小学奥数行程问题PPT课件
合集下载
五年级奥数学第10讲行程问题PPT课件
![五年级奥数学第10讲行程问题PPT课件](https://img.taocdn.com/s3/m/af18216c76c66137ef06194b.png)
例:小赵和小李是两位竞走运动员,小赵从甲 地出发,小李同时从乙地出发,相向而行,在 两地之间往返练习。第一次相遇地点距甲地 1.4千米,第二次相遇地点距乙地0.6千米。当 他们两人第四次相遇时,地点距甲地有多远? ()
A.2.6千米B.2.4千米C.1.8千米D.1.5千米
设甲乙两地相距S千米,则
相遇次数: 1, 2, 3, 4
两人所走走程和;S, 3S, 5S, 7S
则甲乙两地相距:1.4*3-0.6=3.6千米(?)
第4次相遇时,2人共走了7S,那么小赵的路程是 1.4*7=9.8
9.8/3.6=2……2.6(即9.8除以3.6等于2,余数是2.6, 即,小赵从甲地走到乙地,又回到甲地,又走了2.6千 米),也就是距离甲地2.6千米。
例.甲从A地步行到B地,出发1小时40分钟后, 乙骑自行车也从同地出发,骑了10公里时追到 甲。于是,甲改骑乙的自行车前进,共经5小 时到达B地,这恰是甲步行全程所需时间的一 半。问骑自行车的速度是多少公里/小时? (05年湖南真题)
A.12 B.10 C.16 D.15
解析:假设乙骑完全部路程,需要5小时-1小 时40分钟=200分钟,甲需要10个小时=600分 钟,则甲乙速度之比1:3,跑相同的距离时间 比3:1,那么乙追了10公里追上甲,多用了1小 时40分钟(100分钟),那么乙用了50分钟, 乙的速度:10÷5/6=12公里/每小时
到了1983年,他们利用这些理论应用在设计汽车车身外形的设计。在九十年代, 他们又在把这些计算几何的理论和方法,应用到开发建筑、服装、内燃机等行 业的计算机辅助设计系统上。设计师可以从电脑的屏幕上修改设计方案。
生活数学:
甲、乙两人同时从两地出发,相向而行。距离是1000 米,甲每分钟走120米,乙每分钟走80米,甲带着一 只小狗,狗每分钟走500米,这只狗与甲一道出发,碰 到乙的时候,它又掉头朝甲这边走,碰到甲的时候又 往乙这边走,直到两人相遇,狗才停下来!问这只狗 走了多少米?你能像苏步青一样,很快说出这道题的 答案吗?
五年级奥数---行程问题(三)-列方程解行程问题ppt课件
![五年级奥数---行程问题(三)-列方程解行程问题ppt课件](https://img.taocdn.com/s3/m/f562d4546529647d26285242.png)
2
可编辑课件PPT
例1:A、B两地相距259千米 ,甲车从A地开往B地,每 小时行38千米;半小时后 ,乙车从B地开往A地,每 小时行42千米。乙车开出 几小时后和甲车相遇?
3
可编辑课件PPT
分析与解答
我们可以设乙车开出后X小时和甲车相遇。相 遇时,甲车共行了38×(X+0.5)千米,乙车 共行了42X千米,用两车行的路程和是259千米 来列出方程,最后求出解。
12
可编辑课件PPT
分析与解答:
我们可以设快车行驶了X小时,那么,慢车就行驶 了(X+3)小时,利用快、慢两车所行的路程相 等这一关系,可以列出方程,通过解方程求出快 车所行驶的时间,最后用“速度×时间=路程”这 一关系求出A、B两地间的距离。
解:设快车行驶了X小时。
54X=48×(X+3)
解得 X=24
54×24=1296(千米)
答:A、B两地相距1296千米。
13
可编辑课件PPT
练习四
1,甲每分钟行120米,乙每分钟行80米。二人同时从A地 出发去B地,当乙到达B地时,甲已在B地停留了2分钟。A 地到B地的路程是多少米?
2,甲、乙二人同时从学校骑车出发去江边,甲每小时行 15千米,乙每小时行20千米。途中乙因修车停留了24分钟 ,结果二人同时到达江边。从学校到江边有多少千米?
3,甲、乙两地相距446千米,快、慢两车同时从甲 、乙两地相对开出,快车每小时行68千米,慢车每小 时行35千米。中途慢车因修车停留半小时,求共经过 几小时两车在途中相遇。
5
可编辑课件PPT
例2:一辆汽车从甲地开往
乙地,平均每小时行20千米 。到乙地后又以每小时30千 米的速度返回甲地,往返一 次共用7.5小时。求甲、乙两 地间的路程。
小学五年级奥数教学课件ppt:行程问题共20页
![小学五年级奥数教学课件ppt:行程问题共20页](https://img.taocdn.com/s3/m/50ad2b18172ded630a1cb65b.png)
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
小学五年级奥数教学课件ppt:行程问 题
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
奥数行程问题ppt
![奥数行程问题ppt](https://img.taocdn.com/s3/m/37db9c23da38376bae1faeaf.png)
快速练习
• 快车和慢车同时从甲乙两地相对开出,快车 每小时行33千米,相遇是已行了全程的七分 之四,已知慢车行完全程需要8小时,求甲 乙两地的路程.
• 小强去离家6千米的学校,先走2千米,紧接 着再跑2千米,最后骑车2千米,原路返回时 则全程骑车。他跑步的速度是走路速度的2 倍,骑车的速度是跑步速度的1.5倍。小强 去学校所用的时间比他返回所用的时间多15 分钟质文档免费下载
在购买的VIP时长期间,下载特权不清零。 VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起
VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
路漫漫其修远兮,吾将上下而求索! 享受阅读VIP精品版全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名人书友圈7.三端同步
在购买的VIP时长期间,下载特权不清零。
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
1 相遇 相背
速度=时间×路程 于是有以下变式 路程÷速度=时间 路程÷时间=速度
2 追及
速度差×时间=追及路程 于是一下变式
追及路程÷时间=速度差 追及路程÷速度差=时间
3 行船问题
• 船顺水速度=船静水速度+水流速度
• 船逆水速度=船静水速度-水流速度
小学数学奥数题-----行程问题-有答案省公开课获奖课件市赛课比赛一等奖课件
![小学数学奥数题-----行程问题-有答案省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/7ffc1d38f4335a8102d276a20029bd64793e6260.png)
汽车返回与乙班相遇时,乙班步行旳旅程与甲班 学生步行到机场旳旅程相等。由此得出汽车送 甲班学生下车地点到几长旳距离为学校到机场 旳距离旳1/5。列算式为 24÷(1+3+1)=4.8(千米)
答:汽车应在距飞机场4.8千米处返回接乙班学 生,才干使两班学生同步到达飞机场。
流水行船问题
划速=(顺流船速+逆流船速)÷2; 水速=(顺流船速—逆流船速)÷2; 顺流船速=划速+水速; 逆流船速=划速—水速; 顺流船速=逆流船速+水速×2; 逆流船速=逆流船速—水速×2。
船速:100÷4=25(千米/时)
河长:25×12=300(千米)
答:河长300千米。
例题4:上午8时8分,小明骑自行车从家里出发。8 分钟后爸爸骑摩托车去追他。在离家4千米旳地方追 上了他,然后爸爸立即回家。到家后他又立即回头去 追小明。再追上他旳时候,离家恰好是8千米(如 图),这时是几时几分?
例题5:甲、乙、丙三人,每分钟分别行68米、70.5 米、72米。现甲、乙从东镇去西镇,丙从西镇去东镇, 三人同步出发,丙和乙相遇后,又过2分钟与甲相遇。 东、西两镇相距多少米毫?
例题2:
从甲地到乙地旳旅程分为上坡、平路、下坡三 段,各段旅程之比是1:2:3,某人走这三段 路所用旳时间之比是4:5:6。已知他上坡时 旳速度为每小时2.5千米,旅程全长为20千米。 此人从甲地走到乙地需多长时间?
分析:要求从甲地走到乙地需多长时间,先求 上坡时用旳时间。上坡旳旅程为 20×1/(1+2+3)=10/3(千米),上坡旳时间为 10/3÷2.5=4/3(小时),从甲地走到乙地所 需旳时间为:4/3÷4/(1+2+3)=5(小时)
第5次课 行程问题(二)
答:汽车应在距飞机场4.8千米处返回接乙班学 生,才干使两班学生同步到达飞机场。
流水行船问题
划速=(顺流船速+逆流船速)÷2; 水速=(顺流船速—逆流船速)÷2; 顺流船速=划速+水速; 逆流船速=划速—水速; 顺流船速=逆流船速+水速×2; 逆流船速=逆流船速—水速×2。
船速:100÷4=25(千米/时)
河长:25×12=300(千米)
答:河长300千米。
例题4:上午8时8分,小明骑自行车从家里出发。8 分钟后爸爸骑摩托车去追他。在离家4千米旳地方追 上了他,然后爸爸立即回家。到家后他又立即回头去 追小明。再追上他旳时候,离家恰好是8千米(如 图),这时是几时几分?
例题5:甲、乙、丙三人,每分钟分别行68米、70.5 米、72米。现甲、乙从东镇去西镇,丙从西镇去东镇, 三人同步出发,丙和乙相遇后,又过2分钟与甲相遇。 东、西两镇相距多少米毫?
例题2:
从甲地到乙地旳旅程分为上坡、平路、下坡三 段,各段旅程之比是1:2:3,某人走这三段 路所用旳时间之比是4:5:6。已知他上坡时 旳速度为每小时2.5千米,旅程全长为20千米。 此人从甲地走到乙地需多长时间?
分析:要求从甲地走到乙地需多长时间,先求 上坡时用旳时间。上坡旳旅程为 20×1/(1+2+3)=10/3(千米),上坡旳时间为 10/3÷2.5=4/3(小时),从甲地走到乙地所 需旳时间为:4/3÷4/(1+2+3)=5(小时)
第5次课 行程问题(二)
小学五年级奥数教学课件ppt:行程问题
![小学五年级奥数教学课件ppt:行程问题](https://img.taocdn.com/s3/m/f6cd851d915f804d2b16c140.png)
分析 :
二人相遇时,甲比乙多行15×2=30(千米), 说明二人已行30÷6=5(小时),上午8时至中 午12时是4小时,所以甲的速度是: 15÷(5-4)=15(千米)。 因此,东西两村的距离是
15×(5-1)=60(千米) 上午8时至中午12时是4小时。 15×2÷6=5(小时) 15÷(5-4)=15(千米) 15×(5-1)=60(千米)
3,学校运来一批树苗,五(1)班的40个同学都去参 加植树活动,如果每人植3棵,全班同学都能植这批树 苗的一半还多20棵。如果这批树苗全部给五(1)班的 同学去植,平均每人植多少树?
例3、 甲、乙二人上午8时同 时从东村骑车到西村去,甲 每小时比乙快6千米。中午12 时甲到西村后立即返回东村, 在距西村15千米处遇到乙。 求东、西两村相距多少千米?
3,甲、乙二人上午7时同时从A地去B地,甲每小时 比乙快8千米。上午11时甲到达B地后立即返回,在 距B地24千米处与乙相遇。求A、B两地相距多少千米?
例4、甲、乙两车早上8点分别 从A、B两地同时出发相向而行, 到10点时两车相距112.5千米。 两车继续行驶到下午1点,两车 相距还是112.5千米。A、B两地 间的距离是多少千米?
练习一
1,小玲每分钟行100米,小平每分钟行80米, 两人同时从学校和少年宫出发,相向而行,并 在离中点120米处相遇。学校到少年宫有多少米? 2,一辆汽车和一辆摩托车同时从甲、乙两地相 对开出,汽车每小时行40千米,摩托车每小时 行65千米,当摩托车行到两地中点处时,与汽 车还相距75千米。甲、乙两地相距多少千米? 3,甲、乙二人同时从东村到西村,甲每分钟行 120米,乙每分钟行100米,结果甲比乙早5分钟 到达西村。东村到西村的路程是多少米?
间不断往返送信。如果鸽子从同学们出发到相遇共 飞行了30千米,而甲队同学比乙队同学每小时多走 0.4千米,求两队同学的行走速度。
四年级行程问题ppt课件
![四年级行程问题ppt课件](https://img.taocdn.com/s3/m/ca843648a7c30c22590102020740be1e650eccb0.png)
画图法
通过画图直观地表示物体 的运动轨迹和相对位置, 帮助理解问题并找出解决 方案。
代数法
通过设立代数式表示物体 的速度、时间和距离,通 过代数运算求解。
追及问题的实例
小明和小华在环形跑道上跑步,小明跑一圈需要5分钟,小华 跑一圈需要6分钟。两人从同一点同向出发,多少分钟后两人 再次相遇?
一辆货车和一辆客车在同一条公路上同向行驶,货车的速度 是60千米/小时,客车的速度是75千米/小时。客车在行驶了 2小时后发现货车在前方54千米处,问货车行驶了多少时间 追上了客车?
环形跑道问题的解决方法
总结词
解决环形跑道问题需要先确定每个物体的速度和方向,然后根据问题描述分析物 体的相对运动关系,最后通过计算得出答案。
详细描述
解决环形跑道问题需要先理解物体的相对运动关系,即哪个物体在追赶哪个物体 ,或者哪个物体在等待哪个物体。然后根据相对速度和距离,计算出物体相遇或 追及的时间和地点。
03
CATALOGUE
追及问题
追及问题的定义
01
追及问题是行程问题中的一种, 主要研究两个或多个物体在同一 直线上运动,一个物体追赶另一 个物体的过程。
02
追及问题的关键在于找出两者之 间的速度差和距离差,以及追赶 所需的时间。
追及问题的解决方法
01
02
03
公式法
利用速度、时间和距离之 间的关系,列出方程求解 。
05
CATALOGUE
环形跑道问题
环形跑道问题的定义
总结词
环形跑道问题是指两个或多个物体在同一条环形跑道上按照不同的速度进行运 动,并涉及到追及和相遇的问题。
详细描述
环形跑道问题通常涉及到两个或多个物体在同一环形跑道上运动,每个物体都 有自己的速度。这类问题通常涉及到追及和相遇的情况,需要找出物体何时、 何地能够相遇或者追及。
数学奥数行程问题(共17张ppt)优秀课件
![数学奥数行程问题(共17张ppt)优秀课件](https://img.taocdn.com/s3/m/e080ac6af121dd36a22d827c.png)
小明每分钟走100米,小红每分钟走80米, 两人同时同地向相反方向走去。5分钟后 小明转向追小红,当小明追上小红时,两 人各走了多少米?
本题求的问题是两人各走了多少米。所用时间有两部分,一是先行 的5分钟,二是小明从转身开始追上小红所用的时间。求出各自行的 时间乘以各自的速度即可。
小明从转身开始追上小红用的时间:
轿车和货车同时从两地对开,3小时后在距中点 12千米处相遇,由此可见轿车3小时比货车多行 12x2=24 (千米)。 轿车比货车多行: 12x2=24 (千米) 轿车比货车每小时多行驶:24 ÷3=8 (千米)
3、 张、李、赵三人都从甲地到乙地,上午6时,张、李 二人一起从甲地出发,张每小时走5千米,李每小时走4千 米。赵上午8时才从甲地出发,傍晚6时赵、张同时到达乙 地,那么赵追上李的时间是几时?
弄
,
1
5
分
钟
后
你
还
没
有
弄
完
我
就
不
耐
烦
像
如
果
我
自
己
弄
五
分
钟
就
弄
完
所
以
最
后
通
常
变
成
我
自
己
弄
。
但
这
样
做
有
一
个
不
好
的
后
果
就
是
当
你
真
的
五
分
钟
弄
完
就
会
■
电
张比赵早出发2小时,张先走了5 x 2=10(千米),上 午8时到傍晚6时共10小时,用10个小时追上10千米, 赵每小时追10+10=1 (千米),因此,赵的速度是每 小时走5+1=6(千米)。李比赵也早出发2小时,先走 了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是 中午12点。
五年级奥数-一行程问题追击问题(课堂PPT)
![五年级奥数-一行程问题追击问题(课堂PPT)](https://img.taocdn.com/s3/m/76295fa3f111f18582d05a21.png)
13
2,甲乙丙三人从A到B,甲乙一起从A出发, 甲每小时走6千米,乙每小时走4千米。4小时 后丙骑自行车从A出发,用2小时就追上乙, 再用几小时就能追上甲?
14
3,甲乙丙三人行走的速度分别为60米,80米 ,100米。甲乙两人在B同时同向出发,丙从A 同时同向出发去追甲乙,丙追上甲以后又过了 10分钟才追上乙。求AB两地的路程。
15
例5 、 甲、乙、丙三人步行的
速度分别是每分钟100米、90 米、75米。甲在公路上A处, 乙、丙在公路上B处,三人同
时出发,甲与乙、丙相向而行。 甲和乙相遇3分钟后,甲和丙 又相遇了。求A、B之间的距 离。
16
分析:
甲和乙相遇后,再过3分钟甲又能和丙相遇, 说明甲和乙相遇时,乙比丙多行: (100+75)×3=525米。 而乙每分钟比丙多行: 90-75=15米, 多行525米需要用: 525÷15=35分钟。 35分钟甲和乙相遇,说明A、B两地之间的距 离是: (100+90)×35=6650米。
(3)、甲乙两人以每分钟60米的速度同时同地步行出 发,走15分钟后甲返回原地取东西,而乙继续前进。甲 取东西用去5分钟的时间,然后改骑自行车以每分钟360 米的速度追乙,甲汽
地,要行360千米。开始按计划 以每小时45千米的速度行驶,途 中因汽车故障修车2小时。因为 要按时到达乙地,修好车后必须 每小时多行30千米。汽车是在离 甲地多远处修车的?
11
甲乙丙三人都从A地到B地,早晨六点,甲乙 两人一起从A出发,甲每小时走5千米,乙每 小时走4千米。丙早上八点才从A出发,傍晚 六点,甲和丙同时到达B,问丙什么时候追上 乙的?
12
1,客车,货车,小轿车都从A到B。货车和客 车一起从A出发,货车每小时行50千米,客车 每小时60千米。2小时后小轿车才从A出发。 12小时后小轿车追上了客车,问小轿车在出发 后几小时追上货车?
2,甲乙丙三人从A到B,甲乙一起从A出发, 甲每小时走6千米,乙每小时走4千米。4小时 后丙骑自行车从A出发,用2小时就追上乙, 再用几小时就能追上甲?
14
3,甲乙丙三人行走的速度分别为60米,80米 ,100米。甲乙两人在B同时同向出发,丙从A 同时同向出发去追甲乙,丙追上甲以后又过了 10分钟才追上乙。求AB两地的路程。
15
例5 、 甲、乙、丙三人步行的
速度分别是每分钟100米、90 米、75米。甲在公路上A处, 乙、丙在公路上B处,三人同
时出发,甲与乙、丙相向而行。 甲和乙相遇3分钟后,甲和丙 又相遇了。求A、B之间的距 离。
16
分析:
甲和乙相遇后,再过3分钟甲又能和丙相遇, 说明甲和乙相遇时,乙比丙多行: (100+75)×3=525米。 而乙每分钟比丙多行: 90-75=15米, 多行525米需要用: 525÷15=35分钟。 35分钟甲和乙相遇,说明A、B两地之间的距 离是: (100+90)×35=6650米。
(3)、甲乙两人以每分钟60米的速度同时同地步行出 发,走15分钟后甲返回原地取东西,而乙继续前进。甲 取东西用去5分钟的时间,然后改骑自行车以每分钟360 米的速度追乙,甲汽
地,要行360千米。开始按计划 以每小时45千米的速度行驶,途 中因汽车故障修车2小时。因为 要按时到达乙地,修好车后必须 每小时多行30千米。汽车是在离 甲地多远处修车的?
11
甲乙丙三人都从A地到B地,早晨六点,甲乙 两人一起从A出发,甲每小时走5千米,乙每 小时走4千米。丙早上八点才从A出发,傍晚 六点,甲和丙同时到达B,问丙什么时候追上 乙的?
12
1,客车,货车,小轿车都从A到B。货车和客 车一起从A出发,货车每小时行50千米,客车 每小时60千米。2小时后小轿车才从A出发。 12小时后小轿车追上了客车,问小轿车在出发 后几小时追上货车?
四年级奥数-一行程问题(一)ppt课件
![四年级奥数-一行程问题(一)ppt课件](https://img.taocdn.com/s3/m/771d102f0029bd64793e2c59.png)
.
例3、甲每小时行7千米, 乙每小时行5千米,两人 于相隔18千米的两地同时 相背而行,几小时后两人 相隔54千米?
.
分析 :
这是一道相背问题。所谓相背问题是指两个 运动的物体作背向运动的问题。在相背问题 中,相遇问题的基本数量关系仍然成立,根 据题意,甲乙两人共行的路程应该是 54-18=36千米, 而两人每小时共行7+5=12千米。 要求几小时能行完36千米,就是求36千米里 面有几个12千米。所以, 36÷12=3小时。
行程问题(一)
主讲:刘文峰
.
专题简析:
研究路程、速度、时间这三者之间关系的问 题称为行程问题。行程问题主要包括相遇问 题、相背问题和追及问题。这一周我们来学 习一些常用的、基本的行程问题。 解答行程问题时,要理清路程、速度和时间 之间的关系,紧扣基本数关系
“路程=速度×时间”来思考,对具体问
题要作仔细分析,弄清出发地点、时间和运 动结果。
.
分析 :
这是一道封闭线路上的追及问题。甲 和乙同时同地起跑,方向一致。因此, 当甲第一次追上乙时,比乙多跑了一 圈,也就是甲与乙的路程差是400米。 根据“路程差÷速度差=追及时间” 即可求出甲追上乙所需的时间: 400÷(290-270)=20分钟。
.
练习五
1,一条环形跑道长400米,小强每分钟跑300 米,小星每分钟跑250米,两人同时同地同向 出发,经过多长时间小强第一次追上小星? 2,光明小学有一条长200米的环形跑道,亮 亮和晶晶同时从起跑线起跑。亮亮每秒跑6米, 晶晶每秒跑4米,问:亮亮第一次追上晶晶时 两人各跑了多少米? 3,甲、乙两人绕周长1000米的环形广场竞走, 已知甲每分钟走125米,乙的速度是甲的2倍。 现在甲在乙后面250米,乙追上甲需要多少分 钟?
例3、甲每小时行7千米, 乙每小时行5千米,两人 于相隔18千米的两地同时 相背而行,几小时后两人 相隔54千米?
.
分析 :
这是一道相背问题。所谓相背问题是指两个 运动的物体作背向运动的问题。在相背问题 中,相遇问题的基本数量关系仍然成立,根 据题意,甲乙两人共行的路程应该是 54-18=36千米, 而两人每小时共行7+5=12千米。 要求几小时能行完36千米,就是求36千米里 面有几个12千米。所以, 36÷12=3小时。
行程问题(一)
主讲:刘文峰
.
专题简析:
研究路程、速度、时间这三者之间关系的问 题称为行程问题。行程问题主要包括相遇问 题、相背问题和追及问题。这一周我们来学 习一些常用的、基本的行程问题。 解答行程问题时,要理清路程、速度和时间 之间的关系,紧扣基本数关系
“路程=速度×时间”来思考,对具体问
题要作仔细分析,弄清出发地点、时间和运 动结果。
.
分析 :
这是一道封闭线路上的追及问题。甲 和乙同时同地起跑,方向一致。因此, 当甲第一次追上乙时,比乙多跑了一 圈,也就是甲与乙的路程差是400米。 根据“路程差÷速度差=追及时间” 即可求出甲追上乙所需的时间: 400÷(290-270)=20分钟。
.
练习五
1,一条环形跑道长400米,小强每分钟跑300 米,小星每分钟跑250米,两人同时同地同向 出发,经过多长时间小强第一次追上小星? 2,光明小学有一条长200米的环形跑道,亮 亮和晶晶同时从起跑线起跑。亮亮每秒跑6米, 晶晶每秒跑4米,问:亮亮第一次追上晶晶时 两人各跑了多少米? 3,甲、乙两人绕周长1000米的环形广场竞走, 已知甲每分钟走125米,乙的速度是甲的2倍。 现在甲在乙后面250米,乙追上甲需要多少分 钟?
小学奥数行程问题PPT课件
![小学奥数行程问题PPT课件](https://img.taocdn.com/s3/m/153f6d88c1c708a1284a44bd.png)
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知, 狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走 的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90) =10分钟。所以狗共行了500×10=5000米。
练习一:
甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶 18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两 地间的水路长多少千米?
一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发, 汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距 多少千米?
甲乙两车分别从相距480千米的A、B两城同时出发,相 向而行,已知甲车从A城到B城需6小时,乙车从B城到A 城需12小时。两车出发后多少小时相遇?
例题1:
甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每 小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出 发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短 6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10 千米。因此,两人20÷(6+4)=2小时后相遇。
行程问题
• 蒋老师
(一)
专题简析
. 我们把研究路程、速度、时间这三者之间关系的问题称为行程问
题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来 学习一些常用的、基本的行程问题。
.解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本
数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发 地点、时间和运动结果。
练习一:
甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶 18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两 地间的水路长多少千米?
一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发, 汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距 多少千米?
甲乙两车分别从相距480千米的A、B两城同时出发,相 向而行,已知甲车从A城到B城需6小时,乙车从B城到A 城需12小时。两车出发后多少小时相遇?
例题1:
甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每 小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出 发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短 6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10 千米。因此,两人20÷(6+4)=2小时后相遇。
行程问题
• 蒋老师
(一)
专题简析
. 我们把研究路程、速度、时间这三者之间关系的问题称为行程问
题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来 学习一些常用的、基本的行程问题。
.解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本
数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发 地点、时间和运动结果。
行程问题ppt课件
![行程问题ppt课件](https://img.taocdn.com/s3/m/06174c52a9114431b90d6c85ec3a87c240288a35.png)
Part
06
行程问题述:通过画图的方式,将行程问题中的信息以图形的方式呈现出来,有助 于直观地理解问题,找出关键信息,从而解决问题。
代数法
总结词:通用性强
详细描述:将行程问题中的未知数用代数式表示,通过设立方程或方程组来求解,这种方法通用性强,适用于各种行程问题 。
02 03
详细描述
追及问题涉及到两个物体在同一方向上移动,一个物体追赶另一个物体 直到它们相遇。这类问题需要考虑物体的速度、时间和距离,以及它们 之间的相对运动关系。
公式
距离 = 速度 × 时间
环形跑道问题
总结词
环形跑道问题主要研究在环形跑道上运动的物体之间的相对位置关系。
详细描述
在环形跑道问题中,物体在同一起点出发,沿着环形跑道运动,直到再次相遇。这类问题 需要考虑物体的速度、时间和距离,以及它们之间的相对运动关系。
Part
02
基础行程问题解析
匀速直线运动
总结词
物体在直线运动中,速度保持不变。
详细描述
匀速直线运动是速度恒定的运动,即单位时间内通过的距离相等。在匀速直线 运动中,速度、时间和距离之间的关系可以用公式表示为:速度 = 距离 / 时间。
匀加速直线运动
总结词
物体在直线运动中,速度逐渐增加。
详细描述
行程问题ppt课件
• 行程问题简介 • 基础行程问题解析 • 复杂行程问题解析 • 行程问题的数学模型 • 行程问题的实际应用 • 行程问题的解题技巧
目录
Part
01
行程问题简介
行程问题的定义
总结词
行程问题是指在一定条件下,寻找一条满足特定要求的旅行路线,通常需要考虑时间、 距离、成本等因素。
小学六年级奥数ppt:行程问题
![小学六年级奥数ppt:行程问题](https://img.taocdn.com/s3/m/d5367b1baf1ffc4ffe47ac7b.png)
要 11 分钟。从 A 处到 B 处需要多少分钟(如图 34-3 所示)?
2. 摩托车与小汽车同时从 A 地出发,沿长方形的路两
边行驶,结果在 B 地相遇。已知 B 地与 C 地的距离是 4
千米。且小汽车的速度为摩托车速度的23 。这条长方形路 的全长是多少千米(如图 34-4 所示)?
A
A
B C
图34——3
时从同一地点出发,沿相反方向跑。每人跑完第一圈到达出
发点后,立即回头加速跑第二圈,跑第一圈时,乙的速度是
甲的23 ,甲跑第二圈时的速度比第一圈提高了13 ,乙跑第二
圈时速度提高了15 。已知甲、乙两人第二次相遇点距第一次
相遇点 190 米。这条椭圆形跑道长多少米?
5A
这时甲反向而行,速度提高了13 。甲、乙速
÷(141 +334 +114 )=96(米/分),这样,就可以求出 丙的速度。
甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出 发。甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后 114 分钟于到丙,再过 334 分钟第二 次遇到乙。已知乙的速度是甲的23 ,湖的周长为 600 米, 求丙的速度。
1:32 =3:2
[3×(1+1 )]:[2×(1+1 )]=5:3
2÷3×2=113 [3×(1+31 ):2]=2:1 (3—113 )×2=331
3
5
(5—313 )×5+33 =85
190÷(3-58 )×5=400(米)
练习
1. 小明绕一个圆形长廊游玩。顺时针走,从 A 处到 C 处要 12 分钟,从 B 处到 A 处要 15 分钟,从 C 处到 B 处
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
3
例1练习:
• 1、甲乙两地之间的距离是420千米。两辆汽车同时从甲地 开往乙地。第一辆汽车每小时行42千米,第二辆汽车每小 时行28千米。第一辆汽车到乙地立即返回。两辆车从开出 到相遇共用多少小时?
• 2、A、B两地相距900千米,甲车由A地到B地共需要15小 时,乙车由B地到A地需要10小时。两车同时从两地开出, 相遇时甲车距B地还有多少千米?
.
9
1、一只狼以每秒15米的速度追捕在它前面 100米处的兔子。兔子每秒行4.5米,6秒后猎 人向狼开了一枪。狼立即转身以每秒16.5米
的速度背向兔子逃去。问:开枪多少秒后兔 子与狼又相距100米? 2、甲乙两车同时从A地开往B地,乙车6小时 可以到达,甲车每小时比乙车慢8千米,因此 比乙车迟一小时到达。A、B两地间的路程是 多少千米?
.
5
例2练习
• 1.两辆汽车同时从南、北两站相对开出,第一次在离南站 55千米的地方相遇,之后两车继续以原来的速度前进。各 自到站后都立即返回,又在距中点南侧15千米处相遇。两 站相距多少千米?
• 2.两列火车同时从甲乙两站相向而行。第一次相遇在离甲 站40千米的地方。两车仍以原速继续前进。各自到站后立 即返回,又在离乙站20千米的地方相遇。两站相距多少千 米?
• 3.甲乙两辆汽车同时从A、B两地相对开出。第一次相遇时 离A站有90千米。然后各按原速继续行驶,分别到达对方 车站后立即原路返回。第二次相遇时离A地的距离占A、B 两站间全程的65%,A、B两站间的路程是多少千米?
.
6
例3
• A、B两地相距960米。甲、乙两人分别从A、 B两地同时出发。若相向而行,6分钟相遇, 若同向行走,80分钟甲可以追上乙。甲从A 地走笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发, 若相向行走,12分钟相遇,若同向行走,8分钟甲就落在乙后面1864 米。已知A、B两地相距1800米。甲、乙每分钟各行多少米?
• 2、父、子二人在一条400米长的环形跑道上散步。他俩同时从同一地 点出发。若相背而行,2又6/7分钟相遇,若同向而行,26又2/3分钟 父亲可以追上儿子。问:在跑道上走一圈,父、子各需多少分钟?
• 3、两条公路呈十字交叉。甲从十字路口南1350米处向北直行,乙从 十字路口处向东直行。同时出发10分钟后,二人离十字路口的距离相 等,二人仍保持原来速度直行,有过了80分钟,这时二人离十字路口 的距离又相等。求甲、乙二人的速度。
.
8
例5
甲乙丙三人,每分钟分别行68米,70.5米、 72米。现甲、乙从东镇去西镇,丙从西镇去 东镇,三人同时出发,丙和乙相遇后,又过2 分钟与甲相遇。东、西两镇相距多少千米?
• 3、甲乙两辆汽车早上8点钟分别从A、B两城同时相向而 行。到10点钟时两车相距112.5千米。继续行进到下午1时, 两车相距还是112.5千米。A、B两地间的距离是多少千米?
.
4
例2:
• 两辆汽车同时从东、西两站相向开出。第 一次在离东站60千米的地方相遇。之后, 两车继续以原来的速度前进。各自到达对 方车站后都立即返回。又在距中点西侧30 千米处相遇。两站相距多少千米?
.
10
小学奥数例题及练习
行程问题1
.
.
1
例1:
两辆汽车同时从某地出发,运送一批货物 到距离165千米的工地。甲车比乙车早到 48分钟,当甲车到达时,乙车还距工地24 千米。甲车行完全程用了多少小时?
.
.
2
• 3、甲乙两辆汽车早上8点钟分别从A、B两 城同时相向而行。到10点钟时两车相距 112.5千米。继续行进到下午1时,两车相 距还是112.5千米。A、B两地间的距离是多 少千米?