四年级下册数学讲义-竞赛专题:第八讲-行程问题(一)(含答案解析)人教版

合集下载

四年级下册数学试题-竞赛专题:第九讲-行程问题 (含答案)人教版

四年级下册数学试题-竞赛专题:第九讲-行程问题 (含答案)人教版

行程问题(二)火车长108米,每秒行12米,经过长48米的桥,要多少时间? 【解析】如图,从开始上桥到火车下桥一共走过的路程是一个车长+一个桥长,所以需要行驶的时间为(10848)121561213+÷=÷=(秒)。

开始结束火车行程问题及行船流水问题是行程问题中比较重要及特殊的一类题目。

在火车问题中特殊的地方在于路程,因为火车的长度不能忽略,此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

而行船问题要明确静水、逆水、顺水中船的三个速度间的关系。

流水问题关键是确定物体所运动的速度,过桥问题关键是确定物体所运动的路程,出现较复杂的此类问题时多利用线段图法帮助解题。

名师点题例1知识概述一、火车过桥问题:火车通过大桥是指从车头上桥到车尾离桥。

即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和。

二、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题。

流水问题还有两个特殊的速度,即 顺水速度=船速+水速 逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度。

水速是指水流的速度。

顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度。

已知船的顺水速度和逆水速度,可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2甲、乙两港口间的水路长208千米,一艘船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流的速度。

【解析】要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水和逆水所行的时间求出。

最后再利用和差的逆运算关系求船速和水速。

顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)静水船速:(26十16)÷2- 21(千米/小时)水流速度:(26 -16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流的速度每小时5千米。

人教版2023-2024学年四年级数学上册第6单元行程问题篇(解析版)

人教版2023-2024学年四年级数学上册第6单元行程问题篇(解析版)

2023-2024学年四年级数学上册第六单元行程问题篇(解析版)编者的话:《2023-2024学年四年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题、专项练习、分层试卷三大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

分层试卷部分是根据试题难度和掌握水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。

本专题是第六单元行程问题篇。

本部分内容是行程问题,包括普通行程问题、相遇问题、追及问题、火车过桥问题等等,考点和题型偏于应用,题目综合性稍强,建议作为核心内容进行讲解,一共划分为十四个考点,欢迎使用。

【知识总览】1.行程问题是小学数学中非常常见的类型题,一般包含三个基本量:(1)路程:一共行了多长的路,一般用米或千米作单位;(2)速度:每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,例如:千米/时、米/分、米/秒等等;(3)时间:行了几小时(分钟)。

2.行程问题的基本数量关系:速度×时间=路程;路程÷速度=时间;路程÷时间=速度【考点一】速度的认识及意义。

【方法点拨】速度是指每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,是一个复合单位,例如:千米/时、米/分、米/秒等等。

【典型例题1】一辆汽车的速度是55千米/时,表示( ),光传播的速度是300000千米/秒,表示( )。

解析:每小时行驶55千米;每秒传播300000千米【典型例题2】(1)一辆小轿车每小时行90千米,记作( )。

读作( )。

解析:90千米/时;90千米每时(2)声音在空气中传播的速度是每秒340米,可以写成( )。

解析:340米/秒(3)一个成年人正常步行的速度是每分钟90米,可写作( )。

四年级奥数行程问题

四年级奥数行程问题

行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

小学四年级数学思维专题训练—基本行程问题(含答案解析)

小学四年级数学思维专题训练—基本行程问题(含答案解析)

小学四年级数学思维专题训练—基本行程问题l 小明和小新在同一街道,小明家在学校东600米处,小新家在学校西200米处,那么小新家距离小明家米。

2 汽车从A站经过B站后开往c站,已知离开B站9分钟时,汽车离A站15千米,又行驶一刻钟,离开A站25千米,如果再行驶半小时,汽车离A站千米.3 从家到办公室59千米,张经理需驾车l小时.她的行程包括20分钟在高速公路上,40分钟在市区道路上.若在市区道路上的时速为45千米,问她在高速公路上的时速是千米.4 龟、兔赛跑,全程1800米.乌龟每分钟爬15米,兔子每分钟跑400米,发令枪响后,兔子一会儿就把乌龟远远甩在后边,骄傲的兔子自以为跑得快,在途中美美地睡了一觉,结果乌龟到达终点时,兔子离终点还有200米,兔子在途中睡了多少分钟?5 一只电子猫在周长为240米的环形跑道上跑了一圈.前一半时间每秒跑5米,后一半时间每秒跑3米.这只电子猫跑后120米用了多少秒?6 有一车队共15辆车,每辆车长度相等,车与车之间的间隔为10米,这个车队用1 5秒时间,以每秒16米的速度通过一座25米长的大桥,则每辆车长____米.7 一个车队以4米/秒的速度缓慢通过一座长298米的大桥,共用115秒,已知每辆车长 6米,相邻两车间隔20米,则这个车队一共有__辆车8、小巧站在铁路边,一列火车从她身边开过用了3分钟,已知这列火车长360米,以同样的速度通过一座大桥,用了6分钟,这座大桥长____ 米.9、小红乘船以6千米/时的速度从A到B,然后又乘船以12千米/时的速度沿原路返回,那么小红在乘船往返过程中,平均每小时行千米.10、汉江是长江的支流,汉江水的水速为每小时3千米,长江水的水速为每小时4千米,一条船沿汉江顺水航行两小时,行了56千米到达长江,在长江还要逆水航行147千米.这条船还要行小时.11、沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船在静水中的速度是每小时15千米,那么乙船往返两城市需要小时.12 小红上山时每走30分钟休息10分钟,下山每走30分钟休息5分钟.已知小红下山的速度是上山速度的1. 5倍,如果上山用了3小时50分钟,那么下山用了小时。

四年级数学奥数培优讲义-专题08行程问题(含解析)

四年级数学奥数培优讲义-专题08行程问题(含解析)

专题08行程问题1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米?3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车?4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?19.A、B两地相距960km。

【精品】四年级下册数学试题-竞赛专题:第九讲-行程问题(二)(含答案)人教版

【精品】四年级下册数学试题-竞赛专题:第九讲-行程问题(二)(含答案)人教版

火车行程问题及行船流水问题是行程问题中比较重要及特殊的一类题目。

在火车问题中特殊的地方在于路程,因为火车的长度不能忽略,此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

而行船问题要明确静水、逆水、顺水中船的三个速度间的关系。

流水问题关键是确定物体所运动的速度,过桥问题关键是确定物体所运动的路程,出现较复杂的此类问题时多利用线段图法帮助解题。

名师点题行程问题(二)知识概述一、火车过桥问题:火车通过大桥是指从车头上桥到车尾离桥。

即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和。

二、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题。

流水问题还有两个特殊的速度,即 顺水速度=船速+水速 逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度。

水速是指水流的速度。

顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度。

已知船的顺水速度和逆水速度,可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2火车长108米,每秒行12米,经过长48米的桥,要多少时间? 【解析】如图,从开始上桥到火车下桥一共走过的路程是一个车长+一个桥长,所以需要行驶的时间为(10848)121561213+÷=÷=(秒)。

开始结束甲、乙两港口间的水路长208千米,一艘船从甲港开往乙港,顺水8小时到达, 从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流的速度。

【解析】要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度, 而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水和逆水所行的 时间求出。

最后再利用和差的逆运算关系求船速和水速。

顺水速度:208÷8=26(千米/小时) 逆水速度:208÷13=16(千米/小时) 静水船速:(26十16)÷2- 21(千米/小时) 水流速度:(26 -16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流的速度每小时5千米。

四年级级下册数学人教版行程问题

四年级级下册数学人教版行程问题

四年级级下册数学人教版行程问题行程问题是数学中的一种典型问题类型,通过解决行程问题,可以锻炼学生的逻辑思维能力和计算能力。

在四年级下册数学人教版中,涉及到了行程问题的解决方法和相关知识点。

下面我们将从行程问题的定义、解决步骤以及一些实例来详细介绍行程问题。

首先,什么是行程问题呢?行程问题是指根据给定的条件和要求,通过寻找有效策略,计算出满足条件的行程方案。

在行程问题中,一般会涉及到两个或多个物体、位置或地点,并且要求按照一定的规则进行行动和移动。

通过解决行程问题,可以培养学生的观察、分析和计算能力。

解决行程问题的一般步骤如下:1.仔细阅读题目,理解题意。

了解问题中所涉及的物体、位置或地点,以及要求行动和移动的规则。

2.列出已知条件,确保准确无误。

列出已知条件是解决行程问题的基础,要求学生能够准确地提取出题目中给出的信息。

3.分析问题,确定解决方案。

根据已知条件进行思考,确定一套满足条件的行程方案。

这一步需要学生进行逻辑思维的训练,判断哪些条件是重要的,哪些条件是可以利用的。

4.进行计算和验证。

将确定的方案转化为数学计算问题,进行计算并验证结果是否满足题目要求。

接下来,我们将通过一些具体的实例来演示解决行程问题的过程。

例1:小明从家到学校的距离是6公里,他每天骑车上学,每天早上10分钟,下午5分钟,上午中午各休息10分钟,请问小明一共需要多长时间才能从家到学校?解:首先,我们要理解题目中给出的条件。

小明从家到学校的距离是6公里,每天上午骑车10分钟,中午休息10分钟,下午骑车5分钟。

其次,我们列出已知条件:-上午骑车10分钟-中午休息10分钟-下午骑车5分钟-家到学校的距离是6公里-每次骑车的时间不考虑休息时间然后,我们分析问题,确定解决方案。

小明每天骑车上学,所以每天需要骑车的总时间是10分钟+ 5分钟= 15分钟。

由于每天上午还需要休息10分钟,所以我们需要计算出小明上午骑车的天数。

由于小明上午骑车的时间是10分钟,而每天上午总共有60分钟,所以小明骑车的天数是10分钟÷ 60分钟/天= 1/6天。

四年级下册数学竞赛试题-行程火车过桥和火车与人的相遇追击问题C级学生版-全国通用

四年级下册数学竞赛试题-行程火车过桥和火车与人的相遇追击问题C级学生版-全国通用

离唆知识框架火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度父时间总路程=平均速度父总时间;(二)、相遇、追及问题:速度和父相遇时间=相遇路程速度差M追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度X通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度X通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)X迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度一人的速度)X追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度士人的速度)X迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)x错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度一慢车速度)X错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

—例题精讲【例1】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【巩固】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提-1局一,结果用了1分36秒.求通过大桥时的速度及车身的长度.4【例2】小张沿着一条与铁路平行的笔直小路行走,这时有一列长460米的火车从他背后开来,他在行进中测出火车从他身边通过的时间是20秒,而在这段时间内,他行走了40米.求这列火车的速度是多少?【巩固】小明沿着一条与铁路平行的笔直的小路由南向北行走, 这时有一列长825米的火车从他背后开来, 他在行进中测出火车从他身边通过的时间是30秒,而在这段时间内,他行走了75米.求这列火车的速度是多少?【例3】一辆长12米的汽车以36千米/时的速度由甲站开往乙站,上午10点整,在距乙站2000米处迎面遇到一行人,1秒后汽车经过这个行人。

【精品】四年级下册数学试题-竞赛专题:第九讲-行程问题(二)(含答案)人教版

【精品】四年级下册数学试题-竞赛专题:第九讲-行程问题(二)(含答案)人教版

火车行程问题及行船流水问题是行程问题中比较重要及特殊的一类题目。

在火车问题中特殊的地方在于路程,因为火车的长度不能忽略,此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

而行船问题要明确静水、逆水、顺水中船的三个速度间的关系。

流水问题关键是确定物体所运动的速度,过桥问题关键是确定物体所运动的路程,出现较复杂的此类问题时多利用线段图法帮助解题。

名师点题行程问题(二)知识概述一、火车过桥问题:火车通过大桥是指从车头上桥到车尾离桥。

即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和。

二、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题。

流水问题还有两个特殊的速度,即 顺水速度=船速+水速 逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度。

水速是指水流的速度。

顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度。

已知船的顺水速度和逆水速度,可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2火车长108米,每秒行12米,经过长48米的桥,要多少时间? 【解析】如图,从开始上桥到火车下桥一共走过的路程是一个车长+一个桥长,所以需要行驶的时间为(10848)121561213+÷=÷=(秒)。

开始结束甲、乙两港口间的水路长208千米,一艘船从甲港开往乙港,顺水8小时到达, 从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流的速度。

【解析】要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度, 而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水和逆水所行的 时间求出。

最后再利用和差的逆运算关系求船速和水速。

顺水速度:208÷8=26(千米/小时) 逆水速度:208÷13=16(千米/小时) 静水船速:(26十16)÷2- 21(千米/小时) 水流速度:(26 -16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流的速度每小时5千米。

四年级下册数学讲义-竞赛专题:第八讲-行程问题(一)(含答案解析)人教版

四年级下册数学讲义-竞赛专题:第八讲-行程问题(一)(含答案解析)人教版

历届各杯赛中,行程问题是最大的难点之一,在填空题及动手动脑题中都会出现, 学习者而言,相对比较难以掌握。

在解决行程问题时,要关注几个要素:时间、地点、方向、移动物体的个数和路线,学好行程问题不仅能培养学生分析解决问题的能力,也能提高思维能力。

名师点题行程问题(一)知识概述一、相遇问题:1. 相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和; ② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间。

2. 相遇问题基本数量关系:① 路程和=速度和×相遇时间 ② 速度和=路程和÷相遇时间 ③ 相遇时间=路程和÷速度和 二、追及问题:1. 追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差; ② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间。

2. 追及问题基本数量关系:① 路程差=速度差×追及时间 ② 速度差=路程差÷追及时间 ③ 追及时间=路程差÷速度差东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?【解析】从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。

解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米。

甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,_______秒两马相距70米?【解析】相距70米时,乙马在前,甲马在后,追及距离为(50+70)米因此:(50+70)÷(12-10)=60(秒)兄妹二人同时从家里出发到学校去,家与学校相距1400米。

四年级奥数专题-行程问题

四年级奥数专题-行程问题

四年级奥数专题-行程问题行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题.行程问题主要包括相遇问题、相背问题和追及问题.这一周我们来学习一些常用的、基本的行程问题.解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果.例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?分析与解答:这是一道相遇问题.所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题.根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和.所以,求两人几小时相遇,就是求20千米里面有几个10千米.因此,两人20÷(6+4)=2小时后相遇.练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米.如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去.这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间.根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟.所以狗共行了500×10=5000米.练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米.一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去.这样一直飞下去,燕子飞了多少千米,两车才能相遇?3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米.一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?分析与解答:这是一道相背问题.所谓相背问题是指两个运动的物体作背向运动的问题.在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米.要求几小时能行完36千米,就是求36千米里面有几个12千米.所以,36÷12=3小时.练习三1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行.经过3小时后,两人相隔60千米.南北两庄相距多少千米?3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米.几小时后甲可以追上乙?分析与解答:这是一道追及问题.根据题意,甲追上乙时,比乙多行了24千米(路程差).甲骑自行车每小时行13千米,乙步行每小时走5千米,甲每小时比乙多行13-5=8千米(速度差),即甲每小时可以追上乙8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米.因此,24÷8=3小时甲可以追上乙.练习四1,甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米.几小时后甲可追上乙?2,解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络.多长时间后,通讯员能赶上队伍?3,小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米.3分钟后两人相距多少米?例5:甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?分析与解答:这是一道封闭线路上的追及问题.甲和乙同时同地起跑,方向一致.因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是400米.根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间:400÷(290-270)=20分钟.练习五1,一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?2,光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?3,甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍.现在甲在乙后面250米,乙追上甲需要多少分钟?行程问题(二)专题简析:行船问题是指在流水中的一种特殊的行程问题,它也有路程、速度与时间之间的数量关系.因此,它比一般行程问题多了一个水速.在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度.船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速.行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇.东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米.由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米.因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间.所以,两地相距90×6=540千米.练习一1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米.两人相遇时距全程中点3千米,求全程长多少千米.2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇.东西两城相距多少千米?3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米.慢车每小时行多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇.A、B两地间的路长多少米?分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米.这800米就是乙、丙相遇比甲多行的路程.乙每分钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟.因此,AB两地间的路程为(50+40)×80=7200米.练习二1,甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人西镇,同时相向出发,丙遇到乙后3分钟再遇到甲.求两镇之间相距多少米?2,有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米.丙车遇到甲车后20分钟又遇到乙车.求东西两站的距离.3,甲、乙、丙三人,甲每分钟走60米,乙每分钟走67米,丙每分钟走73米.甲、乙从南镇,丙从北镇同时相向而行,丙遇乙后10分钟遇到甲.求两镇相距多少千米.例3:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达.求船在静水中的速度(即船速)和水流速度(即水速).分析与解答:要求船速和水速,要先求出顺水速度和逆水速度,而顺水速度可按行程问题的一般数量关系求,即:路程÷顺水时间=顺水速度,路程÷逆水时间=逆水速度.因此,顺水速度是286÷11=26千米,逆水速度是286÷13=22千米.所以,船在静水中每小时行(26+22)÷2=24千米,水流速度是每小时(26-22)÷2=2千米.练习三1,A、B两港间的水路长208千米.一只船从A港开往B港,顺水8小时到达;从B港返回A港,逆水13小时到达.求船在静水中的速度和水流速度.2,甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达.求船在静水中的速度和水流速度.3,甲、乙两城相距6000千米,一架飞机从甲城飞往乙城,顺风4小时到达;从乙城返回甲城,逆风5小时到达.求这架飞机的速度和风速.例4:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时.已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?分析与解答:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米.又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米.练习四1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而上用了60小时.已知这段航道的水流是每小时4千米,求A港到B港相距多少千米?2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?例5:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?分析与解答:虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所以水速相同.根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米.又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米.所以,乙船在静水中每小时行16-6=10千米.练习五1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而上需要16小时.如果客船顺流而下需要12小时,那么客船在静水中的速度是多少?2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?3,一条长160千米的水路,甲船顺流而下需要8小时,逆流而上需要20小时.如果乙船顺流而下要10小时,那么乙船逆流而上需要多少小时?。

三年级下册数学试题竞赛专题:第八讲行程问题相遇问题(含答案解析)人教版

三年级下册数学试题竞赛专题:第八讲行程问题相遇问题(含答案解析)人教版

行程问题(一)行程问题是反映物体匀速运动的应用题。

由于变化较多,而且又纷繁复杂,所以对于学习者而言,相对比较难以掌握。

在解决行程问题时,要关注几个要素:时间、地点、方向、移动物体的个数和路线。

但是归纳起来,不管是怎样的行程问题,在找清楚对应量后,最终的数量关系还是:速度×时间=路程。

名师点题知识概述1、行程问题中的时间(t )、速度(v )和路程(s )三个基本量,它们关系如下:(1)路程=速度×时间 简记为:s = v×t (2)时间=路程÷速度 简记为:t = s÷v (3)速度=路程÷时间 简记为:v = s÷t2、相遇问题的意义:两个运动物体(人)分别以一定的速度,从两地同时出发,相向(面对面)而行,经过一段时间后在途中相遇,这类行程问题叫做“相遇问题”。

它的特点是两个运动物体(人)在相遇时间内共同走完的路程等于它们原来相距的路程。

3、相遇问题的基本量:速度和:两个运动物体(人)在单位时间(秒、分、时)所走的路程和; 相遇时间:两个运动物体(人)同时出发到相遇所用的时间; 总路程:两个运动物体(人)同时出发到相遇所走的路程;4、解答相遇问题通用公式:。

路程和=速度和×相遇时间速度和=路程和÷相遇时间 相遇时间=路程和÷速度和甲、乙两辆客车同时从东城开往西城,甲客车每小时行60千米,4小时到达西城,乙客车比甲客车迟1小时到达。

问:(1)乙客车的速度是多少?(2)如果要使乙客车比甲客车提前1小时到达西城,那么乙客车的速度应是多少? 【解析】(1)显然甲和乙走的路程都一样,而要求乙的速度,就必须知道路程和乙的时间, 路程=甲的速度×时间=60×4=240 乙的时间=甲的时间+1=5小时那么:乙的速度=240÷5=48(千米/小时)(2)现在乙要比甲快1小时。

也就是3小时达到。

小学数学比例解行程问题含答案

小学数学比例解行程问题含答案

比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

例题精讲【例 1】甲、乙两人同时A 地出发,在A 、B 两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A 地、B 地或遇到乙都会调头往回走,除此以外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地点距离B 地1800米,第三次的相遇点距离B 地800米,那么第二次相遇的地点距离B 地 。

【考点】行程问题之比例解行程 【难度】3星【题型】填空【解析】 设甲、乙两人的速度分别为1v 、2v ,全程为s ,第二次相遇的地点距离B 地x 米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届各杯赛中,行程问题是最大的难点之一,在填空题及动手动脑题中都会出现, 学习者而言,相对比较难以掌握。

在解决行程问题时,要关注几个要素:时间、地点、方向、移动物体的个数和路线,学好行程问题不仅能培养学生分析解决问题的能力,也能提高思维能力。

名师点题行程问题(一)知识概述一、相遇问题:1. 相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和; ② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间。

2. 相遇问题基本数量关系:① 路程和=速度和×相遇时间 ② 速度和=路程和÷相遇时间 ③ 相遇时间=路程和÷速度和 二、追及问题:1. 追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差; ② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间。

2. 追及问题基本数量关系:① 路程差=速度差×追及时间 ② 速度差=路程差÷追及时间 ③ 追及时间=路程差÷速度差东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?【解析】从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。

解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米。

甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,_______秒两马相距70米?【解析】相距70米时,乙马在前,甲马在后,追及距离为(50+70)米因此:(50+70)÷(12-10)=60(秒)兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

哥哥刚到学校就立即返回来在途中与妹妹相遇。

从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?【解析】从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。

因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。

例3例2例1解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。

【巩固拓展】1、甲车每小时行40千米,乙车每小时行60千米。

两车分别从A,B两地同时出发,相向而行,相遇后3小时,甲车到达B地。

求A,B两地的距离。

【解析】先画示意图如下:图中C点为相遇地点。

因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。

这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是(40+60)×2=200(千米)。

2、小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。

有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?【解析】因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分)。

3、甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?【解析】由两人同一地点出发背向而行,经过2分钟相遇知两人每分钟共行400÷2=200(米)由两人从同一地点出发同向而行,经过20分钟相遇知甲每分钟比乙多走400÷20=20(米)根据和差问题的解法可知甲的速度是每分钟(200+20)÷2=110(米)乙的速度为每分钟110-20=90(米).如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行。

他们在离A点100米的C点第一次相遇。

亮亮到达B点后返回A点,明明到达A点后返回B点,两人在离B点80米的D点第二次相遇。

整个过程中,两人各自的速度都保持不变。

求A、B间的距离。

【解析】第一次相遇,两人共走了1个全程,其中亮亮走了100米;从开始到第二次相遇,两人共走了3个全程,则亮亮走了100×3=300(米),亮亮共走的路程是一个全程多80米,所以A、B间的距离是:300-80=220(米)【巩固拓展】甲乙两车分别从A、B 两地同时出发,匀速相向而行,第一次相遇时离A地150千米。

两车继续各自前行,分别到达B、A 两地后立刻返回,不作停留,在离A地70千米处第二次相遇。

A、B 两地间的距离为_________千米。

【解析】从开始到第一次相遇,两人共走了1个全程;从开始到第二次相遇,两人共走了3个全程。

(150×3+70)÷2=260(千米)答:A、B 两地间的距离为260千米。

小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。

已知火车全长342米,求火车的速度。

【解析】在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。

由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),从而求出火车的速度为19-2=17(米/秒)。

例2例1【巩固拓展】铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。

这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。

求火车的全长。

【解析】与例3类似,只不过由相向而行的相遇问题变成了同向而行的追及问题。

由上图知,37秒火车头从B 走到C,拖拉机从B走到A,火车比拖拉机多行一个火车车长的路程。

用米作长度单位,用秒作时间单位,求得火车车长为速度差×追及时间= [(56000-20000)÷3600]×37= 370(米)。

在周长为400米的环形跑道的起跑线上,甲、乙两辆自行车同时同地出发背向而行,甲车6米/秒,乙车4米/秒,几秒后第一次相遇?两车出发6分钟后,相遇了多少次?【解析】此题实际上是一个环形跑道的相遇问题。

同时同地出发背向而行,当第一次相遇时,两人行的总路程恰好是一个周长的长度。

以后每一次都增加一个周长的长度。

400÷(6+4)=40(秒),6×60÷40=9(次)。

答:40秒后第一次相遇;两车出发6分钟后,相遇了9次。

【巩固拓展】某小学有一条200米长的环形跑道,小巧和小亚同时从起跑钱起跑,小巧每秒跑6米,小亚每秒跑4米。

问小巧第一次追上小亚时,两人各跑了多少米?第二次追上小亚时两人各跑了多少米?【解析】这是一道封闭路线的追及问题。

小亚和小巧两人同时同地同向起跑,因此当小巧第一次追上小亚时,她比小亚多跑的路程正好是跑道的一圈,即路程差是200米。

第二次追上时,她比小亚多跑的路程正好是跑道的两圈。

巳知两人的速度,可以根据基本数量关系求出追及时间以及他们各自所跑的路程。

200÷(6-4) =100(秒),6×100=600(米),4×100=400(米)例3600×2= 1200(米),400×=800(米)。

第一次追上时,小巧跑了600米,小亚跑了400米。

第二次追上时,小巧跑了1 200米,小亚跑了800米。

客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

求甲乙两站相距多少千米?【解析】如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离。

解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)②从出发到第一次相遇所用的时间:36÷3=12(小时)③甲乙两站的距离:(54+48)×12=1224(千米)【巩固拓展】甲城、乙城相距90千米,小张与小王分别从甲、乙两城同时出发,在两城之间往返行走(到达另一城城后马上返回)。

在出发后2小时两人第一次相遇。

小王到达甲城后返回,在离甲城30千米的地方两人第二次相遇。

小张每小时走多少千米?小王每小时走多少千米?【解析】2小时第一次相遇,所以速度和:90÷2=45,第二次相遇共行了3个路程也就是3×90=270,所用时间为6小时,离甲30千米,说明小张离行2个全程差了30千米,故而小张行了2×90-30=150千米,小张的速度:150÷6=35千米小王的速度:45-35=10千米例4例1有一座桥长600米,小亮和小军两人分别从桥的两头同时出发,相向而行。

小亮每分钟行70米,小军每分钟行80米。

小亮随身带有一只狗,每分钟行400米,狗与小亮同时出发,狗遇到小军后就折回;狗再遇到小亮后,又掉头向小军跑……如此不断往返直到小亮、小军相遇,狗总共跑了多少米?【解析】抓住小狗跑的时间与小亮和小军从出发到相遇的时间相同,最后得到求解。

600÷(70+80)=4(分钟),400×4=1600(米),狗跑了1600米。

小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。

相关文档
最新文档