矩阵的基本概念

合集下载

矩阵的基本概念

矩阵的基本概念

矩阵的基本概念矩阵是线性代数中的重要概念,广泛应用于各个领域,如物理学、计算机科学、经济学等。

本文将介绍矩阵的基本概念,包括定义、表示、运算以及特殊类型的矩阵。

一、定义矩阵是一个二维数组,由m行n列的元素构成,示例如下: [a₁₁, a₁₂, ..., a₁ₙ][a₂₁, a₂₂, ..., a₂ₙ][ ... , ... , ..., ... ][aₙ₁, aₙ₂, ..., aₙₙ]其中aₙₙ表示矩阵中第k行第l列的元素。

二、表示矩阵可以用多种方式进行表示,常见的有行向量、列向量、分块矩阵和矩阵方程。

1. 行向量:将矩阵的一行元素写成一个行向量,示例如下:[a₁₁, a₁₂, ..., a₁ₙ]2. 列向量:将矩阵的一列元素写成一个列向量,示例如下:[a₁₁][a₂₁][ ... ][aₙ₁]3. 分块矩阵:将一个大矩阵划分为多个小矩阵组成的矩阵,示例如下:[A₁₁, A₁₂; A₂₁, A₂₂]4. 矩阵方程:将矩阵和向量之间的关系表示为矩阵方程,示例如下:AX = B三、运算矩阵有多种运算,包括加法、数乘、乘法和转置等。

1. 加法:两个矩阵的对应元素相加得到新的矩阵,示例如下:[A₁₁, A₁₂] [B₁₁, B₁₂] [A₁₁ + B₁₁, A₁₂ + B₁₂][A₂₁, A₂₂] + [B₂₁, B₂₂] = [A₂₁ + B₂₁, A₂₂ + B₂₂]2. 数乘:将矩阵中的每个元素乘以一个常数,示例如下:c * [A₁₁, A₁₂] = [cA₁₁, cA₁₂][A₂₁, A₂₂] [cA₂₁, cA₂₂]3. 乘法:两个矩阵的对应元素相乘然后相加得到新的矩阵,示例如下:[A₁₁, A₁₂] [B₁₁, B₁₂] [A₁₁B₁₁ + A₁₂B₂₁,A₁₁B₁₂ + A₁₂B₂₂][A₂₁, A₂₂] * [B₂₁, B₂₂] = [A₂₁B₁₁ + A₂₂B₂₁,A₂₁B₁₂ + A₂₂B₂₂]4. 转置:将矩阵的行和列互换得到新的矩阵,示例如下:[A₁₁, A₁₂, A₁₃] [A₁₁, A₂₁][A₂₁, A₂₂, A₂₃] -> [A₁₂, A₂₂][A₃₁, A₃₂, A₃₃] [A₁₃, A₂₃]四、特殊类型的矩阵矩阵还有一些特殊类型,包括零矩阵、单位矩阵、对角矩阵和方阵等。

矩阵的基本概念和运算

矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的基本概念之一,广泛应用于数学、工程学、计算机科学和物理学等领域。

它是一个由数字排列成的矩形阵列,其中的数字称为矩阵的元素。

本文将详细介绍矩阵的基本概念和运算。

一、矩阵的基本概念矩阵由m行n列的数字排列组成,可以表示为一个m×n的矩阵。

其中,m为矩阵的行数,n为矩阵的列数。

每个元素可以用下标表示,例如矩阵A的第i行第j列的元素可以用A(i,j)表示。

二、矩阵的表示和分类矩阵可以用方括号表示,例如A = [aij],其中aij表示矩阵A的第i 行第j列的元素。

矩阵还可以分为不同的类型,如行矩阵、列矩阵、方阵等。

行矩阵是只有一行的矩阵,可以表示为A = [a1, a2, ..., an],其中ai 为矩阵A的第i个元素。

列矩阵是只有一列的矩阵,可以表示为A = [a1; a2; ...; an],其中ai 为矩阵A的第i个元素。

方阵是行数和列数相等的矩阵,可以表示为A = [aij],其中i和j都从1到n。

三、矩阵的运算1. 矩阵的加法对于两个相同大小的矩阵A和B,它们的加法可以定义为A + B = [aij+ bij],其中aij和bij分别为矩阵A和B的对应元素。

2. 矩阵的减法对于两个相同大小的矩阵A和B,它们的减法可以定义为A - B = [aij- bij],其中aij和bij分别为矩阵A和B的对应元素。

3. 矩阵的数乘对于一个矩阵A和一个实数k,它们的数乘可以定义为kA = [kaij],其中aij为矩阵A的元素。

4. 矩阵的乘法对于两个矩阵A和B,它们的乘法可以定义为C = AB,其中C的第i行第j列的元素可以表示为C(i,j) = ∑(ai,k * bk,j),其中k从1到n,n为矩阵A和B的列数。

四、矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。

例如,若A = [aij]为一个m×n的矩阵,它的转置矩阵记作AT,即AT = [aji],其中a ji为矩阵A的第j行第i列的元素。

矩阵的基本概念和运算

矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

本文将介绍矩阵的基本概念以及常见的矩阵运算。

一、矩阵的基本概念1.1 定义矩阵是一个由m行n列元素组成的矩形数组,记作A=[a_ij],其中i表示行数,j表示列数,a_ij表示矩阵A中第i行第j列的元素。

1.2 矩阵的类型根据矩阵元素的性质和特点,矩阵可以分为以下几种类型:- 零矩阵:所有元素都为0的矩阵,记作O。

- 方阵:行数等于列数的矩阵,记作A(m×m)。

- 行矩阵:只有一行的矩阵,记作A(1×n)。

- 列矩阵:只有一列的矩阵,记作A(m×1)。

- 对角矩阵:非主对角线上的元素都为0的方阵。

1.3 矩阵的运算矩阵的运算包括加法、减法、数乘以及矩阵乘法等。

二、矩阵的运算2.1 矩阵的加法和减法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和记作C=A+B,差记作D=A-B。

矩阵的加法和减法满足以下性质:- 交换律:A+B=B+A,A-B≠B-A。

- 结合律:(A+B)+C=A+(B+C),(A-B)-C=A-(B-C)。

- 零元素:A+O=A,A-O=A。

- 负元素:A+(-A)=O。

2.2 矩阵的数乘设有一个m×n的矩阵A=[a_ij],数k,则kA记作E=[ka_ij],即矩阵A中的每个元素乘以k。

2.3 矩阵的乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],它们的乘积记作C=A•B,其中C的第i行第j列的元素为:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj矩阵的乘法需要满足以下条件:- 矩阵A的列数等于矩阵B的行数时,才能进行乘法运算。

- 乘法不满足交换律,即A•B≠B•A。

- 结合律成立:(A•B)•C=A•(B•C)。

2.4 矩阵的转置设有一个m×n的矩阵A=[a_ij],A的转置记作A^T,其中A^T 的第i行第j列的元素为a_ji。

矩阵的知识点总结

矩阵的知识点总结

矩阵的知识点总结一、基本概念1.1 矩阵的定义矩阵是一个由数字排成的矩形阵列。

它由m行n列的数域(通常是实数域或复数域)中的元素所组成,用A=(aij)m×n表示。

1.2 矩阵的分类按行、列的数量可以将矩阵分为行矩阵、列矩阵和方阵;按元素的类型可以分为实矩阵和复矩阵。

1.3 矩阵的转置矩阵A的转置记作A^T,其中A^T的行数等于A的列数,A^T的列数等于A的行数。

1.4 矩阵的秩矩阵的秩是指矩阵中非零行的最大数目。

二、性质2.1 矩阵的加法性质设A、B是同一维数的矩阵,则它们的和A+B也是同一维数的矩阵,它的元素是A和B 对应元素的和。

2.2 矩阵的数乘性质设A是m×n的矩阵,k是数,则kA是m×n的矩阵,它的元素是k与A中对应元素的乘积。

2.3 矩阵的乘法性质设A是m×n的矩阵,B是n×p的矩阵,那么它们的乘积AB是m×p的矩阵。

2.4 矩阵的逆若存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A的逆矩阵,记作A^-1。

2.5 矩阵的行列式对于n阶方阵A,其行列式是一个标量,通常用det(A)或|A|表示,代表了矩阵A的某种代数性质。

三、运算3.1 矩阵的加法设A=(aij)m×n,B=(bij)m×n,那么A+B=(aij+bij)m×n。

3.2 矩阵的数乘设A=(aij)m×n,k是数,则kA=(kaij)m×n。

3.3 矩阵的乘法设A=(aij)m×n,B=(bij)n×p,那么AB=(cij)m×p,其中cij=∑(k=1→n)aij*bkj。

3.4 矩阵的转置对于n×m的矩阵A,它的转置矩阵是m×n的矩阵,且满足(a^T)ij=aji。

四、特殊矩阵4.1 方阵每个元素是一个标量的矩阵,其中行数和列数相等。

4.2 零矩阵所有元素都是零的矩阵。

矩阵知识点完整归纳

矩阵知识点完整归纳

矩阵知识点完整归纳矩阵是大学数学中比较重要和基础的概念之一,具有广泛的应用领域,例如线性代数、微积分、计算机科学等。

本文将全面归纳和总结矩阵的基本概念、性质以及相关应用,旨在帮助读者更好地理解和掌握矩阵知识。

一、基本概念1.矩阵的定义矩阵是由一个$m\times n$ 的矩形阵列(数组)表示的数表,其中$m$ 表示矩阵的行数,$n$ 表示矩阵的列数。

如下所示:$$A = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\\a_{21} & a_{22} & \cdots & a_{2n} \\\\vdots & \vdots & \ddots & \vdots \\\a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}$$其中,$a_{ij}$ 表示矩阵的第$i$ 行、第$j$ 列元素。

2.矩阵的分类矩阵根据其元素的性质可以分为不同类型,主要有以下几种:(1)行矩阵(行向量):只有一行的矩阵,例如$[a_1,a_2,\cdots,a_n]$。

(2)列矩阵(列向量):只有一列的矩阵,例如$\begin{bmatrix}a_1\\\ a_2\\\ \vdots\\\ a_m\end{bmatrix}$。

(3)方阵:行数等于列数的矩阵,例如$A=\begin{bmatrix}1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9\end{bmatrix}$。

(4)零矩阵:所有元素都为$0$ 的矩阵,例如$\begin{bmatrix}0 & 0 & 0\\\ 0 & 0 & 0\\\ 0 & 0 & 0\end{bmatrix}$。

矩阵知识点总结大学

矩阵知识点总结大学

矩阵知识点总结大学一、基本概念1.1 矩阵的定义矩阵是指一个按照矩形排列的数字元素集合。

一般地,矩阵用符号“A”、“B”、“C”等来表示,其中每个元素用小写字母加标记来表示其位置,如a_ij表示矩阵A的第i行第j列的元素。

矩阵A的元素一般用a_ij来表示,其中i表示元素所在的行数,j表示元素所在的列数。

如下所示:A = [a_11, a_12, ..., a_1n][a_21, a_22, ..., a_2n][..., ..., ..., ...][a_m1, a_m2, ..., a_mn]矩阵的大小一般用m×n来表示,其中m表示矩阵的行数,n表示矩阵的列数。

矩阵的元素一般用小写字母a、b、c、d等来表示。

1.2 特殊矩阵⑴方阵:行数和列数相等的矩阵称为方阵。

n阶方阵指的是行数和列数均为n的方阵。

⑵零矩阵:所有元素都为0的矩阵称为零矩阵,通常用0表示。

⑶单位矩阵:对角线上的元素全为1,其他元素均为0的方阵称为单位矩阵,通常用I表示。

⑷对角矩阵:除了对角线上的元素外,其他元素均为0的矩阵称为对角矩阵。

1.3 矩阵的运算规则矩阵的运算包括加法、乘法和数乘三种,具体规则如下:⑴矩阵的加法:若A、B是同型矩阵,则它们的和记为A+B,定义为A+B=[a_ij+b_ij],其中a_ij和b_ij分别是A和B对应位置的元素。

⑵矩阵的数乘:若A是一个矩阵,k是一个数,则它们的数乘记为kA,定义为kA=[ka_ij],其中a_ij是A的元素。

⑶矩阵的乘法:若A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积记为A·B,定义为A·B=C,其中C是一个m×p的矩阵,其中C的第i行第j列的元素c_ij等于A的第i行和B的第j列对应元素的乘积的和。

1.4 矩阵的转置若A是一个m×n的矩阵,其转置记作A^T,定义为A^T=[a_ji],其中a_ji表示A的第i 行第j列的元素。

高等数学矩阵

高等数学矩阵

高等数学矩阵矩阵是高等数学中的重要概念之一,它在代数学、线性代数以及其他数学领域中起着重要作用。

矩阵由行和列组成,其中每个元素都可以是数字、符号或者是其他矩阵。

在本文中,我们将介绍矩阵的基本概念、运算规则以及一些常见的矩阵类型。

一、矩阵的基本概念矩阵是由m行n列的元素所组成的矩形阵列。

其中,m表示矩阵的行数,n表示矩阵的列数。

我们用大写字母来表示矩阵,比如A、B 等。

矩阵中的每个元素用小写字母加上下标来表示,比如a11表示矩阵A中第一行第一列的元素。

二、矩阵的运算规则1. 矩阵的加法:对应位置的元素相加,结果为一个新的矩阵,其行列数与原矩阵相同。

2. 矩阵的减法:对应位置的元素相减,结果为一个新的矩阵,其行列数与原矩阵相同。

3. 矩阵的乘法:矩阵乘法不满足交换律,即AB不一定等于BA。

矩阵相乘的结果为一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

4. 矩阵的数乘:将矩阵的每个元素与一个数相乘,结果为一个新的矩阵,其行列数与原矩阵相同。

三、常见的矩阵类型1. 零矩阵:所有元素都为0的矩阵,记作O。

2. 单位矩阵:主对角线上的元素为1,其余元素为0的矩阵,记作I。

3. 方阵:行数等于列数的矩阵称为方阵。

4. 对角矩阵:主对角线以外的元素都为0的矩阵。

5. 上三角矩阵:主对角线及其以下的元素都不为0的矩阵。

6. 下三角矩阵:主对角线及其以上的元素都不为0的矩阵。

四、矩阵的应用领域1. 线性代数:矩阵在线性代数中起着至关重要的作用,它可以用来表示线性方程组、向量空间以及线性变换等概念。

2. 统计学:矩阵在统计学中用于处理大量的数据,如多元线性回归、主成分分析等。

3. 物理学:矩阵在物理学中用于描述物体的状态、运动以及相互作用等。

4. 电脑图形学:矩阵在电脑图形学中用于表示图像的变换、旋转、缩放等操作。

总结:矩阵作为高等数学中的重要概念,其应用广泛且不可忽视。

我们在学习和应用矩阵时,需要掌握矩阵的基本概念和运算规则,了解常见的矩阵类型,并将其运用于各个领域中。

矩阵论基础知识总结

矩阵论基础知识总结

矩阵论基础知识总结一、引言矩阵论是线性代数的重要分支,广泛应用于数学、物理、工程等领域。

本文将介绍矩阵的基本概念、运算规则、特殊类型矩阵以及矩阵的应用。

二、矩阵的基本概念1. 定义:矩阵是由m行n列的数按照一定的顺序排列而成的矩形数表,常用大写字母表示,如A、B。

2. 元素:矩阵的每个数称为元素,用小写字母表示,如a、b。

一个矩阵的第i行第j列的元素可以表示为a_ij。

3. 阶数:矩阵的行数和列数分别称为矩阵的行数和列数,记作m×n,其中m表示行数,n表示列数。

4. 主对角线:从左上角到右下角的对角线称为主对角线。

三、矩阵的运算规则1. 矩阵的加法:两个相同阶数的矩阵相加,即对应元素相加。

2. 矩阵的数乘:一个矩阵的每个元素都乘以同一个数。

3. 矩阵的乘法:若矩阵A的列数等于矩阵B的行数,则矩阵A与矩阵B的乘积C为一个新的矩阵,其中C的行数等于A的行数,列数等于B的列数。

四、特殊类型矩阵1. 零矩阵:所有元素都为0的矩阵,用0表示。

零矩阵与任何矩阵相加等于其本身。

2. 对角矩阵:主对角线以外的元素都为0的矩阵。

对角矩阵的乘法可以简化为主对角线上元素的乘积。

3. 单位矩阵:主对角线上的元素都为1,其余元素为0的对角矩阵。

单位矩阵与任何矩阵相乘等于其本身。

4. 转置矩阵:将矩阵的行和列互换得到的新矩阵。

5. 逆矩阵:对于方阵A,若存在一个方阵B,使得A与B的乘积等于单位矩阵,则称B为A的逆矩阵。

五、矩阵的应用1. 线性方程组:矩阵可以用于求解线性方程组,通过矩阵的运算可以将线性方程组转化为矩阵方程,从而求解未知数的值。

2. 向量空间:矩阵可以表示向量空间中的线性变换,通过矩阵的乘法可以实现向量的旋转、缩放等操作。

3. 数据处理:矩阵可以用于数据的存储和处理,通过矩阵运算可以实现数据的加工、筛选、聚合等操作。

4. 图像处理:图像可以表示为像素矩阵,通过矩阵运算可以实现图像的平移、旋转、缩放等操作。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本概念、运算规则以及常见的应用。

一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。

矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。

矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。

矩阵可以是实数矩阵,也可以是复数矩阵。

实数矩阵的元素全为实数,复数矩阵的元素可以是复数。

例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。

矩阵分析知识点总结

矩阵分析知识点总结

矩阵分析知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是由数个数排成的矩形阵列。

矩阵可以用大写字母表示。

1.2 矩阵的基本要素- 元素:矩阵中的每一个数称为矩阵的元素。

- 维数:矩阵的行数和列数称为矩阵的维数。

行和列的个数分别称为行数和列数。

1.3 矩阵的类型- 方阵:行数等于列数的矩阵称为方阵。

- 零矩阵:所有元素都是 0 的矩阵称为零矩阵。

- 对角矩阵:除了主对角线上的元素外,其它元素都是 0 的矩阵称为对角矩阵。

1.4 矩阵的表示- 横标法:按行标的顺序把元素排列成一串数,两个 4× 3 的矩阵可以表示为 12 个数。

- 纵标法:按纵标的顺序把元素排列成一串数。

1.5 矩阵的运算- 矩阵的加法- 矩阵的数乘- 矩阵的乘法1.6 矩阵的转置- 行变列,列变行,得到的新矩阵称为原矩阵的转置。

- 性质: (AT)T = A1.7 矩阵的逆- 若矩阵 A 有逆矩阵 A-1, 则 A × A-1 = A-1 × A = E- 矩阵 A 有逆矩阵的充分必要条件是 A 是可逆的。

- 克拉默法则:若一个 n 阶矩阵可逆,且 Ax = b,则 x = A-1b1.8 矩阵的秩- 行最简形矩阵都是行等价的。

其秩等于不为零的行数。

- 同样列最简形矩阵都是列等价的。

其秩等于不为零的列数。

- 行秩等于列秩。

1.9 矩阵的特征值和特征向量- 特征值:如果数λ和非零向量 x ,使得Ax = λx 成立,则称λ 是矩阵 A 的特征值。

非零向量x 称为特征值λ 对应的特征向量。

- 矩阵 A 所有特征值的集合称为 A 的谱。

- 若λ1,λ2,···,λn 互不相同,相应的特征向量组 x1,x2,···,xn 线性无关,则它们构成一组 A 的特征向量基。

1.10 矩阵的奇异值- 奇异值:对于矩阵A(λ1, λ2, ···, λn),λ1,λ2,···,λn称为矩阵 A 的奇异值。

线性代数中矩阵的基本概念与运算

线性代数中矩阵的基本概念与运算

线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。

本文将简单介绍矩阵的基本概念和运算。

矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。

一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。

对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。

也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。

矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。

对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。

矩阵的概念和计算

矩阵的概念和计算

矩阵的概念和计算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,包括物理、工程、计算机科学等。

本文将详细介绍矩阵的概念,以及矩阵的基本运算和计算方法。

一、矩阵的概念矩阵是由数个数按一定的规律排列成的长方形阵列。

矩阵由m行n列元素组成,可以表示成一个m×n的形式。

其中,m表示矩阵的行数,n表示矩阵的列数。

每个元素在矩阵中由其所在的行号和列号来确定。

例如,一个3×2的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中,a11, a12, a21, a22, a31, a32分别表示矩阵A中的元素。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应元素相加,要求两个矩阵具有相同的行数和列数。

例如,对于两个3×2的矩阵A和B,其加法可以表示为:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法是指对应元素相减,同样需要两个矩阵具有相同的行数和列数。

例如,对于两个3×2的矩阵A和B,其减法可以表示为:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个常数。

例如,对于一个3×2的矩阵A和一个常数k,其数乘可以表示为:B = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指满足前一个矩阵的列数等于后一个矩阵的行数的情况下,将相应的元素相乘再相加得到新的矩阵。

例如,对于一个m×n 的矩阵A和一个n×p的矩阵B,其乘法可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,其计算方法为:cij = a[i1]b[1j] + a[i2]b[2j] + ... + a[in]b[nj]三、矩阵的计算方法1. 矩阵的转置矩阵的转置指的是将矩阵的行和列互换得到的新矩阵。

矩阵基础知识

矩阵基础知识

矩阵基础知识
矩阵是线性代数中的基本概念,它是由若干个数排成的矩形阵列。

矩阵的每个数称为元素,矩阵的行数和列数分别称为矩阵的行数和列数。

矩阵可以用一个大写字母表示,例如A、B、C等。

矩阵的加法:如果两个矩阵A和B的行数和列数相等,那么它们可以相加,即A+B=C,其中C中的每个元素都等于A和B中对应元素的和。

矩阵的数乘:如果一个矩阵A乘以一个实数k,那么它的每个元素都乘以k,即kA=B,其中B中的每个元素都等于A中对应元素乘以k。

矩阵的乘法:如果矩阵A的列数等于矩阵B的行数,那么它们可以相乘,即AB=C,其中C的第i行第j列元素等于A的第i行和B的第j列对应元素的乘积之和。

矩阵的转置:如果矩阵A的行数为m,列数为n,那么它的转置矩阵AT的行数为n,列数为m,且AT的第i行第j列元素等于A的第j行第i列元素。

矩阵的逆:如果矩阵A可逆,那么它的逆矩阵记作A-1,且满足AA-1=A-1A=I,其中I为单位矩阵。

矩阵的行列式:矩阵A的行列式记作det(A),它是一个标量,表示矩阵A的某
些特征。

如果矩阵A是一个n阶方阵,那么它的行列式可以用递归的方法计算。

以上是矩阵的基础知识,矩阵在数学、物理、计算机科学等领域都有广泛的应用。

通用矩阵知识点总结

通用矩阵知识点总结

通用矩阵知识点总结一、矩阵的基本概念矩阵最初源于解线性方程组的需要。

它是一个数学对象,通常由若干个数排列成的矩形阵列。

矩阵通常用大写字母表示,如A、B、C等。

例如,一个矩阵可以表示为:A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}在上面的例子中,矩阵A是一个2行3列的矩阵,它由6个数字组成,即1、2、3、4、5和6。

矩阵的元素通常用a_{ij}表示,其中i代表矩阵的行索引,j代表矩阵的列索引。

二、矩阵的运算法则1. 矩阵的加法和减法设A和B是同型矩阵,则它们的和A+B和差A-B分别是这两个矩阵的对应元素之和和差。

例如:A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix}则A+B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8\\ 10 & 12 \end{bmatrix}A-B = \begin{bmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}2. 矩阵的数乘设k是一个实数或复数,A是一个矩阵,则kA是由A的每个元素乘以k所得的矩阵。

例如:A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, k = 2则kA = 2 * A = \begin{bmatrix} 2*1 & 2*2 \\ 2*3 & 2*4 \end{bmatrix} = \begin{bmatrix} 2& 4 \\ 6 & 8 \end{bmatrix}3. 矩阵的乘法矩阵的乘法是一种复杂的运算,需要满足一定的条件。

1-1矩阵的基本概念

1-1矩阵的基本概念


分别称为上三角矩阵或下三角矩阵.
m (5)元素全为零的矩阵称为零矩阵, n 零 矩阵记作 o m n 或 o .
注意 例如
不同阶数的零矩阵是不相等的.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0 .
(6)方阵
称为矩阵A的转置矩阵,记作 A 或 A
三、几种特殊矩阵
(1)行数与列数都等于n的矩阵A,称为n阶 方阵.也可记作 A n .
例如
13 2 2
6 2 2
2i 2 2
是一个3 阶方阵.
(2)只有一行的矩阵 A a 1 , a 2 , , a n , 称为行矩阵(或行向量).
2.两个矩阵A a ij 与 B 对应元素相等,即
a ij b ij i 1 , 2 , , m ; j 1 , 2 , , n ,
则称矩阵 A 与 B 相等,记作 A B .
例1

1 A 3 2 1 3 , 2 1 B y x 1 3 , z
称为A的共轭矩阵,记作 A [ a ij ] m n
四、同型矩阵与矩阵相等的概念
1.两个矩阵的行数相等,列数相等时,称为同 型矩阵. 1 2 14 3
例如
5 3 6 与 8 7 3 4 9
为同型矩阵.
bij 为同型矩阵,并且
a 12 a 22 am1 a1n a 2n a mn
主对角线 a 11
a 21 A 副对角线 a m 1
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.

矩阵的基本概念

矩阵的基本概念

矩阵的基本概念⼀,逆矩阵⼆,伴随矩阵三,转置矩阵四,正交矩阵、特征值、特征向量1.正交矩阵单位向量定义是:长度为1的⽅向向量。

单位矩阵定义:矩阵对⾓线上的元素是1,其余元素全是0的矩阵。

正交矩阵的定义是:A与A的转置矩阵的乘积是单位矩阵。

也可以这么理解,有⼀个矩阵A,它有如下性质:(1)任意⼀⾏(列)的所有元素的平⽅和为1;(2)A中任意两个不同⾏(列)的对应元素乘积之和为0。

那我们称A为正交矩阵。

⽅阵A为正交矩阵的充要条件是A的列向量是单位向量,且两两正交。

2.求解特征值、特征向量设n阶矩阵A=(a ij)的特征值是λ1,λ2,…,λn,那么有如下性质:(1)λ1+λ2+…+λn=a11+a22+…+a nn(2)λ1*λ2*…*λn=|A|五,相似矩阵相似矩阵定义为:设A、B都是n阶矩阵,若有可逆矩阵p,使得p-1Ap=B,则称B是A的相似矩阵,A与B相似。

定理1:n阶矩阵A、B相似,那么A与B的特征多项式相同,从⽽ A与B的特征值亦相等。

推论:n阶矩阵A与n阶对⾓矩阵Λ相似,则λ1,λ2,λ3,…,λn即是A的n个特征值。

六,矩阵的对⾓化1. 定义n阶矩阵A与n阶对⾓矩阵Λ相似,则p-1Ap=Λ,说明A可以对⾓化。

定理:矩阵A能够对⾓化的充要条件是A有n个线性⽆关的特征向量。

推论:矩阵A有n个互不相等的特征值说明矩阵A能够对⾓化。

2.对称矩阵的对⾓化定理:假设λ1,λ2为对称矩阵A的两个特征值,p1,p2是对应的特征向量,若λ1≠λ2,则p1与p2正交。

定理:设A为n阶对称矩阵,则必有正交矩阵P,使P-1AP=P T AP=Λ,其中Λ是以A的n个特征值为对⾓元素的对⾓矩阵。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算一、矩阵的基本概念矩阵是线性代数中的一种基本工具,它是由一组数按照矩形排列而成的表格结构。

矩阵由行和列组成,行表示矩阵的水平方向,列表示矩阵的垂直方向。

一个m行n列的矩阵可记作A = [aij],其中i代表行号,j代表列号,aij表示矩阵A在第i行第j列的元素。

二、矩阵的基本运算1. 矩阵的加法给定两个相同大小的矩阵A和B,它们的和矩阵C可以通过循环计算得到。

对应元素相加即可,即Ci,j = Ai,j + Bi,j。

2. 矩阵的数乘给定一个矩阵A和一个实数k,实数k与矩阵A的乘积矩阵B可以通过循环计算得到。

每个元素都乘以k,即Bi,j = k * Ai,j。

3. 矩阵的乘法矩阵的乘法涉及到两个矩阵A和B,前提是A的列数等于B的行数。

它们的乘积矩阵C可以通过循环计算得到。

行乘以列的规则是Ci,j = Σ(Ai,k * Bk,j),其中k代表循环的次数,Σ表示累加求和。

三、矩阵的特殊类型1. 零矩阵全为零的矩阵称为零矩阵,记作0。

2. 单位矩阵主对角线上元素全为1,其余元素全为0的矩阵称为单位矩阵,记作I。

3. 对角矩阵除了主对角线上的元素外,其余元素都为零的矩阵称为对角矩阵。

4. 转置矩阵将矩阵A的行变成列,列变成行得到的新矩阵称为A的转置矩阵,记作A^T。

四、矩阵的性质与应用1. 可逆矩阵如果一个方阵A存在一个方阵B,使得AB=BA=I,那么矩阵A称为可逆矩阵。

可逆矩阵的逆矩阵记作A^-1。

2. 矩阵的秩一个矩阵的秩是指矩阵中非零行的最小数目。

秩反映了矩阵所包含的独立行或列的数量。

3. 矩阵的应用矩阵在许多科学和工程领域中都有广泛的应用,例如线性方程组的解法、图像处理、数据压缩、网络分析等。

五、总结矩阵是线性代数中重要的数学工具,由行和列组成。

矩阵的基本运算包括加法、数乘和乘法,可以通过循环计算得到。

矩阵的特殊类型包括零矩阵、单位矩阵、对角矩阵和转置矩阵。

可逆矩阵和秩是矩阵的重要性质。

矩阵知识点归纳

矩阵知识点归纳

矩阵知识点归纳矩阵是线性代数中一种重要的数学工具,它广泛应用于科学、工程、计算机科学等领域。

本文将对矩阵的基本概念、运算法则以及常见的矩阵类型进行归纳总结。

一、矩阵的基本概念1. 矩阵的定义:矩阵是由m行n列的元素排列而成的矩形阵列,用大写字母表示,如A。

其中,m表示矩阵的行数,n表示矩阵的列数。

2. 元素:矩阵中的数值称为元素,用小写字母表示,如a。

矩阵A的第i行第j列的元素表示为a_ij。

3. 零矩阵:所有元素都为0的矩阵,用0表示。

4. 单位矩阵:主对角线上的元素为1,其他元素为0的矩阵,用I表示。

5. 行向量和列向量:只有一行的矩阵称为行向量,只有一列的矩阵称为列向量。

二、矩阵的运算法则1. 矩阵的加法:两个相同维数的矩阵相加,即对应位置的元素相加。

2. 矩阵的减法:两个相同维数的矩阵相减,即对应位置的元素相减。

3. 矩阵的数乘:用一个数乘以矩阵的每个元素。

4. 矩阵的乘法:矩阵乘法需要满足左矩阵的列数等于右矩阵的行数。

若A是m×n的矩阵,B是n×p的矩阵,那么A与B的乘积AB是m×p的矩阵,且AB的第i行第j列元素为A的第i行与B的第j列对应元素的乘积之和。

5. 转置:将矩阵的行和列对调得到的矩阵称为原矩阵的转置。

若A为m×n的矩阵,其转置记作A^T,即A的第i行第j列元素等于A^T的第j行第i列元素。

三、常见的矩阵类型1. 方阵:行数和列数相等的矩阵称为方阵。

2. 对角矩阵:主对角线以外的元素都为0的方阵称为对角矩阵。

3. 上三角矩阵:主对角线以下的元素都为0的方阵称为上三角矩阵。

4. 下三角矩阵:主对角线以上的元素都为0的方阵称为下三角矩阵。

5. 对称矩阵:元素满足a_ij=a_ji的方阵称为对称矩阵。

6. 反对称矩阵:元素满足a_ij=-a_ji的方阵称为反对称矩阵。

7. 单位矩阵:主对角线上的元素为1,其他元素为0的方阵称为单位矩阵。

四、矩阵的性质1. 矩阵的零点乘法:任何矩阵与零矩阵相乘,结果都是零矩阵。

矩阵的总结知识点

矩阵的总结知识点

矩阵的总结知识点一、矩阵的基本概念1. 矩阵的定义矩阵是一个按照矩形排列的数学对象。

矩阵的概念最早出现在线性代数理论中,它是由m行n列的数字排成的矩形阵列。

通常表示为一个大写字母,比如A,而矩阵中的元素通常用小写字母表示,比如a_ij,表示在第i行第j列的元素。

2. 矩阵的类型根据矩阵的形状和性质不同,可以将矩阵分为多种类型,比如方阵、对称矩阵、对角矩阵、三角矩阵等。

方阵是指行数和列数相等的矩阵,对称矩阵是指矩阵关于主对角线对称,对角矩阵是指除了主对角线上的元素外,其他元素都为零,而三角矩阵是指上三角或下三角矩阵。

3. 矩阵的运算矩阵的运算包括矩阵的加法、减法、数乘、矩阵的乘法等。

其中,矩阵的加法和减法要求相加的矩阵具有相同的形状,即行数和列数相同;而矩阵的数乘是指矩阵中的每个元素都乘以一个标量;矩阵的乘法是指矩阵A的列数等于矩阵B的行数时,可以进行矩阵乘法运算。

4. 矩阵的转置和逆矩阵矩阵的转置是指将矩阵的行和列对调得到一个新的矩阵,记作A^T。

而逆矩阵是指如果一个矩阵A存在逆矩阵A^(-1),使得A*A^(-1)=I,其中I是单位矩阵,则称矩阵A可逆,否则称矩阵A为奇异矩阵。

二、矩阵的应用1. 线性方程组的求解矩阵可以用来表示和求解线性方程组,线性方程组可以表示成AX=B的形式,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。

通过矩阵的基本变换和行列式的计算,可以求解线性方程组的解。

2. 数据处理和分析在数据处理和分析领域,矩阵可以用来表示和处理大规模的数据集。

比如,在机器学习算法中,可以通过矩阵的运算和矩阵分解来进行数据的降维和特征的提取。

3. 控制理论在控制理论中,矩阵可以用来描述线性系统的状态方程和控制方程,通过对状态矩阵和控制矩阵的计算和分析,可以得到系统的稳定性和控制性能。

4. 计算机图形学在计算机图形学中,矩阵可以用来描述和处理图形的旋转、平移、缩放等变换,通过矩阵的运算和矩阵乘法,可以实现图形的变换和动画效果。

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 矩阵及其运算
教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。

能熟练正确地进行矩阵的计算。

知识要点:
一、矩阵的基本概念
矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他
们表示该元素在矩阵中的位置。

比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。

元素全为零的矩阵称为零矩阵。

特别地,一个矩阵,也称为一个维列向量;而一个
矩阵,也称为一个维行向量。

当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。

对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。

若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。

如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如,是一
个阶下三角矩阵,而则是一个阶上三角矩阵。

今后我们用表示数域上的矩阵构成的集合,而用
或者表示数域上的阶方阵构成的集合。

二、矩阵的运算
1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:。

给定矩阵,我们定义其负矩阵为:。

这样我们可以定义同型矩阵的减法为:。

由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:
( 1)交换律:;
( 2)结合律:;
( 3)存在零元:;
( 4)存在负元:。

2 、数与矩阵的乘法:
设为一个数,,则定义与的乘积仍为中的一个矩阵,中的元素就是用数乘中对应的元素的道德,即。

由定义可知:。

容易验证数与矩阵的乘法满足下列运算律:
(1 );
(2 );
(3 );
(4 )。

3 、矩阵的乘法:
设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵德列数等与矩阵的行数),所得的积为一个距
阵,即,其中,并且。

据真的乘法满足下列运算律(假定下面的运算均有意义):
( 1)结合律:;
( 2)左分配律:;
( 3)右分配律:;
( 4)数与矩阵乘法的结合律:;
( 5)单位元的存在性:。

若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:,。

注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(1 )矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等(请读者自己举反例)。

正是由于这个原因,一般来讲,,。

(2 )两个非零矩阵的乘积可能是零矩阵,即未必能推出
或者(请读者自己举反例)。

(3 )消去律部成立:如果并且,未必有。

4 、矩阵的转置:
定义:设为矩阵,我们定义的转置为一个
矩阵,并用表示的转置,即:。

矩阵的转置运算满足下列运算律:
(1 );
(2 );
(3 );
(4 )。

5、对称矩阵:
定义1.11 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵。

若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当
且仅当对任意的成立。

从而反对称局针对角线上的元素必为零。

对称矩阵具有如下性质:
(1 )对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;
(2 )两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;
(3 )如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即。

思考题:
1、设为第个分量为,而其余分量全为零的维列向量,
为第个分量为,而其余分量全为零的维列向量,
为矩阵,试计算;
2 、设为阶方阵,并且对任意有,你能得出什么结论?。

相关文档
最新文档