电网谐波解决方案

电网谐波解决方案
电网谐波解决方案

电网谐波在线监测系统解决方案

一〃概述

随着现代化的进程,非线性、冲击性和不对称性负荷大量接入电网,供电质量日趋严重。由于对生活质量和工作效率的高要求,现在人们比以往任何时候更加关注电能质量问题。电能质量包含多个方面,如电网电压偏差、电压谐波、电压波动与闪变、三相电压不平衡度等,但电压谐波是电能质量中最重要的一种。谐波主要是由用户中的非线性用电负荷(如:整流装置、冶炼炉、电气化机车等)引起的,一个用户引起的谐波不仅影响到自身,而且污染电网并影响到该电网中的其它电力用户。

然而,由于电网的广泛性和谐波的普遍性,广大电力用户、电力生产厂和供电公司希望随时随地了解电网谐波情况,因此通过对电网各点谐波的监测,并对谐波进行分析处理,以推进谐波的治理,提高电网的电能质量和加强电网的管理,有着重要意义

二〃系统的特点

电网谐波电压在线监测系统的主要特点体现以下几个方面:

全面性:配电网的各级高电压母线处(测量关口)、谐波源接入公用电网的公共连接点(包括用户处)。本系统既可以实现单个变电站的谐波在线监测,也可以实现区域变电站的谐波在线监测。

实用性:长期在线监测、安全、可靠、操作方便,可实现自动化。

经济性:现场安装的仪器功能简单、体积小、价格低,又能在平时作为常规仪器进行显示、谐波越限报警,便于推广和普及。

安全性:本系统采用无线通信方式,实现远程操控或就地无线通讯的非接触式操控方式,有效地保证了仪器和工作人员的安全。

抗干扰:现场存在强电磁干扰,采用了多种措施提高仪器抗干扰能力。结构上,采用了屏蔽式箱体结构,硬件设计上,加设看门狗电路、复合滤波电路和信号隔离电路;软件设计上采用数字滤波技术、数据校验技术、实时诊断技术等。

技术性:本系统采用的谐波测量仪器工作原理的技术水平要高,便于对实时监测的传输的数字信号在接收终端进行记录、分析、统计、储存和打印;高电压母线的谐波信号采集用国内首创的由西安亿维电力技术发展有限公司研制的《高压谐波监测系统》;本系统终端处理的软件功能强、容量大。

三〃电网谐波测量的目的与依据

目的

对发电、供电、用电三方的监督管理,保证公用电网的谐波指标限值在国家标准规定的范围之内,以保障国民经济各行各业的正常生产和产品质量以及人民的生活质量。

依据

1〃测量标准

原电力工业部标准《关于电网谐波管理的暂行规定》;

国家标准GB/T14549-93 《电能质量公用电网谐波》;

国家标准GB17625.7-1998 《低压电气及电子设备发出的谐波电流限值》;

国家标准GB17626.7-1998 《供电系统及所连设备谐波、间谐波的测量和测量仪器导则》。

2〃测量条件

选择电网正常供电时系统可能出现的最小运行方式,且在谐波源工作周期中谐波量大的时段内。

当测量点附近安装有电力电容器组或谐波滤波器时,有可能会产生某次谐波放大或谐振,应在各种运行组合的方式下进行测量。

3〃监测点

原则上选择谐波源接入公用电网的公共连接点, 即供用电协议规定的电能计量点,测量该点的谐波电压和谐波源(干扰电能质量的用电设备)注入公用电网的谐波电流。

4〃测试量

谐波电压和谐波电流的谐波次数一般测量第2-25 次,谐波电压用含有率(% )表示,谐波电流用有效值( A )表示,总谐波畸变率用THD (% )表示。

5〃测量间隔和持续时间

对于负荷变化快的谐波源(如:电弧炉、轧机、电力机车等),测量间隔时间不大于 2 分,测量次数不小于30 次。

对于负荷变化慢的谐波源(如:化工整流器、直流输电换流站等),测量间隔和持续时间不作规定。

6〃测量数据的处理及谐波水平值的确定

标准规定:取测量时段内各相持续测量过程中实测值的95% 概率值,并取三相中最大一相的值,作为测试时段的谐波水平值,并以此作为判断谐波是否超标的依据。

四〃谐波测量方法的规定

1〃谐波测量方法

国际电工委员会(IEC )标准的规定,把谐波按其波动快慢和性质分为四类:

⑴准稳态(慢变化)谐波;

⑵波动谐波;

⑶快速变化谐波;

⑷间谐波及其虚拟部分。

标准中规定的谐波主要指前三类,并对不同波动性质的测量间隔,即测量时段及由测量值确定谐波值的方法提出如下建议:

⑴很短间隔:T VS = 3s;

⑵短间隔:T SH = 10min;

⑶长间隔:T L = 1h;

⑷日间隔:T D = 24h;

⑸周间隔:T W = 7d。

2〃电网电能质量最低的运行合格率

表 1 电能质量国家标准摘要

表2:注入公共连接点的谐波电流允许值

标准电压kV 基准短路

容量

MVA

谐波次数及谐波电流允许值 A

2345678910111213

0.38 10 786239622644192116281324 6 100 43342134 142411118.5167.113 10 100 26201320 8.515 6.4 6.8 5.19.3 4.37.9 35 250 15127.712 5.1 8.8 3.8 4.1 3.1 5.6 2.6 4.7 66 500 16138.113 5.4 9.3 4.1 4.3 3.3 5.9 2.7 5.0 110 750 129.6 6.09.6 4.0 6.8 3.0 3.2 2.4 4.3 2.0 3.7

标准电压kV 基准短

路容量

MVA

谐波次数及谐波电流允许值 A

141516171819202122232425

0.38 10 11129.7188.6167.88.97.114 6.512 6 100 6.1 6.8 5.3 5.3 4.79.0 4.3 4.9 3.97.4 3.6 6.8

10 100 3.7 4.1 3.2 3.2 2.8 5.4 2.6 2.9 2.3 4.5 2.1 4.1

35 250 2.2 2.5 1.9 1.9 1.7 3.2 1.5 1.8 1.4 2.7 1.3 2.5

66 500 2.3 2.6 2.0 2.0 1.8 3.4 1.6 1.9 1.5 2.8 1.4 2.6

110 750 1.7 1.9 1.9 1.5 1.3 2.5 1.2 1.4 1.1 2.1 1.0 1.9 表3:低压和中压配电系统单次谐波电压限值

五〃谐波测量仪器的功能和精度

1〃谐波测量仪器

1.1 谐波测量仪器的现状

谐波测试分析仪是测定电网谐波严重程度的专用仪器,就谐波测试分析仪而言,国内外已有不少生产厂家和产品,如美国FLUKE 公司的F40/41 手持式电力谐波分析仪、日本HIOKI 公司的3195 和3166 便携式电力分析仪、英国VOLTECH 公司的

PM3000/300/100 电力分析仪、瑞典UNIPOWER 公司的Unilyzer900F 电力测试分析仪及我国安徽振兴公司的PS 系列电能质量分析仪等。通过比较分析,不难发现,这些仪器具有如下通用特点:

⑴多功能,高性能,高价格;

⑵实验室或户内使用,适用于科学研究、短期电力试验、电网巡检或临时监测;

⑶独立使用的专用测试仪器,专人管理和使用。

然而,由于电网的广泛性和谐波的普遍性,广大发电、供电、用电部门都希望随时随地了解电网谐波情况,仅靠专门的谐波测试管理机构和科技人员是满足不了要求的,高价格的测试分析仪无法推广和普及。

1.2 监测方式及仪器的选用

重要的PCC (电流质量控制)采用连续监测方式,并将数据及时送至上一级电能质量监测中心,一般选用将检测仪器长期安装在监测点实现连续在线检测,区域内多个检测点

的仪器联网构成谐波监测网;一般的PCC 采用定时监测方式,并将数据送至上一级电能质量监测中心,一般选用便携式谐波分析仪和定点检测仪器相结合对多点定时巡回检测;对于小的单相PCC ,根据需要进行检测,即随机监测方式,一般使用袖珍式谐波分析仪就可以满足检测要求。

1.3 系统采用的测量仪器:

⑴HVHe型高压谐波监测仪:

HVHe 系列高压谐波监测仪(以下简称高压谐波仪)仪由信号测量系统、信号传输系统和信号处理系统三部分组成。高压谐波监测仪是一种智能化谐波测量记录仪器,主要实现对高压电网(10、35、110、220、330、500kV)电压和电压谐波的实时监测、谐波越限记录和谐波越限时的录波并进行处理。

⑵谐波测量表

谐波测量表从功能上可分谐波电压测量表和谐波电流测量表,从性能上可分简易型和高级型。

LVHv 型谐波电压测量表和LVHa 型谐波电流测量表属简易型,是一种用于0.38kV、6(10)kV 用户变电所以及滤波装置、配电柜、整流柜等其他需要检测高次谐波电压和电流的场所,监测及数字显示谐波电压和电流总畸变率,并有接点输出供用户报警或控制保护回路。高级型谐波测量表除具备简易型的功能外,还可以记录和储存信号,如将该信号传输到终端,同样可以进行分析、统计等。

2〃测量精度

谐波测量仪器的精度有 A 、B 级。电网谐波在线监测一般用 B 级就可以,主要用于测量谐波大小,相角精度不作规定。仪器能保证在额定电压+15 ∽-15% 范围内,电压总畸变率不超过8% 条件下正常工作。

谐波测量仪器的最大允许误差

六〃电网谐波在线监测系统原理

电网谐波在线监测系统包括单个变电站(单个用户)电网谐波在线监测系统,与区域变电站(多用户)电网谐波在线监测系统,并且可以将多个系统进行组合实现远程谐波在线监测。系统拥有方便的扩展性让用户不必为以后增加监测点和系统升级担忧,各种类型的组合搭配使系统更灵活。数据分析、处理系统专为用户量身打造更贴近用户需求。

单个变电站(用户)电网谐波在线监测系统

电网谐波在线监测系统包括单个变电站(单个用户)电网谐波在线监测系统,与区域变电站(多用户)电网谐波在线监测系统,并且可以将多个系统进行组合实现远程谐波在线监测。系统拥有方便的扩展性让用户不必为以后增加监测点和系统升级担忧,各种类型的组合搭配使系统更灵活。数据分析、处理系统专为用户量身打造更贴近用户需求。

区域变电站(多用户)电网谐波在线监测系统

七〃解决方案

技术支持:

根据需求为用户进行项目前期的方案制定。

方案制定:

我们为每一个项目成立项目小组,配备从技术到商务的专门人员,为用户详细拟地订一个完善的解决方案。

项目管理:

合同管理部门由训练有素的合同管理员为用户建立项目档案,处理项目的各项事宜。从合同的条款、支付到施工都经过规范的流程和层层的严格管理,以确保合同的有效执行。

现场安装和项目调试:

我们的专业知识和经验将顺利完成系统安装和调试。

定期现场维护:

我们将定期到现场进行系统维护,确保系统的日常运行良好。

快速现场维修:

只要用户有需要,我们随时快速指派有经验的工程师到用户现场。

系统升级:

在专家的帮助下,您的系统升级将更及时、更方便。

咨询:

应用中存在的任何问题,我们的服务中心会全力帮助您解决问题。

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

电网谐波监测分析模块建设要求

建立统一的公司级谐波监测分析模块,集成全网电能质量监测数据并开展大数据分析,诊断、预测和评估电能质量干扰源对电网运行的影响,及时发现影响电网安全的隐患,支撑电能质量治理决策,增强电网系统运行可靠性和稳定性。

?谐波监测子模块数据交互方式 (1)总部和省公司谐波监测子模块数据交互应满足“电网谐波监测分析模块纵向接口要求”。 (2)省公司谐波监测子模块与省公司PMS数据交互:获取台帐、鉴权等信息,接口应满足“电网谐波监测分析模块与PMS接口要求”。?谐波分析子模块数据交互 谐波数据分析在总部谐波分析子模块开展,省公司可按权限直接访问总部相关数据。

?总部、省公司主站及其互联 总部谐波模块部署于总部信息内网二级系统域中,省公司谐波模块部署于省公司信息内网二级系统域中。总部谐波模块与省公司谐波模块通过信息内网纵向通道互联,应满足信息内网纵向边界安全防护要求。 ?监测终端接入省公司主站 监测终端通过现有通信通道接入信息内网谐波监测子模块,应满足信息内网终端接入安全防护要求。

1.变电站的重要供电母线及出线: ?跨省计量关口点(必须设置); ?纽变电站高低压母线(可选设置)等。 2. 直流受端落点换流站(必须)及受其影响的变电站高低 压母线(可选)。 3.向干扰源用户供电的母线及出线: ?电气化铁路(必须); ?电弧炉、中频炉、轧机、轨道交通、电动汽车充电站、电焊机、变频调速设备、起重设备、电加热和电解设 备、大型储能电站、大型电梯、变频空调、节能照明、逆变电源、开关试验站等(可选)。

4. 向敏感、重要、高危用户供电的母线及出线: 半导体制造、精密加工,党政机关、医院、交通枢纽、机场、金融、数据中心,危险化学品、易燃易爆品制造等(可选)。 5. 电源接入点: ?10kV及以上风电场、光伏电站等新能源发电专线接 入变电站相关母线及出线(必须), ?其他发电厂(场、站)接入点(可选)。 6. 其他监测点: ?装设FACTS设备(如SVC、STATCOM等)的系统变 电站(换流站)母线及出线(必须)、 ?现场测试中超标较严重或用户投诉较多的变电站母线 及出线等(可选)。

电网谐波及其抑制

电网谐波及其抑制

电网谐波及其抑制 ㈠电网谐波的有关概念 ⒈电网谐波的含义及其计算 谐波(harmonic),是指对周期性非正弦交流量进行傅里叶级数(Fourier series)分析所得到的大于基波频率整数倍的各次分量,通常称为高次谐波。而基波是指其频率与工频(50Hz)相同的分量。 向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备,称为谐波源(harmonic source)。 就电力系统中的三相交流发电机发出的电压来说,可认为其波形基本上是正弦量,即电压波形中基本上无直流和谐波分量。但是由于电力系统中存在着各种各样的“谐波源”,特别是随着大型变流设备和电弧炉等的广泛应用,使得高次谐波的干扰成了当前电力系统中影响电能质量的一大“公害”,亟待采取对策。 按GB/T14549-93《电能质量·公用电网谐波》规定,第h次谐波电压含有率

(HRU h)按下公式计算: HRU h=U h / U1× 100% 式中,U h为第h次谐波电压(方均根值);U1为基波电压(方均根值)。 第h次谐波电流含有率(HRI h)按下式计算: HRI h=I h / I1× 100% 式中,I h为第h次谐波电流(方均根值);I1为基波电流(方均根值)。 谐波电压总含量(U H)按下式计算: 谐波电流总含量(I H)按下式计算: 电压总谐波畸变率(THD u)按下式计算: THD u =U H / U1× 100% 电流总谐波畸变率(THD i)按下式计算:

THD i= I H / I1× 100% ⒉谐波的产生与危害 电网谐波的产生,主要在于电力系统中存在的各种非线性元件。因此,即使电力系统中电源的电压为正弦波,但由于非线性元件的存在,结果在电网中总有谐波电流或电压存在。产生谐波的元件很多。例如荧光灯和高压汞灯等气体放电灯、感应电动机、电焊机、变压器和感应电炉等,都要产生谐波电流或电压。最为严重的是大型的晶闸管变流设备和大型电弧炉,他们产生的谐波电流最为突出,是造成电网谐波的主要因素。 谐波对电气设备的危害很大。谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器出现过热,缩短使用寿命。谐波电流通过交流电动机,不仅会使电动机的铁心损耗明显增加,而且还要使电动机转子发生振动现象,严重影响机械加工的产品质量。谐波对电容器的影响更为突出,谐波电压加在电容器两端时,由于电容器对谐波的阻抗很小,因此电容器很容易发生过负荷甚至造成

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 发布者:admin 发布时间:2006-6-27 15:48:56 来自:互联网浏览统计:20 减小字体增大字体一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。

电力系统谐波检测与分析毕业设计论文

毕业设计(论文)题目:电力系统谐波检测与分析

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

谈IEC 61000系列标准文件对电网谐波国标的指导作用

谈IEC 61000系列标准文件对电网谐波国标的指导作用 作者:佚名文章来源:不详点击数:更新时间:2008-9-24 8:52:52 摘要:国内正在采用IEC 61000系列标准文件,文中针对这套标准文件和电网谐波国标关 系上的一些不同认识和理解,对照EIC 61000-3-6和《电能质量公用电网谐波》(GB/T 14549-1993)进行论述,以期达到提高认识,完善国家标准和正确执行标准的目的。 关键词:电磁兼容谐波国家标准 0概述 从1998年开始,我国发布的电磁兼容(EMC)标准中计有二三十项取自(等同或等效)国 际电工委员会(IEC)近年来颁布的IEC 61000系列标准文件[1]。 众所周知,各种电气设备之间以电磁传导、感应和辐射3种方式彼此关联并相互影响,在一定的条件下会对设备的正常工作和人类造成干扰和危害。20世纪80年代兴起的电磁 兼容学科就是以研究和解决这方面问题为宗旨的。该学科的着眼点是对干扰的产生、传播、接收、抑制机理以及相应的测量、计量技术进行深入的研究,在此基础上,根据经济、技 术最合理的原则,对产生的干扰水平、抗干扰水平,以及抑制措施作出明确的规定,使处 于同一电磁环境的设备都是"兼容"的。也就是说,一个设备(或装置、系统)在其电磁环境 中满意地执行其功能,而又不向该环境中的任何实体引入不能允许的电磁扰动。 EMC的基本任务是协调干扰发射者和承受者之间的关系,使其"兼容"。协调的办法是制定合理且配套的规定值。协调中所涉及的几个参数关系如图1所示。图中横坐标为独立 变量,如频率、电压偏差值、谐波含量、电压波动和闪变值、三相电压不平衡度等。

电力系统谐波及其抑制方法

电力系统谐波及其抑制方法 发表时间:2019-01-09T10:01:01.477Z 来源:《电力设备》2018年第24期作者:潘国英[导读] 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。 (佛山禅城供电局广东佛山 528000) 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。因此,谐波及其抑制技术已成为国内外广泛关注的课题。从对六脉冲整流装置进行了 Matlab仿真,并对某商业企业用电设备谐波及无功进行了现场测试,得出了实际无功损耗和谐波含有量。从而更加清楚的分析了该企业谐波分布及供电系统存在的问题。最后依据测试数据及企业实际情况提出了改造方案,放弃投资较大的有源滤波器,设计使用以无源滤波器为基础的HTEQ系列高速动态消谐无功补偿设备进行无功补偿和谐波消除,通过对方案的可行性验证,验证了该动态补偿装置具有良好的电流跟进性能和补偿性能,在有限的投入下获得最大的效益,很好的解决了企业内谐波及无功的影响。关键词:整流装置;谐波抑制;动态无功补偿;Matlab仿真 一、前言 本文以佛山东方广场翡翠城用户电房谐波产生和处理方案为例,首先简单分析了电力系统无功功率及谐波的产生原因和危害,介绍了当前电力系统谐波抑制的方法,并对各种谐波抑制方法的优点和缺点做了简要的评述。本文采用HTEQ系列高速动态消谐无功补偿设备能够对商业性质用户设备进行高速跟踪无功补偿与谐波抑制,通过对负荷配电系统和运行状况实测结果进行分析计算,确定了无功补偿和谐波治理需求,在此基础上提出了动态消谐无功补偿的技术方案。 二、正文 1、东方广场翡翠城用户电房用电概况。 1.1用电情况简介 根据日常巡视数据得知,翡翠城0.4KV配电房3#变压器,额定容量为1000kV A,主要负载为商业西餐厅用电、广场音响、LED灯等;变压器低压侧配1套低压纯电容无功补偿装置,总安装容量为300kvar,电容器型号为450-30-3,投切器件为接触器,共10条支路;补偿柜投入一路30kvar;整个补偿柜的主刀熔开关为600A。 1.2目前设备概况 存在问题:补偿柜内部器件有导线及元件烧坏而且电容器衰减比较快,无法正常投运。目前,变压器最大负荷电流150A左右,只有一家西餐厅用电较大,偶尔有广场音响及灯;当运行电流为41~125A A时,补偿功率因数为.89~0.94,且补偿柜只投1条支路。 针对导线及元件烧坏及电容器衰减比较快现象进行信息采集,了解低压用配电系统的电能质量情况。 2、测量当前电能质量 1、测试地点:#3变压器低压总开关 2、测试仪器:CA8332电能质量分析仪 3、执行标准: 电能质量公用电网谐波 GB/T 14549 电能质量电压波动和闪变 GB/T 12326 广东鹰视能效科技有限公司 4、变压器总开关出线端电能质量测试数据如下: 变压器总开关测试时其用电情况为:运行电流41~125A,电压395V,视在功率45~58kV A;有功功率56kW;无功功率12kvar;功率因数0.89~0.94;谐波电流畸变率8.6~22.7%,谐波电压畸变率1.2%;主要谐波频谱为3次和5次; 变压器总开关出线端测试数据: 图1:电流值41~125A左右图2:电流谐波总畸变率8.6~22.7% 图3:电压值395V左右图4:电压谐波总畸变率1.2%左右

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

电力谐波的产生原因及其抑制方法

电力谐波的产生原因及其抑制方法 随着工业的快速发展,在电力系统中,非线性负荷大量增加。这样的非线性负荷在电网中产生的干扰越来越严重,也越来越复杂化,使得电网的供电质量越来越差,对同一电网的其他用电设备和小型用户的影响越来越大。在电力系统中,谐波污染与电磁干扰、功率因数降低成为了三大公害。 一、谐波产生的原因 谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。 二、谐波源的种类 在电力系统中产生谐波的主要谐波源有两种。 1.含有半导体等非线性电气元件的用电设备。比如工业中常见的各种整流电气装置、大容量变频器、大型交直流变换装置以及其他的电力、电子装置。 2.含有电弧和铁磁材料等的非线性材料的用电设备,比如电弧炉、变压器、发电机组等电气设备。 三、谐波的危害 1.使供电线路和用电设备的热损耗增加。 (1) 谐波对线路的影响 对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。 而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。 (2) 对电力变压器的影响 谐波电琏的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。 (3)对电力电容器的影响 由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。同时,谐波还可能与电容器一起在电网中形成谐振,并又施加到电网中。 (4)对电机的影响 谐波会使电机的附加损耗增加,也会产生机械震动,产生甚至引起谐波过电压.使得电机绝缘损坏。 2.对继电保护和自动装置的影响 对于电磁式继电器来说,电力谐波常会引起继电保护以及自动装置的误动作或拒动,造成整个保护系统的可靠性降低.容易引起系统故障或使系统故障扩大。 3.对通信线路产生干扰。 在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路

电力系统中谐波分析

电力系统中谐波的分析、检测与抑制方法的研究 - 1 - 第 1 章绪论 1.1 课题研究的背景及意义 电力系统的谐波问题早在 20 世纪 20 、 30 年代就引起了人们的注意, 当时在 德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。 70 年代以来, 由于电子技术的飞速发展, 各种电力电子装置在电力系统、 工业、 交通及家庭中 的应用日益广泛,谐波所造成的危害日益严重。 谐波的研究具有重要意义, 首先是谐波的危害十分严重。 谐波使电能的生产、 传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,导

致电气设备寿命缩短, 甚至发生故障或烧毁。 其次, 谐波研究的意义还可以上升 到治理环境污染、维护绿色环境的角度来认识。对电力系统而言,无谐波是“绿 色”的主要标志之一。在电力电子技术领域,要求实施“绿色电力电子”的呼声 也日益高涨。 目前, 随着全人类环保意识的加强, 对电力系统谐波污染的抑制也 己成为电工科学技术界所必须解决的问题。 最近十几年间, 对电力系统谐波问题的研究, 己经超出了电力系统自身的研 究范围。 同时, 电力系统谐波相关问题己经受到了世界各国经济、 行政管理部门 的重视, 不少国家己先后制定了限制电力系统谐波的标准, 其中也包括一些限制 和管理措施。 尽管近十几年来, 对电力系统谐波问题的研究取得很大进展。 在学 术上还有许多问题需要人们去研究解决、 在解决这些问题的同时, 才真正谈其制 定合适的法规或标准来限制和管理电力系统的谐波,并对其进行有效的制。

1.2 国内外对谐波的分析、检测与抑制方法研究的现状 谐波检测方法是电力谐波分析的关键环节,也是当前各相关文献论述的重 点。谐波检测一般包括三个步骤 : 谐波信号预处理;谐波幅值和相位测量;测量 再处理。其中谐波信号预处理和结果再处理都作为辅助算法,为谐波测量服务, 以优化检测性能,达到对谐波的分析、检测以及抑制高次谐波的目的。 电力系统中谐波的分析、检测与抑制方法的研究 - 2 - 1.2.1 目前国际上对电力谐波的研究现状 国际上对电力谐波问题的研究大约起源于五六十年代, 当时的研究主要是针 对高压直流输电技术中变流器引起的电力系统谐波问题。 近十几年间电力谐波的 研究, 已经越过了电力系统的范畴, 并且形成了自己特有的理论体系、 分析研究 方法、控制与治理技术、监测方法与技术、限制标准与管理制度等。目前,谐波 研究仍是一个非常活跃的领域。 发达国家的经验和预测表明, 随着科学技术的发 展, 非线性负荷用电设备的种类、

电力系统谐波分析

海南大学 课程论文 题目:电力系统谐波分析 学号: B0736039 姓名:陈肖前 年级: 07电气1班 学院:机电与工程学院 系别:电气系 专业:电气工程及其自动化 指导教师:王海英 完成日期: 2010 年 06月 15 日

摘要 谐波对电力系统和用电设备产生了严重的危害及影响,而小波变换为电力系统谐波信号分析提供了有力的分析工具。与Fourier变换相比,小波变换是时间频率的局部化分析,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 本设计探讨了小波变换的基本原理之后,就如何应用小波工具箱对系统的谐波信号进行了分析。主要内容如下: 首先,采用小波变换进行谐波检测的方法进行了系统仿真,通过仿真验证了小波分析具有时域和频域的双重分辨率,能够较好的解决傅立叶分析所不能解决的问题。 其次,在谐波分析中,采用小波分析算法,不仅能正确的得到各次谐波,而且对用傅立叶分析没法解决的有关信号的暂态分量的提取,暂态分量时间的定位,电压、电流波形的间断、突起、凹陷和瞬态分量的检测都具有较好的效果。 最后MATLAB仿真的结果验证了本文的分析方法的正确性和有效性。基本达到了实验目的。 关键词:谐波分析小波理论MATLAB

Abstract Harmonics have a serious danger and affect in the power system and electrical equipment, but wavelet transform can provides a powerful analytical tool for harmonics signal analysis. Compared with the Fourier transform, wavelet transform is the localized analysis of time frequency, which refines the signal multi-scale by scalabling and shifting operation step-by-step. Finally it meets the requirement of high-frequency time and low-frequency frequency subdivided, and of automatically adapting to time-frequency signal analysis. It can focus on arbitrary particulars of signal , solving the difficult problems of the Fourier transform. It is a major breakthrough in science method since the Fourier transform. Someone praised wavelet transform as the “mathematical microscope”. After discussing the basic principles of wavelet transform, this Design discussed how to use the wavelet toolbox to analy the harmonic signals. They are as follows: Firstly, the Harmonic Detection method was simulated by Wavelet Transform, and the simulation shows that the Wavelet Transform has double resolutions in both time and frequency domains, which can solve the problem that the Fourier Transform can't do well. Secondly, we could not only correctly get various orders of harmonics, but also effectively solve how to draw the transient component of the signal ,and how to locate the time of transient component of the signal ,and solve the problem of intermittent and Processes and depression of the voltage and current wave, and solve how to detect transient component,and the Fourie are not available. Finally,MATLAB simulation results verify the correctness and effectiveness of the analytical methods. It achieves the basic purpose of the experiment. Key words: Harmonic measurement Wavelet theory MATLAB

电能质量及谐波标准

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰(2)电能质量——关系到电气设备工作(运行)的供电电压指标。(3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化

b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 ? 随电力工业诞生而存在的一个传统问题; ? 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 ? 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失2.5~3.5亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。(6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) ? 导致用户设备故障或不能正常工作的电压、电流或频率偏差。

电力系统谐波及其抑制技术

电力系统谐波及其抑制技术 [摘要]随着电力市场的广泛开放以及电力系统的不断发展,人们越来越多的关注电能的质量问题。由于非线性荷载在电力系统中的广泛应用,因而所产生的谐波对电网造成越来越多的污染。本文主要分析了一些谐波产生的危害以及抑制谐波的各种措施,并针对目前电力系统治理谐波所存在的问题提出了自己的合理化建议,供大家参考、学习。 【关键词】谐波;谐波抑制;谐波治理 一、谐波产生的原因 电力系统是一个密不可分的整体,我们可以分析电力系统谐波产生的原因主要有: 1、电源本身质量不高而产生谐波:由于发电机三相绕组在制作上很难达到绝缘对称,铁心也很难达到绝对平均抑制,同步发电机所产生的谐波电动势是定子和转子之间的空气隙中的磁场非正弦分布所产生的。在发电机实际的运行中,气隙磁场不是严格的正弦波,只是含有一定的谐波成分。因此,在发电机的输出电压中,其本身就存在一定的谐波,而这其中的频率和谐波电压都是发电机本身的结构和工作状态。 2、输电系统产生的谐波:现在国家电网公司大力推行特高压电网,在特高压电网系统中广泛采用交流-直流-交流输电方式,两个交流系统采用直流系统连接(比如青藏联网工程)。当两个隔离的交流系统标称频率相同(或多或少会有一个频率差),用直流互联,这个很小的频率差在直流电压下被晶闸管投切到另一端变流器所调制,会和基波频率产生频拍,引起闪变电流流通,并可能激发机械谐振。 二、谐波的危害 谐波的存在对电网是一种污染,它使电力设备所处环境变化,也对周围的通信系统和公用电网以外的设备带来损害,其危害主要有: 1、变压器各类损耗增加。谐波会造成变压器的铜耗增大,其中包括对电阻、导体中的涡流、导体外部因漏通而形成的损耗1131。铁耗也随之增加,对于带不对称负载的变压器而言,其负载电流如果含有直流分量,则会引起变压器磁路饱和,因此会使交流励磁电流的谐波分量大大增加。 2、引起换流装置非正常工作。一旦换流装置的容量比例刚刚等于电网容量比例的1/3-1/2或超过的时候,在某些时刻虽然还没达到以上数值但电网参数则会造成较低次谐波次数的谐波谐振,常规控制角在交流电网电压畸变的情况下会形成触发脉冲间隔不等,系统的电压畸变会通过正反馈而被放大,从而影响整流器工作环境的稳定性,逆变器很可能因此发生连续的换相失败最终无法工作。 3、造成通信系统的非正常工作。电力线路上流过的幅值(3、5、7、ll)较大的奇次低频谐波电流通过磁场耦合,与相邻近电力线间的通信线路会产生干扰电压,造成通信系统的非正常工作,对通信线路中通话的清晰度,当处在谐波跟基波的共同影响之下,会触发电话铃声响起,更严重的情况下会损坏通信设备并威胁人员的安全。此外,高压直流换流站换相工程中所产生的电磁噪声会影响电力载波通信正常的工作状况,还会影响到基于载波工作的闭锁和继电保护装置的失效,从而威胁整个电网的安全。

电力系统谐波检测的现状与发展

电力系统谐波检测的现状与发展 李红,杨善水(南京航空航天大学自动化学院江苏南京210016) 摘要:准确、实时地对电力系统谐波进行检测有着重要的意义。本文根据电力系统谐波测量的基本方法,对近年来电力系统谐波检测的新方法进行了分析和评述。最后对电力系统的谐波测量进行了总结并提出了看法。 关键词:谐波测量;傅里叶变换;瞬时无功功率;神经网络;小波分析 1 引言 电力是现代人类社会生产与生活不可缺少的一种主要能源形式。随着电力电子装置的应用日益广泛,电能得到了更加充分的利用。但电力电子装置带来的谐波问题对电力系统安全、稳定、经济运行构成潜在威胁,给周围电气环境带来了极大影响。谐波被认为是电网的一大公害,对电力系统谐波问题的研究已被人们逐渐重视。谐波问题涉及面很广,包括对畸变波形的分析方法、谐波源分析、电网谐波潮流计算、谐波补偿和抑制、谐波限制标准以及谐波测量及在谐波情况下对各种电气量的检测方法等。 谐波检测是谐波问题中的一个重要分支,对抑制谐波有着重要的指导作用,对谐波的分析和测量是电力系统分析和控制中的一项重要工作,是对继电保护、判断故障点和故障类型等工作的重要前提。准确、实时的检测出电网中瞬态变化的畸变电流、电压,是众多国内外学者致力研究的目标。 常规的谐波测量方法主要有:模拟带通或带阻滤波器测量谐波;基于傅里叶变换的谐波测量;基于瞬时无功功率的谐波测量。 但是,各种基本方法在实际运用中均有不同程度局限及缺点。针对这一问题,在以上各种方法基础上的拓展和改进方法应运而生,本文着重介绍近几年来的一些新兴的谐波测量方法。 2 改进的傅里叶变换方法 傅里叶变换是检测谐波的常用方法,用于检测基波和整数次谐波。但是傅里叶变换会产生频谱混叠、频谱泄漏和栅栏效应。怎样减小这些影响是研究的主要任务,通过加适当的窗函数,选择适当的采样频率,或进行插值,尽量将上述影响减到最小。 延长周期法[1]是在补零法的基础上,把在一个采样周期内采到的N个点扩展任何整数倍。他的表达式为:

电网谐波识别与处理

电网谐波识别与处理 发表时间:2018-06-27T10:07:56.607Z 来源:《电力设备》2018年第6期作者:彭灿[导读] 摘要:随着国民经济的快速发展以及电力市场的逐步形成,电能质量问题在许多国家己经引起了电力部门和用户的广泛关注。 (中山市明阳电器有限公司广东省中山市 528437) 摘要:随着国民经济的快速发展以及电力市场的逐步形成,电能质量问题在许多国家己经引起了电力部门和用户的广泛关注。谐波问题是电能质量问题的一个重要方面。一方面,我国电力工业蓬勃发展、电力负荷急剧增长,电力电子器件的广泛应用以及非线性和冲击性负荷的大量接入使得电网被注入大量的谐波分量,导致电网电压及电流波形产生了严重的畸变;另一方面,现代社会快速发展,高度自动 化和智能化的工业用电设备对供电质量的要求也越来越高。 关键词:电网谐波;识别;处理; 谐波还会对电力系统外部周围的电子设备和通信设备产生严重干扰。因此,不管是保证电力设备的安全,还是保证电力系统安全且经济的运行,都迫切需要我们对电力系统中的谐波进行监测,并对其造成的电能质量问题进行分析和治理。 一、电网谐振的识别 1.谐振的形式和特征。(1)基波形式。三相电压的变化情况:一相电压上升并超过线电压,并伴有接地信号出现,其余两相电压降低;一相对地电压降低,其余两相对地电压上升并超过线电压。开口三角电压大于100V。(2)高次谐波形式。三相电压均同时上升,且上升值超过线电压,但通常超出值在3-3. 5倍相电压。开口三角电压大于100V。(3)分频形式。三相电压轮流上升,同一范畴里的电压表指针有低频摆动现象,通常在2倍相电压以内。开口三角电压通常低于85~95V,也有不低于100V的。(4)串联形式。线电压升高,表计摆动。开口三角电压大于100v。 2.电网谐振产生的原因。(1)铁磁谐振(多发生在中性点绝缘的电网)产生原因。①受断路器非同期合闸或线路接地等因素影响造成的系统冲击;②受雷击、开关操作等影响出现系统扰动或切、合空母线导致谐振出现;③系统处于特殊运行状态,各项参数匹配满足谐振条件。(2)串联谐振产生原因。在110KV变电站或220kV变电站空载母线上将带有电磁式电压互感器的空母线切除,或使用带断口的均压电容主(或母联)开关对带电磁式电压互感器的空母线进行充电,操作暂态使得空母线上连接的电磁式电压互感器组的一相、两相或三相激发,进而形成串联谐振。 3.谐振过电压造成的主要影响。(1)中性点不接地系统中,放电将导致电网绝缘相对薄弱的设施击穿,受过电压影响,很容易导致第二点接地出现相间短路,进而损坏设备,造成停电。(2)在发生谐振时,电压互感器高压熔丝熔断或电压互感器烧损。(3)导致容量较小的异步电机出现反转情况。(4)导致虚幻接地及错误接地指示出现。 二、谐波源的产生 对于早期电网中电力传输线路含谐波量较低的情况,基本未考虑谐波的负面影响,但是随着经济的发展,现代电网中谐波的含量已不能忽略不计。电力系统中主要有三个方面产生谐波:一是供电电源产生谐波;二是输配电系统产生谐波;三是用电设备产生的谐波。其中用电设备产生的谐波最多。这些非线性设备使得供电电压为非正弦波,或者即使供电电压为正弦波,这些非线性设备能使电流产生非正弦畸变,进而引起电压的畸变。下面从上述三方面详细分析电网中几种常见的谐波源。电机的电势在理想情况下应该是不含高次谐波的,波形为纯正弦。但在实际电机中,由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致,这就导致磁极、绕组不平衡,使得磁极磁场并未完全按照正弦规律分布。因此感应电势也含有少量的谐波分量,并不完全是理想的正弦波。这种谐波电动势的幅值和频率基本与外接负载无关,而只与发电机自身的结构和工作状况有关,因此可视为谐波电压源。对于输配电系统,电力变压器是产生谐波的主要设备。由于变压器中的激磁支路为非线性,那么对变压器施加的电压越高,铁芯越接近饱和,畸变程度就越高。当变压器轻载运行时,变压器电压升高,铁芯的饱和度加大,出现奇次谐波。奇次谐波含量的高低主要取决于磁路结构以及铁芯饱和度。铁心越饱和,变压器的正常工作点就越远离线性区域,产生的谐波电流就越大,其中3次谐波电流甚至可达到额定电流的1%。此外,变压器在所带负荷发生剧烈波动、合闸投入运行及其他非常态运行时也会产生大量的谐波。用电设备中,则主要是接入电网的各种非线性负荷产生谐波。这些非线性负载主要包括各种以具有强烈非线性特性的电弧为工作介质的设备以及各种非线性整流设备。电弧设备主要包括炼钢电弧炉、交流弧焊机、气体放电灯等。电弧炉工作时,电极反复开路和短路,电弧稳定性差,此时不仅大量的无功被消耗,还会产生大量的谐波。 三、预防措施 1.技术手段方面。(1)加装消谐装置;(2)加装消谐型零序电压互感器;(3)采用抗饱和度高的电压互感器;(4)全面开展谐振理论计算;(5)由于扩建或新建的非线性用电设施和电网相接,将改变或增加电网谐波值和谐波的分布,尤其是电网连接点的谐波电压和电流会上升,因此必须将谐波电流控制在允许范围后才能接进电网运行;(6)强化测量并分析电网谐波,一旦出现电网电压谐波畸变情况异常,就立即查明谐波源,同时与非线性用电设施所属单位配合,采取相应措施控制注入电网里的谐波电流。 2.操作手段方面。(1)空母线送电时,宜先送接地变及消弧线圈;(2)为避免发生虚幻接地,可采取母线带上线路充电。 四、谐振处理 1.谐振处理的一般原则。(1)当发生谐振、谐波放大等现象时,应立即观测故障母线的单相电压变化情况,查看是否出现接地或谐振的情况。如果有谐振情况,那么应立即将某些设施的开关断开或合上,改变系统电容参数或电感,使谐振条件不再满足标准,进而达到消除谐振的目的。(2)在发生谐振时,禁止用刀闸拉开接地支路、站用变压器、电压互感器及避雷器等;只允许遥控开关,不得现场操作,确保人身安全。(3)对于接有小水电的线路,不宜采用短时停电的方法选择接地线路,须由值班调度员通知小水电解列后,方可进行接地选择。(4)对县调属地化管理的10kV及35kV线路,当县调调控人员采用拉路、投切线路仍不能消除谐振时,紧急情况下县调调控人员可根据情况断开地调管辖的母联开关,主变中、低压侧开关(已将主变中低压遥控权限开放县调),但操作后应及时给地调汇报。(5)若谐振是因合上开关造成的,则操作人员应迅速断开开关,不需等待值班调度员的指令;若谐振是因断开开关造成的,则操作人员应及时将情况告知值班调度员,根据值班调度员指令进行处理。(6)谐振发生后,监控人员应加强谐振监视,按相关处理原则开展谐振消除工作;谐振处理结束后,监控人员应采用人工启动PDR的方式保存谐振过程,便于事后分析。(7)各变电站现场运行规程应包括处理谐振的有关内容,一旦出现谐振就应及时按照规定处理。

相关文档
最新文档