)2﹣4t 1t 2=16cos 2α﹣12=1, 所以cos 2α,所以tan 2α, 所以tan α=±,即直线l 的斜率为±. 所以直线l 的方程为y x或yx.思维升华 (1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【题型三】极坐标方程和参数方程的综合应用【典型例题】在直角坐标系xOy中,曲线C1的参数方程为(α是参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线θ=β(0<β)与曲线C1交于O,A两点,与曲线C2交于O,B两点,求|OA|+|OB|取最大值时tanβ的值.【解答】解:(1)由(α是参数),得,∴,即,∴曲线C1的极坐标方程为.由ρ=4sinθ,得ρ2=4ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:x2+y2=4y,故曲线C2的直角坐标方程为x2+y2﹣4y=0.(2)设点A、B的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β(0<β)分别代入曲线C1、C2极坐标方程得:,ρ2=4sinβ,则|OA|+|OB|4sinβ(β+φ),其中φ为锐角,且满足sinφ,cosφ,当β+φ时,|OA|+|OB|取最大值,此时φ,tanβ=tan(φ).【再练一题】在直角坐标系xoy中,直线l的参数方程是(t为参数),曲线C的参数方程是(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和曲线C的极坐标方程;(2)已知射线与曲线C交于O,M两点,射线与直线l交于N 点,若△OMN的面积为1,求α的值和弦长|OM|.【解答】解:(1)直线l 的参数方程是(t 为参数),消去参数t 得直角坐标方程为:. 转换为极坐标方程为:,即.曲线C 的参数方程是(φ为参数),转换为直角坐标方程为:,…………………………化为一般式得化为极坐标方程为:. ………………………(2)由于,得,.所以,所以, 由于,所以,所以.…………………………思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.基础知识训练1.在平面直角坐标系xOy 中,直线l的参数方程为322x t y t ⎧=−⎪⎪⎨⎪=⎪⎩(t 为参数)。
高考数学中的参数方程解析技巧
高考数学中的参数方程解析技巧高中数学中,参数方程是一个比较重要的知识点,它在高考中也经常出现。
在考场上如何快速解析参数方程是一个必备的技巧。
本文将从以下几个方面探讨高考数学中的参数方程解析技巧。
一、掌握参数方程的基本概念和性质首先,我们需要掌握参数方程的基本概念和性质。
参数方程就是用一个或多个变量来表示一组解的方程,通常是用二元函数表示。
例如,设:x=f(t) , y=g(t) ,则称x,y是由参数t确定的一组函数或者向量。
又如,曲线的参数方程可以表示为:x=cos t, y=sin t。
同时,我们还需要了解参数方程的基本性质。
比如,当参数t取遍一个区间时,对应的点以一定的方式运动,从而构成一个曲线(或者说路径)。
因此,参数方程很适合用来表示一些曲线、轨迹等形状。
二、常见的参数方程解题方法1、画图法:画出参数曲线的关键点和性质,如切线斜率、弧长等,利用图形解决问题。
2、换元法:将复杂的参数方程化简成简单的形式,以便求解。
比如,将参数方程中的sin t,cos t换成tan t,以求得此函数的导数。
3、消元法:当问题中只需求出一种变量的值时,可以通过解方程组,消元得到所求的变量。
例如,已知x=f(t) , y=g(t),求y=f(x) 时,可以用消元法解得。
4、向量法:参数方程中的x,y一般可以看作是向量的i,j分量。
因此,我们可以构造出向量的形式,利用向量的性质解题。
三、解析参数方程的常见技巧1、化简参数方程:通过变形,将参数方程化为指数函数、三角函数等常见函数形式,以便于求导。
2、求导、求导数:通过求导,可以求出参数曲线的切线斜率、曲率等性质,以便于解析问题。
3、曲率半径:利用曲率半径和曲率公式,可以求出参数曲线上任意一点的曲率半径。
4、求交点、对称点:通过等式联立,求得参数方程下两曲线的交点坐标。
通过在参数方程下的对称关系求得参数曲线下的对称点。
四、例题分析1、设直线 L : y=x+k(k > 0),曲线 C 的参数方程为 x=cost ,y=sin(t+θ). 试确定θ的取值范围,并解决直线 L 在曲线 C 上的截距。
高考极坐标与参数方程大题题型汇总(附详细答案)
高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。
例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。
解析:将x和y用极坐标表示,得到ρ=2cosθ。
例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。
解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。
求曲线C的极坐标方程和直线l被曲线C截得的弦长。
解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。
2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。
为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。
极坐标与参数方程 题型总结归纳 附答案
《极坐标与参数方程》高考高频题型除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及(一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d <用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。
题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法)思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=第二步:判断直线与圆的位置关系第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d =题型三:直线与圆的弦长问题弦长公式222d r l -=,d 是圆心到直线的距离延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”(二)距离的最值: ---用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题“参数法”:设点---套公式--三角辅助角①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ①套公式:利用点到线的距离公式①辅助角:利用三角函数辅助角公式进行化一例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为(I )写出的普通方程和的直角坐标方程;(II )设点在上,点在上,求的最小值及此时的直角坐标的直角坐标方程为.这里没有加减移项省去,直接化同,那系数除到左边(①)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值,xOy 1C ()sin x y ααα⎧=⎪⎨=⎪⎩为参数x 2C sin()4ρθπ+=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α.(欧萌说:利用点到直接的距离列式子,然后就是三角函数的辅助公式进行化一)当时)(13sin =+πα即当时,,此时的直角坐标为.(三)直线参数方程的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程()sin()2|3d παα==+-2()6k k Z παπ=+∈()d αP 31(,)22第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。
极坐标与参数方程高考常见题型及解题策略
极坐标与参数方程高考常见题型及解题策略【考纲要求】(1)坐标系①了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
②了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化。
表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化。
③能在极坐标系中给出简单图形表示的极坐标方程。
④了解参数方程,了解参数的意义。
能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。
⑤能选择适当的参数写出直线,圆和椭圆的参数方程。
了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解他们的区别。
(2)参数方程①了解参数方程,了解参数的意义②能选择适当的参数写出直线、圆和圆锥曲线的参数方程。
③了解平摆线、渐开线的生成过程,并能推导出他们的参数方程。
④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨迹中的作用。
【热门考点】高考题中这一部分主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。
热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程。
冷点是推导简单图形的极坐标方程、直角坐标方程化为参数方程。
盲点是柱坐标系、球坐标系中表示空间中点的位置的方法,摆线在实际中的应用,摆线在表示行星运动轨道中的作用。
涉及较多的是极坐标与直角坐标的互化及简单应用。
多以选做题形式出现,以考查基本概念,基本知识,基本运算为主,一般属于中档题。
例1.(2011新课标1,第23题)在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x ay a=⎧⎨=+⎩(σ为参数)M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C 。
高考参数方程解题技巧
高考参数方程解题技巧极坐标和参数方程是高中数学中重要的知识点,也是高考考查的一个重要内容。
下面是店铺为你整理关于高考参数方程解题技巧的内容,希望大家喜欢!高考参数方程解题技巧1、利用导数研究函数的单调性问题设函数y=f(x)在某个区间内可导,如果f'(x)>0,则f(x)为增函数;如果f'(x)<0则f(x)为减函数。
反之亦然。
高考常以函数单调区间、单调性证明等问题为载体,考查导数的单调性质和分类讨论思想的应用。
(20)(安徽文本小题满分14分)设函数f(x)=-cos2x-4tsincos+4t2+t2-3t+4,x∈R, 其中≤1,将f(x)的最小值记为g(t).(Ⅰ)求g(t)的表达式;(Ⅱ)讨论g(t)在区间(-1,1)内的单调性并求极值.20.(福建文本小题满分12分)设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).(Ⅰ)求f(x)的最小值h(t);2)恒成立,求实数m的取值范围. (Ⅱ)若h(t)<-2t+m对t∈(0,x2x22、利用导数求解函数极(最)值问题设y=f(x)为可导函数,函数f(x)在某点取得极值的充要条件是该点的导数为零或不存在且该点两侧的导数异号;定义在闭区间上的初等函数必存在最值,它只能在区间的端点或区间内的极值点取得。
高考常结合求函数极值(最值)、参数取值范围、解决数学应用等问题考查导数最值性质在函数问题中的应用。
19.(北京理本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短CD的端点在椭圆上,记CD=2x,梯形面积为S. A为r,计轴,上底(I)求面积S以x为自变量的函数式,并写出其定义域;(II)求面积S的最大值.19.(湖南理本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0ο<θ<90ο),且sinθ=2,点P到平面α5的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为a万元/km.当山坡上公路长度为lkm(1≤l≤2)时,2其造价为(l2+1)a万元.已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=.(I)在AB上求一点D,使沿折线PDAO修建公路的总造价最小; (II) 对于(I)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小.(III)在AB上是否存在两个不同的点D',E',使沿折线PD'E'O修建公路的总造价小于(II)中得到的最小总造价,证明你的结论.AOEDB P H3、利用导数的几何意义解决有关切线问题函数f(x)在点x0处的导数f'(x0)是曲线y=f(x)在点(x0.f(x0))处切线的斜率。
高考极坐标与参数方程题型及解题方法
高考极坐标与参数方程题型及解题方法1. 引言在高考数学考试中,极坐标与参数方程是比较常见的题型。
掌握这些题型的解题方法对于考生来说非常重要。
本文将针对高考中常见的极坐标与参数方程题型进行介绍,并给出相应的解题方法。
2. 极坐标题型及解题方法2.1 求曲线方程在给定了极坐标方程$r=f(\\theta)$的情况下,求曲线的方程是比较常见的题型。
要解决这类题目,一般有以下步骤:•首先,观察函数$f(\\theta)$的性质,判断是否是一个周期函数,通过实例来确定周期。
•根据这个周期,可以得到对应的关系式。
•使用关系式消去r和$\\theta$,得到曲线的直角坐标方程。
•最后,通过画图或其他方式,验证所得方程是否正确。
2.2 求曲线的长度求曲线的长度也是一个常见的问题,一般分为以下几步:•根据给定的极坐标方程$r=f(\\theta)$,利用弧长公式进行求解。
公式为:$$L=\\int_{\\alpha}^{\\beta}\\sqrt{[f'(\\theta)]^2+f^2(\\theta)}d\\theta$$ •其中$\\alpha$和$\\beta$为曲线所在区间,$f'(\\theta)$为导数。
•确定曲线所在区间,并计算导数$f'(\\theta)$。
•将上述求得的值带入弧长公式中,进行计算。
2.3 求曲线与极轴的夹角有时候,我们需要求出曲线与极轴的夹角。
对于这类问题,一般可以按照以下步骤进行求解:•首先,通过给定的极坐标方程$r=f(\\theta)$求出曲线与极轴的交点。
•然后,求出曲线在交点处的切线斜率k。
斜率的求解公式为:$$k=\\tan(\\pi/2-\\theta)=-\\frac{dr}{d\\theta}/r$$•最后,利用切线的斜率k求出曲线与极轴的夹角。
3. 参数方程题型及解题方法3.1 求曲线方程对于给定的参数方程x=f(t)和y=g(t),求曲线的方程也是常见的高考题型。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳
参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳
参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
高考数学三角函数参数方程历年真题2024精讲
高考数学三角函数参数方程历年真题2024精讲一、概述在高考数学中,三角函数参数方程是一个重要的考点。
本文将针对高考数学历年真题中关于三角函数参数方程的题目进行精讲,并提供详细的解题思路和步骤。
二、题型解析三角函数参数方程的题目一般分为两种类型:一种是已知参数方程,求函数表达式;另一种是已知函数表达式,求参数方程。
1. 已知参数方程,求函数表达式在这类题目中,通常给出一个或多个参数方程,要求将其转化为函数表达式。
解题的关键在于利用三角函数的基本属性和变换公式。
示例题目:【题目】已知参数方程:$\begin{cases}x=\sin(t)\\y=\cos(t)\end{cases}$求函数表达式。
解题思路:由已知参数方程可得:$x^2+y^2=\sin^2(t)+\cos^2(t)=1$因此,得到函数表达式为:$x^2+y^2=1$2. 已知函数表达式,求参数方程在这类题目中,题目一般给出一个函数表达式,要求将其转化为参数方程。
解题的关键在于根据已知函数表达式,找到合适的参数和参数的取值范围。
示例题目:【题目】已知函数表达式:$y=\sin(x)$,求参数方程。
解题思路:对于给定的函数表达式$y=\sin(x)$,我们可以将$x$作为参数,将其取值范围限定在$[-\pi, \pi]$之间,然后令$y$为$\sin(x)$的取值。
这样就可以得到参数方程:$\begin{cases}x=t\\y=\sin(t)\end{cases}$其中$t \in [-\pi, \pi]$三、历年真题精讲接下来,我们将通过历年高考数学真题,给出更多关于三角函数参数方程的题目解析。
【例题1】(广东省高考数学试题)【题目】已知参数方程:$\begin{cases}x=\sin(2t)\\y=\cos(t)\end{cases}$求函数表达式。
解题思路:将$x=\sin(2t)$和$y=\cos(t)$代入$x^2+y^2=1$,可以得到:$\sin^2(2t)+\cos^2(t)=1$利用三角函数的倍角公式和平方恒等式,可以整理得到:$\sin^2(2t)+\cos^2(t)=\frac{1}{2}(1-\cos(4t))+\frac{1}{2}(1+\cos(2t))=1 $化简得:$\frac{1}{2}\cos(4t)+\frac{1}{2}\cos(2t)=0$进一步化简得:$\cos(4t)+\cos(2t)=0$利用三角函数的和差化积公式,可得:$2\cos(3t)\cos(t)=0$解得$\cos(3t)=0$或$\cos(t)=0$。
高中参数方程5种题型教案
高中参数方程5种题型教案一、直线与圆的位置关系我们可以探讨直线与圆的位置关系问题。
通过设定直线的参数方程和圆的普通方程,引导学生探究两者之间的关系。
例如,给定直线\(L: \egin{cases} x=t+a \\ y= \end{cases}\)(其中t为参数)和圆\(C: (x-c)^2 + (y-d)^2 = r^2\),学生需要判断直线与圆是否相交,并找出交点坐标。
二、参数方程转化为极坐标方程教授学生如何将参数方程转化为极坐标方程。
例如,给出曲线的参数方程(C: \egin{cases} x=cos t \\ y=\sin t \end{cases}\)(其中t为参数),引导学生利用三角恒等式将其转化为极坐标方程。
三、参数方程描绘的曲线图形第三部分,让学生根据给定的参数方程绘制曲线图形。
例如,参数方程\(C: \egin{cases} x=a \cos t \\ y= \sin t end{cases}\)(其中t为参数),学生需要分析参数变化对曲线形状的影响,并绘制出曲线的基本图形。
四、解决参数方程的实际问题在实际应用中,参数方程可以用来解决一些实际问题。
设计一个问题情境,如物理中的抛体运动,通过建立参数方程模型来描述物体的运动轨迹,并求解相关问题。
五、参数方程的深入探究鼓励学生对参数方程进行深入探究。
可以设置一些开放性的问题,如探讨参数变化对曲线性质的影响,或者比较不同类型参数方程的特点和适用场景。
在编写教案时,教师应确保题目的难易程度适中,既能激发学生的学习兴趣,又不至于让学生感到沮丧。
同时,教案中应包含充分的示例和练习题,以便学生通过实践来巩固所学知识。
高中数学常见题型解法归纳 参数方程常见题型的解法
高中数学常见题型解法归纳 参数方程常见题型的解法【知识要点】一、参数方程的定义:一般地,在平面直角坐标中,如果曲线C 上任一点M 的坐标,x y 都是某个变数t的函数()()x f t y g t ,反过来,对于t 的每个允许值,由函数式()()x f t yg t 所确定的点(,)M x y 都在曲线C 上,那么方程()()x f t yg t 叫做曲线C 的参数方程,联系变数,x y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的叫普通方程. 二、常见曲线的参数方程:(1)圆22200()()x x y y r -+-=的参数方程为⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数);(2)椭圆12222=+b y a x 的参数方程为⎩⎨⎧==θθsin cos b y a x (θ为参数);(3)双曲线12222=-b y a x 的参数方程 ⎩⎨⎧==θθtan sec b y a x (θ为参数);(4)抛物线22y px =参数方程222x pt y pt ⎧=⎨=⎩(t 为参数);(5)过定点),(00y x P 、倾斜角为α的直线的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).三、参数方程化为普通方程的过程就是消参过程,常见方法有三种:(1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数(包括整体消元). (2)加减法:把参数方程变形后相加减,消去参数. (3)三角恒等式消参法:利用三角恒等式22sin cos 1a 消去参数.温馨提示:化参数方程为普通方程为0),(=y x F :在消参过程中注意变量x 、y 取值范围的一致性,必须根据参数的取值范围,确定)(t f 和)(t g 值域得x 、y 的取值范围.【题型讲评】解题步骤 利用前面基础知识里提到的三种方法,要特别注意参数方程化为普通方程后x 、y 的范围.【例1】参数方程αααα(,sin 22cos 2sin ⎪⎩⎪⎨⎧+=+=y x 为参数)的普通方程为( ) A. 122=-x y B. 122=-y xC. )2|(|122≤=-x x y D. )2|(|122≤=-x y x【点评】(1)本题使用的是代入消参. (2)把参数方程化成普通方程之后,一定要注意x y 、的取值范围,实际上这是两个函数(),()x f t y g t ==的值域问题. (3)参数方程化成普通方程之后,有时需要x y 、的范围都写,有时只需要写一个就可以了,有时不需要写. 这主要取决于化简之后的普通方程x y 、是否与原参数方程中x y 、的范围一致. 如果一致就不写.如果不一致,就要写.本题中只写了x 的范围,因为x 的范围确定之后,y 的范围也就对应确定了,所以可以不写y 的范围.一般情况下,写一个变量的范围即可.【反馈检测1】参数方程11x t y t⎧=⎪⎨=-⎪⎩t 为参数)表示什么曲线( )A .一条直线B .一个半圆C .一条射线D .一个圆【例2】参数方程22sin 1cos 2x y θθ⎧=+⎨=-+⎩(θ为参数)化为普通方程是( )A .240x y -+=B .2+40x y -=C .[]240,2,3x y x -+=∈D .[]2+40,2,3x y x -=∈ 【解析】2cos 212sin θθ=-,22112sin 2sin y θθ∴=-+-=-,2sin 2yθ∴=-,代入 22sin x θ=+可得22y x =-,整理可得240x y +-=.[]2sin 0,1θ∈,[]22sin 2,3θ∴+∈,即 []2,3x ∈.所以此参数方程化为普通方程为[]240,2,3x y x +-=∈.故D 正确.【点评】本题使用是三角恒等式消参. 【反馈检测2】设曲线C 的参数方程为θθθ⎩⎨⎧+-=+=sin 31cos 32y x 为参数,直线l 的方程为023=+-y x ,则曲线C 上到直线l 的距离为10107的点的个数为( ) A. 1 B. 2 C. 3 D. 4题型二 利用参数方程研究曲线的基本量和基本关系解题步骤 一般先把参数方程化为普通方程,再利用曲线的性质和关系解答.【例3】 若直线1,x t y a t =+⎧⎨=-⎩(t 为参数)被圆22cos 22sin x y =+⎧⎨=+⎩αα(α为参数)所截的弦长为22,则a 的值为( )A .1 或5 B.1- 或5 C.1 或5- D.1- 或5-【反馈检测3】点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩ (θ为参数,R θ∈)上,则yx 的取值范围是 .【例4】椭圆的切线与两坐标轴分别交于,A B 两点 , 求OAB ∆的最小面积 .【解析】 设切点为(cos ,sin )P a b θθ , 则切线方程为cos sin 1x y a bθθ+=. 令0y =, 得切线与x 轴交点(,0)cos a A θ;令0x =,得切线与y 轴交点(0,)sin b B θ1||||||||22sin cos sin 2AOB ab abS OA OB ab θθθ∆∴===≥所以OAB ∆的最小面积为ab .【点评】(1)写出椭圆参数方程cos sin x a y b θθ=⎧⎨=⎩,设切点为(cos ,sin )P a b θθ,可得切线方程.这种设点方式相比设点为(,)x y ,计算更简捷,解题效率更高(2)建立三角函数模型后,再利用三角函数的性质分析解答.【反馈检测4】椭圆14922=+y x 的焦点为12,F F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是___.题型三 利用直线参数的几何意义解题解题步骤 先弄懂直线参数的几何意义,再利用它解答.【例5】在直角坐标系xOy 中,直线l 的参数方程为232(252x t t y ⎧=-⎪⎪⎨⎪=+⎪⎩为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()3,5,求PA PB +.【点评】(1)直线参数方程中参数t 的几何意义是这样的:如果点A 在定点P 的上方,则点A 对应的参数A t 就表示点A 到点P 的距离||PA ,即||A t PA =.如果点B 在定点P 的下方,则点B 对应的参数B t 就表示点B 到点P 的距离||PB 的相反数,即||B t PB =-.(2)由 直线参数方程中参数的几何意义得:如果求直线上,A B 两点间的距离||AB ,不管,A B 两点在哪里,总有||||A B AB t t =-.【反馈检测5】在直角坐标系xoy 中,直线l 的参数方程为为参数)t t y t x (222221⎪⎪⎩⎪⎪⎨⎧+=+=,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为θρsin 4=. (I )写出直线l 的普通方程和曲线2C 的直角坐标方程; (II )直线l 与曲线2C 交于B A 、两点,求AB .高中数学常见题型解法归纳及反馈检测第91讲:参数方程常见题型的解法参考答案【反馈检测1答案】C【反馈检测1详细解析】123012x t x y y t⎧=+⎪⇔+-=⎨=-⎪⎩,其中1,x ≥它表示端点为()11,的一条射线.【反馈检测2答案】B【反馈检测3答案】33⎡⎢⎣⎦【反馈检测3详细解析】曲线的标准方程为22(2)1x y ++=,圆心为(-2,0),半径为1.设y x=k ,则直线y kx =,即0kx y -=,当直线与圆相切时,圆心到直线的距离221k d k -=+=1,即221k k -=+,平方得222141,3k k k =+=,所以解得3k =,由图象知k 的取值范围是33k ≤≤,即y x 的取值范围是33⎡⎢⎣⎦. 【反馈检测4答案】(553,553-) 【反馈检测4详细解析】由椭圆14922=+y x 的知焦点为1F (-5,0),2F (5,0). 设椭圆上的点可设为(3cos ,2sin )P θθ.21PF F ∠ 为钝角 ∴ 1253cos ,2sin )(53cos ,2sin )PF PF θθθθ⋅=-⋅-(=2229cos 54sin 5cos 10θθθ-+=-< 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(553,553-). 【反馈检测5答案】(I )01=+-y x ,4)2(22=-+y x (II )14=AB解法二、由⎩⎨⎧=-+=+-040122y y x y x 可解得,A B A,B 两点的坐标为⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛++273,271,273,271,由两点间距离公式可得14=AB . 解法三、设B A 、两点所对应的参数分别为B A t t ,将为参数)t t y tx (222221⎪⎪⎩⎪⎪⎨⎧+=+=代入0422=-+y y x 并化简整理可得0322=-+t t ,从而⎩⎨⎧-=-=+32B A B A t t t t 因此,2||()414A B A B A B AB t t t t t t =-=+-=.。
高考参数方程常见题型及解题技巧
高考参数方程常见题型及解题技巧
1.参数方程概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y 都是某个变数t的函数:[1]
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。
相对而言,直接给出点坐标间关系的方程即称为普通方程。
2.直线和圆锥曲线的参数方程和普通方程
1.当求两动点取值范围
方法:先在任意一个曲线上取一个定点,再有定点到动点距离结合,加减半径长度可得,详情看下面例题第二问。
2.求两曲线相交两点的中点的轨迹参数方程
方法:先求直线的标准参数方程,并带入圆锥曲线中,得出一等式,根据韦达定理,得tp=1/2(t1+t2),最后结合定点求出直线标准参数方程,详情看下面例题第二问。
3.直线与抛物线上两点,求最小值
方法1:设与直线Ax+By+C1=0平行的直线方程Ax+ByC2=0,再联立抛物线与直线直角坐标方程,由b2-4ac=0可得C2,最后线线距离可得
方法2:由抛物线参数方程x,y为抛物线上的点,最后可由点线距离式可得
19年一卷参数方程。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
用极坐标与参数方程解高考题型及解题策略
用极坐标与参数方程解高考题型及解题策略高考题中极坐标与参数方程主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。
高考热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程,推导简单图形的极坐标方程、直角坐标方程化为参数方程。
其中以考查基本概念,基本知识,基本运算为主,一般属于中档难度题。
常以选考题的形式出现,此外在高考数学的选择题和填空题中,用参数方程与极坐标解决问题常能收到事半功倍的效果,必须引起教与学的足够。
因此,对常见题型及解题策略进行探讨。
一、极坐标与直角坐标的互化1.曲线的极坐标方程化成直角坐标方程:对于简单的我们可以直接代入公式QCOS e=x, PSin G=y, P2=r+/,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以Q等.2.直角坐标(X,劝化为极坐标(Q , 0)的步骤:⑴运用P =心+护,tan ^=-(^≠0);X(2)在[0, 2兀)内由tan θ=-{χ≠Q)求“时,由直角坐标的符X号特征判断点所在的象限(即〃的终边位置).解题时必须注意:①确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.②平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一•当规定QMO, 0≤ ^<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.③进行极坐标方程与直角坐标方程互化时,应注意两点:I .注意Q, 〃的取值范围及其影响.II.重视方程的变形及公式的正用、逆用、变形使用.例如、(2015年全国卷)在直角坐标系XOy中。
直线Cj x=-2, 圆C2: (X-I)2÷(y-2)2=l,以坐标原点为极点,X轴的正半轴为极轴建立极坐标系。
(I)求q, G的极坐标方程;(II)若直线G的极坐标方程为e=fs∈R),设G与G的交点为M , N ,求K,MN的面积解:(I)因为X = QCOS= QsinO ,所以C∖的极坐标方程为PCOSe =-2 , C2的极坐标方程为p2 -2pcos^-4psiιι^+4 = 0(II )将8 =兰代入Q2-2QCOS&-4Qsin0+4 = 0 ,得4p2-3√2p + 4 = 0,解得p1= 2√2,p,≈√2 ,故p1-p2=√2,即IMNl=√Σ由于G的半径为1,所以A CMN的面积为丄- - 2二、简单曲线的极坐标方程及应用1. 求曲线的极坐标方程,就是找出动点M 的坐标P 与θ之间的关 系,然后列出方程f(p, 0)=0,再化简并检验特殊点.2. 极坐标方程涉及的是长度与角度,因此列方程的实质是解三 角形.3. 极坐标方程应用时多化为直角坐标方程求解,然后再转化为 极坐标方程,注意方程的等价性.例如.(2015全国卷)在直角坐标系航夕中,曲线G : =Iy = / sm α为参数,t ≠ 0),其中OW σ <刀,在以0为极点,/轴正半轴 为极轴的极坐标系中,曲线G : Q = 2si∏e, G: ρ = 2√3cos^ o(1)求G 与G 交点的直角坐标; (2) 若G 与G 相交于点?1, G 与G 相交于点0,求IABl 的最大 值。
高考参数方程归纳总结
高考参数方程归纳总结一、参数方程的基本概念参数方程是指使用参数表示自变量和因变量之间的关系。
在数学中,参数方程常用于描述曲线、曲面或其他几何体的运动和变化规律。
在高考中,参数方程也是一道经典的考题类型,要求考生对参数方程的性质和特点进行分析和应用。
二、常见的参数方程类型1. 二维平面曲线的参数方程二维平面曲线的参数方程常用于描述平面上的曲线轨迹。
常见的参数方程类型有:- 抛物线的参数方程:x = t, y = at²- 圆的参数方程:x = rcos(t), y = rsin(t)- 椭圆的参数方程:x = acos(t), y = bsin(t)- 双曲线的参数方程:x = asec(t), y = btan(t)2. 三维空间曲线的参数方程三维空间曲线的参数方程常用于描述空间中的曲线轨迹。
常见的参数方程类型有:- 直线的参数方程:x = x₀ + at, y = y₀ + bt, z = z₀ + ct- 空间曲线的参数方程:x = f(t), y = g(t), z = h(t)3. 二维平面曲面的参数方程二维平面曲面的参数方程常用于描述平面上的曲面形状。
常见的参数方程类型有:- 圆柱面的参数方程:x = acos(t), y = asin(t), z = bt- 双曲抛物面的参数方程:x = at, y = bt², z = ct4. 三维空间曲面的参数方程三维空间曲面的参数方程常用于描述空间中的曲面形状。
常见的参数方程类型有:- 球面的参数方程:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ- 椭球面的参数方程:x = a sinφcosθ, y = b sinφsinθ, z = c cosφ- 椭圆抛物面的参数方程:x = at², y = bt, z = ct三、参数方程的性质和应用1. 曲线的方向性在参数方程中,通过参数的增加方向可以确定曲线的运动方向。
参数方程高考考点解析
参数方程与极坐标目录题型1:参数方程化直角坐标方程 .......................................................................................................................... 1 题型2:求参数方程 .................................................................................................................................................. 1 题型3:极坐标方程化参数方程 .............................................................................................................................. 2 题型4:参数方程化极坐标方程 .............................................................................................................................. 2 题型5:求两点间距离 .............................................................................................................................................. 3 题型6:求参数的值 .................................................................................................................................................. 4 题型7:直线与圆的位置关系 .................................................................................................................................. 5 题型8:与圆锥曲线有关的参数方程问题 .. (6)题型1:参数方程化直角坐标方程【例1】【2013年高考江苏卷(数学)】在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=t y t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标. 【解析】∵直线l 的参数方程为⎩⎨⎧=+=t y t x 21,∴消去参数t 后得直线的普通方程为022=--y x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.参数方程概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:[1]
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。
相对而言,直接给出点坐标间关系的方程即称为普通方程。
2.直线和圆锥曲线的参数方程和普通方程
1.当求两动点取值范围
方法:先在任意一个曲线上取一个定点,再有定点到动点距离结合,加减半径长度可得,详情看下面例题第二问。
2.求两曲线相交两点的中点的轨迹参数方程
方法:先求直线的标准参数方程,并带入圆锥曲线中,得出一等式,根据韦达定理,得tp=1/2(t1+t2),最后结合定点求出直线标准参数方程,详情看下面例题第二问。
3.直线与抛物线上两点,求最小值
方法1:设与直线Ax+By+C1=0平行的直线方程Ax+ByC2=0,再联立抛物线与直线直角坐标方程,由b2-4ac=0可得C2,最后线线距离可得
方法2:由抛物线参数方程x,y为抛物线上的点,最后可由点线距离式可得
19年一卷参数方程。