雅可比迭代法与矩阵的特征值
雅克比过关法求特征值和特征向量
1.//////////////////////////////////////////////////////////////////////2.// 求实对称矩阵特征值与特征向量的雅可比法3.//4.// 参数:5.// 1. double dblEigenValue[] - 一维数组,长度为矩阵的阶数,返回时存放特征值6.// 2. CMatrix& mtxEigenVector - 返回时存放特征向量矩阵,其中第i列为与7.// 数组dblEigenValue中第j个特征值对应的特征向量8.// 3. int nMaxIt - 迭代次数,默认值为609.// 4. double eps - 计算精度,默认值为0.00000110.//11.// 返回值:BOOL型,求解是否成功12.//////////////////////////////////////////////////////////////////////13.BOOL CMatrix::JacobiEigenv(double dblEigenValue[], CMatrix& mtxEigenVector, int nMaxIt /*= 60*/, double eps /*= 0.000001*/)14.{15.int i,j,p,q,u,w,t,s,l;16.double fm,cn,sn,omega,x,y,d;17.18.if (! mtxEigenVector.Init(m_nNumColumns, m_nNumColumns))19.return FALSE;20.21.l=1;22.for (i=0; i<=m_nNumColumns-1; i++)23.{24.mtxEigenVector.m_pData[i*m_nNumColumns+i]=1.0;25.for (j=0; j<=m_nNumColumns-1; j++)26.if (i!=j)27.mtxEigenVector.m_pData[i*m_nNumColumns+j]=0.0;//单位矩阵28.}29.30.while (TRUE)31.{32.fm=0.0;33.for (i=1; i<=m_nNumColumns-1; i++)34.{35.for (j=0; j<=i-1; j++)36.{37.d=fabs(m_pData[i*m_nNumColumns+j]);38.if ((i!=j)&&(d>fm))39.{40.fm=d;41.p=i;42.q=j;}//取绝对值最大的非对角线元素,并记住位置43.}44.}45.46.if (fm<eps)47.{48.for (i=0; i<m_nNumColumns; ++i)49.dblEigenValue = GetElement(i,i);50.return TRUE;51.}52.53.if (l>nMaxIt)54.return FALSE;55.56.l=l+1;57.u=p*m_nNumColumns+q;58.w=p*m_nNumColumns+p;59.t=q*m_nNumColumns+p;60.s=q*m_nNumColumns+q;61.x=-m_pData;62.y=(m_pData[s]-m_pData[w])/2.0;63.omega=x/sqrt(x*x+y*y);64.65.if (y<0.0)66.omega=-omega;67.68.sn=1.0+sqrt(1.0-omega*omega);69.sn=omega/sqrt(2.0*sn);//sin=sqrt(1.0-sn*sn);//cos71.fm=m_pData[w];72.m_pData[w]=fm*cn*cn+m_pData[s]*sn*sn+m_pData*omega;73.m_pData[s]=fm*sn*sn+m_pData[s]*cn*cn-m_pData*omega;74.m_pData=0.0;75.m_pData[t]=0.0;76.for (j=0; j<=m_nNumColumns-1; j++)77.{78.if ((j!=p)&&(j!=q))79.{80.u=p*m_nNumColumns+j; w=q*m_nNumColumns+j;81.fm=m_pData;82.m_pData=fm*cn+m_pData[w]*sn;83.m_pData[w]=-fm*sn+m_pData[w]*cn;84.}85.}86.for (i=0; i<=m_nNumColumns-1; i++)87.{88.if ((i!=p)&&(i!=q))89.{90.u=i*m_nNumColumns+p;91.w=i*m_nNumColumns+q;92.fm=m_pData;93.m_pData=fm*cn+m_pData[w]*sn;94.m_pData[w]=-fm*sn+m_pData[w]*cn;95.}96.}97.98.for (i=0; i<=m_nNumColumns-1; i++)99.{100.u=i*m_nNumColumns+p;101.w=i*m_nNumColumns+q;102.fm=mtxEigenVector.m_pData;103.mtxEigenVector.m_pData=fm*cn+mtxEigenVector.m_pData[w]*sn; 104.mtxEigenVector.m_pData[w]=-fm*sn+mtxEigenVector.m_pData[w]*cn; 105.}106.107.}108.109.for (i=0; i<m_nNumColumns; ++i)110.dblEigenValue = GetElement(i,i);111.112.return TRUE;113.}。
北航数值分析1_Jacobi法计算矩阵特征值
准备工作➢算法设计矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。
分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者;分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅;分析三:cond(A) 2 = ||A|| * ||A-1|| =|λ|max * |λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。
由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。
所以该题可以用Jacobi法求解。
➢模块设计由➢数据结构设计由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。
但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。
基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。
完整代码如下(编译环境windows10 + visual studio2010):完整代码// math.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"#include<stdio.h>#include<math.h>#include<time.h>#define N 501#define V (N+1)*N/2+1#define e 2.6630353#define a(i) (1.64 - 0.024 * (i)) * sin(0.2 * (i)) - 0.64 * pow(e , 0.1 / (i)) #define b 0.16#define c -0.064#define eps pow((double)10.0,-12)#define PFbits "%10.5f "#define PFrols 5#define PFe %.11e#define FK 39int p;int q;double cosz;double sinz;double MAX;int kk;//#define PTS pts#ifdef PTSvoid PTS(double *m){printf("-----------------------------------------------------------------------\n");printf(" 迭代第%d次\n",kk);for(int i = 1 ; i <= PFrols ; i++){for( int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(int i = 1 ; i <= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(int i = 1 ; i <= PFrols+2 ; i++){printf(" ... ");}putchar(10);}#elsevoid PTS(double *m){}#endifvoid recounti(int i , int *pp, int *qq){for(int j = 0 ; j <= N-1 ; j++){if( (i - (j+1)*j/2) <= j+1){*pp = j+1;*qq = i - (j+1)*j/2;break;}}}void refreshMetrix(double *m){int ipr,ipc,iqr,iqc;m[(p+1)*p/2] = m[(p+1)*p/2] * pow(cosz,2) + m[(q+1)*q/2] * pow(sinz,2) + 2 * m[(p-1)*p/2+q] * cosz * sinz;m[(q+1)*q/2] = m[(p+1)*p/2] * pow(sinz,2) + m[(q+1)*q/2] * pow(cosz,2) - 2 * m[(p-1)*p/2+q] * cosz * sinz;for(int i = 1; i <= N ;i++){if(i != p && i != q){if(i > p){ipr = i;ipc = p;}else{ipr = p;ipc = i;}if(i > q){iqr = i;iqc = q;}else{iqr = q;iqc = i;}m[(ipr-1)*ipr/2+ipc] = m[(ipr-1)*ipr/2+ipc] * cosz + m[(iqr-1)*iqr/2+iqc] * sinz;m[(iqr-1)*iqr/2+iqc] = -m[(ipr-1)*ipr/2+ipc] * sinz + m[(iqr-1)*iqr/2+iqc] * cosz;}}m[(p-1)*p/2+q] = 0;PTS(m);}//void calCosSin(double *m){double app = m[(p+1)*p/2];double aqq = m[(q+1)*q/2];double apq = m[(p-1)*p/2+q];cosz = cos(atan(2 * apq / (app - aqq))/2);sinz = sin(atan(2 * apq / (app - aqq))/2); }//void find_pq(double *m){double max = 0.0;int pp = 0;int qq = 0;for(int i = 1 ; i <= V ; i++){if(fabs(m[i]) > max){recounti(i,&pp,&qq);if(pp != qq){max = fabs(m[i]);p = pp;q = qq;}}}MAX = max;}void init(double *m){for(int i = 1 ; i <= N ;i++)m[(i+1)*i/2] = a(i);for(int i = 2 ; i <= N ; i++)m[(i-1)*i/2+i-1] = b;for(int i = 3 ; i <= N ; i++)m[(i-1)*i/2+i-2] = c;PTS(m);}void calFinal(double *m){printf("---------------------------------------------------------------------------------------------------\n");printf("结果输出:\n\n");double conda;double deta = 1.0;double minlumda = pow((double)10.0,12);double maxlumda = pow((double)10.0,-12);double absminlumda = pow((double)10.0,12);for(int i = 1 ; i <=N ;i++){if(m[(i+1)*i/2] > maxlumda)maxlumda = m[(i+1)*i/2];if(m[(i+1)*i/2] < minlumda)minlumda = m[(i+1)*i/2];if(fabs(m[(i+1)*i/2]) < absminlumda)absminlumda = fabs(m[(i+1)*i/2]);deta *= m[(i+1)*i/2];}if(fabs(minlumda) < fabs(maxlumda))conda = fabs(maxlumda) / absminlumda;elseconda = fabs(minlumda) / absminlumda;printf(" Lumda(1)=%.11e Lumda(%d)=%.11e Lumda(s)=%.11e\n",minlumda,N,maxlumda,absminlumda);printf(" Cond(A)=%.11e\n",conda);printf(" Det(A)=%.11e\n\n",deta);for(int i = 1 ; i <= FK ; i++){double muk = minlumda + i * (maxlumda - minlumda) / 40;double lumdak = 0.0;double tempabsmin = pow((double)10.0,12);for(int j = 1 ; j <= N ;j++){if(fabs(muk - m[(j+1)*j/2]) < tempabsmin){lumdak = m[(j+1)*j/2];tempabsmin = fabs(muk - m[(j+1)*j/2]);}}printf(" Lumda(i%d)=%.11e ",i,lumdak);if(i%3==0)putchar(10);}putchar(10);printf("------------------------------------------------------------------------------------------------------\n");putchar(10);putchar(10);}int _tmain(int argc, _TCHAR* argv[]){double m[(N+1)*N/2+1] = {0.0};kk=0;MAX=1.0;time_t t0,t1;t0 = time( &t0);init(m);#ifndef PTSprintf("正在计算...\n\n");#endifwhile(true){kk++;find_pq(m);if(MAX<eps)break;#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n"); #endifcalCosSin(m);refreshMetrix(m);}#ifdef PTSprintf(" p=%d q=%d |max|=%e\n",p,q,MAX);printf("-----------------------------------------------------------------------\n\n");#endifprintf("矩阵最终形态...\n");for(int i = 1 ; i <= PFrols ; i++){for( int j = (i-1)*i/2+1 ; j <= (i+1)*i/2 ; j++){printf(PFbits,m[j]);}putchar(10);}for(int i = 1 ; i <= PFrols+1 ; i++){printf(" ... ");}putchar(10);printf(" . .\n");printf(" . .\n");printf(" . .\n");for(int i = 1 ; i <= PFrols+2 ; i++){printf(" ... ");}putchar(10);t1 = time(&t1);#ifdef PTSprintf("计算并输出用时%.2f秒\n\n",difftime(t1,t0));#elseprintf("迭代次数%d,计算用时%.2f秒\n\n",kk,difftime(t1,t0)); #endifcalFinal(m);return 0;}运行结果如下:中间运行状态如下:结果分析➢有效性分析1.由输出结果可见矩阵经过21840次迭代后,非对角元全部为零或接近于零;2.代码中有定义预编译宏//#define PTS控制程序运行过程是否输出中间迭代结果,如果输出中间迭代结果,可以发现对角元素在迭代的后期变化非常小,达到收敛的效果;3.算法在多次运行中基本可以在45秒左右完成计算(酷睿i5双核处理器,10G存,64位windows10操作系统)。
雅可比算法求矩阵的特征值和特征向量
雅可⽐算法求矩阵的特征值和特征向量⽬的求⼀个实对称矩阵的所有特征值和特征向量。
前置知识对于⼀个实对称矩阵A ,必存在对⾓阵D 和正交阵U 满⾜D =U T AUD 的对⾓线元素为A 的特征值,U 的列向量为A 的特征向量。
定义n 阶旋转矩阵G (p ,q ,θ)=1⋯0 ⋱ 1 cos θ−sin θ 10 ⋱ 0即在单位矩阵的基础上,修改a pp =a qq =cos θ,a qp =−a pq =sin θ对于n 阶向量α,α⋅G (p ,q ,θ)的⼏何意义是把α在与第p 维坐标轴和第q 维坐标轴平⾏的平⾯内旋转⾓度θ,并且旋转后的模长保持不变。
算法原理⼤概思路使通过旋转变换使⾮对⾓线上的元素不断变⼩,最后得到与原矩阵相似的对⾓矩阵。
每次找到矩阵A 绝对值最⼤的的⾮对⾓线元素,设为a pq ,令U =G (p ,q ,θ),将A 变换为U T AU变换后的值为通过令b p ,q =0解得θ=12arctan 2a pq a qq−a pp 特别地当a qq =a pp 时θ=π4注意到旋转操作并不会改变每个⾏向量或列向量的模长,即矩阵A 的F-范数||A ||F =∑i ∑j a 2ij 是不变的,并且通过计算可以得出$$b_{ip}2+b_{iq}2=a_{ip}2+a_{iq}2$$从⽽可以得知⾮对⾓线元素的平⽅和变⼩,对⾓线上元素的平⽅和增⼤,故⾮主对⾓线上元素的平⽅和收敛。
算法流程(1)令矩阵T =E ,即初始化单位矩阵(2)找到A 中绝对值最⼤的⾮对⾓选元素a pq(3)找到对应的⾓度θ,构造矩阵U =G (p ,q ,θ)(4)令A =U T AU ,T =TU(5)不停地重复(2)到(4),直到a pq <ϵ或迭代次数超过某个限定值,则A 的对⾓线元素近似等于A 的特征值,T 的列向量为A 的特征向量代码#include<bits/stdc++.h>using namespace std;const int N=1005;const double eps=1e-5;const int lim=100;int n,id[N];[√double key[N],mat[N][N],EigVal[N],EigVec[N][N],tmpEigVec[N][N];bool cmpEigVal(int x,int y){return key[x]>key[y];}void Find_Eigen(int n,double (*a)[N],double *EigVal,double (*EigVec)[N]){for (int i=1;i<=n;i++)for (int j=1;j<=n;j++)EigVec[i][j]=0;for (int i=1;i<=n;i++) EigVec[i][i]=1.0;int count=0;while (1){//统计迭代次数count++;//找绝对值最⼤的元素double mx_val=0;int row_id,col_id;for (int i=1;i<n;i++)for (int j=i+1;j<=n;j++)if (fabs(a[i][j])>mx_val) mx_val=fabs(a[i][j]),row_id=i,col_id=j;if (mx_val<eps||count>lim) break;//进⾏旋转变换int p=row_id,q=col_id;double Apq=a[p][q],App=a[p][p],Aqq=a[q][q];double theta=0.5*atan2(-2.0*Apq,Aqq-App);double sint=sin(theta),cost=cos(theta);double sin2t=sin(2.0*theta),cos2t=cos(2.0*theta);a[p][p]=App*cost*cost+Aqq*sint*sint+2.0*Apq*cost*sint;a[q][q]=App*sint*sint+Aqq*cost*cost-2.0*Apq*cost*sint;a[p][q]=a[q][p]=0.5*(Aqq-App)*sin2t+Apq*cos2t;for (int i=1;i<=n;i++)if (i!=p&&i!=q){double u=a[p][i],v=a[q][i];a[p][i]=u*cost+v*sint;a[q][i]=v*cost-u*sint;u=a[i][p],v=a[i][q];a[i][p]=u*cost+v*sint;a[i][q]=v*cost-u*sint;}//计算特征向量for (int i=1;i<=n;i++){double u=EigVec[i][p],v=EigVec[i][q];EigVec[i][p]=u*cost+v*sint;EigVec[i][q]=v*cost-u*sint;}}//对特征值排序for (int i=1;i<=n;i++) id[i]=i,key[i]=a[i][i];std::sort(id+1,id+n+1,cmpEigVal);for (int i=1;i<=n;i++){EigVal[i]=a[id[i]][id[i]];for (int j=1;j<=n;j++)tmpEigVec[j][i]=EigVec[j][id[i]];}for (int i=1;i<=n;i++)for (int j=1;j<=n;j++)EigVec[i][j]=tmpEigVec[i][j];//特征向量为列向量}int main(){scanf("%d",&n);for (int i=1;i<=n;i++)for (int j=1;j<=n;j++)scanf("%lf",&mat[i][j]);Find_Eigen(n,mat,EigVal,EigVec);printf("EigenValues = ");for (int i=1;i<=n;i++) printf("%lf ",EigVal[i]);printf("\nEigenVector =\n");for (int i=1;i<=n;i++)for (int j=1;j<=n;j++)printf("%lf%c",EigVec[i][j],j==n?'\n':' ');return 0;}Processing math: 100%。
类矩阵两种迭代法的收敛性比较
类矩阵两种迭代法的收敛性比较引言:在科学计算中,线性方程组的求解是很普遍的问题。
尤其是在大型科学计算中,线性方程组的求解是最重要的任务之一。
线性方程组的求解有很多种方法,例如高斯消元法、LU分解法、迭代法等等,其中迭代法是一种高效的方法。
迭代法的思想是从一个初值解开始,逐步改进解的准确度,直到满足误差要求。
在本文中,我们将讨论两种类矩阵迭代法的收敛性比较,即雅可比迭代法和高斯-赛德尔迭代法。
1.雅可比迭代法(Jacobi Iterative Method):雅可比迭代法是最简单的迭代法之一。
它是基于线性方程组的矩阵形式 Ax=b,将 A 分解成 A=D-L-U(D为A的对角线元素,L为A的下三角矩阵,U为A的上三角矩阵),其中 D 为对角线元素,L为严格下三角矩阵,U 为严格上三角矩阵。
则有如下迭代关系式: x^{(k+1)}=D^{-1}(L+U)x^{(k)}+D^{-1}b (1)其中,x^{(k)} 为 k 次迭代后的解,x^{(0)} 为初始解。
雅可比迭代法的迭代矩阵为M = D^{-1}(L+U)。
以下是雅可比迭代法的收敛性分析:定理1:若矩阵 A 为对称正定矩阵,则雅可比迭代法收敛。
证明:由于 A 为对称正定矩阵,所以存在唯一的解。
假设迭代后得到的解为 x^{(k)},则我们可以用误差向量 e^{(k)} = x-x^{(k)} 表示剩余项,则有 Ax^{(k)}-b = e^{(k)}。
对 (1) 式两边同时乘以 A^-1,得:x^{(k+1)}=x^{(k)}-A^{-1}e^{(k)}。
(2)将 (2) 式代入 Ax^{(k)}-b = e^{(k)} 中,得:Ax^{(k+1)}-b = Ae^{(k)}.(3)由于 A 为对称正定矩阵,则存在 A=Q\\Lambda Q^{-1},其中Q 为正交矩阵,\\Lambda 为对角矩阵。
因此,我们可以将 (3) 式转化为:\\| x^{(k+1)}-x \\|_{A} =\\| Q^{-1}A^{-1}Qe^{(k)}\\|_{\\Lambda} \\leq \\rho (Q^{-1}A^{-1}Q)\\|e^{(k)}\\|_{A}。
雅克比法解特征值
A1 仍然是实对称阵,且 A1与 A 的特征值相同。
把式(3.12)的右端乘开,并与左端比较,得到A1 的元素计算公式:
A
(1)
a a (p11) a (1) q1 a (1) n1
(1) 11
a a a a
(1) 1p
4
sgn(a pq ).
2 tan 1 2 1 tan c
4
, 故 tan 1,
故可取 tan
sgn(c ) c c2 1
t
t sin t cos 1 t 2 则 1 1 cos 1 tan 2 1 t 2
i2 ( B) B .
2 i 1
F
n
对于 n 维列向量 x, Upq x 相当于把坐标轴Oxp和 Oxq于所在平面内旋转角度 。 记矩阵 A = [aij]n×n ,对A作一次正交相似变换, 得到矩阵A1。
记
A1= UpqT A Upq = [aij(1)]n×n
(3.12)
故可选择角θ,使
c12 c21 (a22 a11 ) sin cos a12 (cos sin ) 0
2 2
c12 c21 (a22 a11 ) sin cos a12 (cos2 sin 2 ) 0
即 tan 2 2a12 , a11 a22
1 2 a aij n(n 1) i j
2 pq
从而
a
i j
(1) 2 ij
2 2 1 aij n(n 1) i j
矩阵特征值问题的数值计算
矩阵特征值问题的计算方法特征值问题:A V=λV¾直接计算:A的阶数较小,且特征值分离得较好 特征值:det(λI-A)=0,特征向量:(λI-A)V=0¾迭代法:幂法与反幂法¾变换法:雅可比方法与QR方法内容:一、 特征值的估计及其误差问题二、 幂法与反幂法三、 雅可比方法四、 QR方法一、 特征值的估计及其误差问题 (一)特征值的估计结论 1.1:n 阶矩阵()ij n n A a ×=的任何一个特征值必属于复平面上的n 个圆盘:1,||||,1,2,ni ii ij j j i D z z a a i n =≠⎧⎫⎪⎪=−≤=⎨⎬⎪⎪⎩⎭∑"(10.1) 的并集。
结论1.2:若(10.1)中的m个圆盘形成一个连通区域D,且D与其余的n-m个圆盘不相连,则D中恰有A的m个特征值。
(二)特征值的误差问题结论1.3:对于n 阶矩阵()ij n n A a ×=,若存在n 阶非奇异矩阵H ,使得11(,,)n H AH diag λλ−=Λ=", (10.2)则11min ||||||||||||||i p p p i nH H A λλ−≤≤−≤∆ (10.3)其中λ是A A +∆的一个特征值,而(1,,)i i n λ="是A 的特征值,1,2,p =∞。
结论1.4:若n 阶矩阵A 是实对称的,则1min ||||||i p i nA λλ≤≤−≤∆。
(10.4)注:(10.4)表明,当A 是实对称时,由矩阵的微小误差所引起的特征值摄动也是微小的。
但是对于非对称矩阵而言,特别是对条件数很大的矩阵,情况未必如此。
二、 幂法与反幂法(一) 幂法:求实矩阵按模最大的特征值与特征向量假设n 阶实矩阵A 具有n 个线性无关的特征向量,1,iV i n =",则对于任意的0nX R ∈,有 01ni ii X a V ==∑,从而有01111112((/))n nk k k i i i i ii i nk k i i i i A X a A V a V a V a V λλλλ======+∑∑∑.若A 的特征值分布如下:123||||||||n λλλλ>≥≥≥",则有01111()k kk A X a V λλ→∞⎯⎯⎯→为对应的特征向量须注意的是,若1||1λ<,则10kλ→,出现“下溢”,若1||1λ>,则1kλ→∞,出现“上溢”,为避免这些现象的发生,须对0kA X 进行规范化。
八、矩阵特征值的jacobi方法
1、用jacobi方法计算对称矩阵A的特征值和对应的特征向量。
function [k,Bk,V,D,Wc]=jacobite(A,jd,max1[n,n]=size(A;P0=eye(n;Vk=eye(n;Bk=A;k=1;state=1;while ((k<=max1&(state==1aij=abs(Bk-diag(diag(Bk;[m1 i]=max(abs(aij;[m2 j]=max(m1;i=i(j;Aij=(Bk-diag(diag(Bk;mk=m2*sign(Aij(i,j;Wc=m2;Dk=diag(diag(Bk;Pk=P0;c=(Bk(j,j-Bk(i,i/(2*Bk(i,j;t=sign(c/(abs(c+sqrt(1+c^2;pii=1/(sqrt(1+t^2;pij=t/(sqrt(1+t^2;Pk(i,i=pii;Pk(i,j=pij;Pk(j,j=pii;Pk(j,i=-pij;B1=Pk'*Bk;B2=B1*Pk;Vk=Vk*Pk;Bk=B2;state=0;if (Wc>jdstate=1;endk,k=k+1;Pk,Vk,Bk=B2,Wc,endif (k>max1disp('迭代次数k已经达到最大迭代次数ma1,迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D如下:'elsedisp('迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D如下:'endk=k-1;Bk=B2;V=Vk;D=diag(diag(Bk;Wc;[V1,D1]=eig(A,'nobalance'>> A=[12 -56 3 -1;-56 7 2 0;3 2 5 1;-1 0 1 12];>> [k,Bk,V,D,Wc]=jacobite(A,0.0001,100k =1Pk =0.7227 0.6912 0 0-0.6912 0.7227 0 00 0 1.0000 00 0 0 1.0000 Vk =0.7227 0.6912 0 0-0.6912 0.7227 0 00 0 1.0000 00 0 0 1.0000 Bk =65.5558 0 0.7858 -0.7227-0.0000 -46.5558 3.5189 -0.69120.7858 3.5189 5.0000 1.0000-0.7227 -0.6912 1.0000 12.0000 Wc = 56k =2Pk =1.0000 0 0 00 0.9977 0.0678 00 -0.0678 0.9977 00 0 0 1.0000 Vk =0.7227 0.6896 0.0468 0-0.6912 0.7210 0.0490 00 -0.0678 0.9977 00 0 0 1.0000 Bk =65.5558 -0.0533 0.7840 -0.7227-0.0533 -46.7948 0 -0.75740.7840 0.0000 5.2391 0.9509-0.7227 -0.7574 0.9509 12.0000 Wc = 3.5189k =3Pk =1.0000 0 0 00 1.0000 0 00 0 0.9906 0.13670 0 -0.1367 0.9906 Vk =0.7227 0.6896 0.0464 0.0064-0.6912 0.7210 0.0485 0.00670 -0.0678 0.9883 0.13640 0 -0.1367 0.9906Bk =65.5558 -0.0533 0.8754 -0.6088-0.0533 -46.7948 0.1035 -0.75020.8754 0.1035 5.1079 -0.0000-0.6088 -0.7502 -0.0000 12.1312 Wc = 0.9509k =4Pk =0.9999 0 -0.0145 00 1.0000 0 00.0145 0 0.9999 00 0 0 1.0000 Vk =0.7233 0.6896 0.0359 0.0064-0.6904 0.7210 0.0585 0.00670.0143 -0.0678 0.9882 0.1364-0.0020 0 -0.1367 0.9906 Bk =65.5685 -0.0518 -0.0000 -0.6087-0.0518 -46.7948 0.1043 -0.7502-0.0000 0.1043 5.0952 0.0088-0.6087 -0.7502 0.0088 12.1312 Wc = 0.8754k =5Pk =1.0000 0 0 00 0.9999 0 -0.01270 0 1.0000 00 0.0127 0 0.9999 Vk =0.7233 0.6896 0.0359 -0.0024-0.6904 0.7211 0.0585 -0.00250.0143 -0.0660 0.9882 0.1372-0.0020 0.0126 -0.1367 0.9905 Bk = 65.5685 -0.0595 -0.0000 -0.6080-0.0595 -46.8044 0.1044 0.0000-0.0000 0.1044 5.0952 0.0075-0.6080 0.0000 0.0075 12.1407 Wc = 0.7502k =6Pk =0.9999 0 0 0.01140 1.0000 0 00 0 1.0000 0-0.0114 0 0 0.9999 Vk =0.7233 0.6896 0.0359 0.0059-0.6903 0.7211 0.0585 -0.01030.0127 -0.0660 0.9882 0.1374-0.0132 0.0126 -0.1367 0.9905 Bk = 65.5754 -0.0595 -0.0001 -0.0000-0.0595 -46.8044 0.1044 -0.0007-0.0001 0.1044 5.0952 0.0075-0.0000 -0.0007 0.0075 12.1338 Wc =0.6080k =7Pk =1.0000 0 0 00 1.0000 0.0020 00 -0.0020 1.0000 00 0 0 1.0000 Vk =0.7233 0.6895 0.0373 0.0059-0.6903 0.7209 0.0600 -0.01030.0127 -0.0680 0.9881 0.1374-0.0132 0.0129 -0.1366 0.9905 Bk = 65.5754 -0.0595 -0.0002 -0.0000-0.0595 -46.8046 -0.0000 -0.0007-0.0002 -0.0000 5.0954 0.0075-0.0000 -0.0007 0.0075 12.1338 Wc = 0.1044k =8Pk =1.0000 0.0005 0 0-0.0005 1.0000 0 00 0 1.0000 00 0 0 1.0000 Vk =0.7229 0.6899 0.0373 0.0059-0.6907 0.7206 0.0600 -0.01030.0128 -0.0680 0.9881 0.1374-0.0133 0.0129 -0.1366 0.9905 Bk = 65.5754 0.0000 -0.0002 0.0000-0.0000 -46.8046 -0.0000 -0.0007-0.0002 -0.0000 5.0954 0.00750.0000 -0.0007 0.0075 12.1338 Wc = 0.0595k =9Pk =1.0000 0 0 00 1.0000 0 00 0 1.0000 0.00110 0 -0.0011 1.0000 Vk =0.7229 0.6899 0.0373 0.0059-0.6907 0.7206 0.0600 -0.01030.0128 -0.0680 0.9880 0.1384-0.0133 0.0129 -0.1377 0.9903 Bk = 65.5754 0.0000 -0.0002 0.0000-0.0000 -46.8046 0.0000 -0.0007-0.0002 0.0000 5.0954 0.00000.0000 -0.0007 -0.0000 12.1338 Wc = 0.0075k =10Pk =1.0000 0 0 00 1.0000 0 -0.00000 0 1.0000 00 0.0000 0 1.0000 Vk =0.7229 0.6899 0.0373 0.0059-0.6907 0.7206 0.0600 -0.01030.0128 -0.0680 0.9880 0.1384-0.0133 0.0129 Bk = 65.5754 0.0000 0.0000 -46.8046 -0.0002 0.0000 0.0000 -0.0000 Wc = 6.9206e-004 k= 11 Pk = 1.0000 0 0 1.0000 -0.0000 0 0 0 Vk = 0.72290.6899 -0.6907 0.7206 0.0128 -0.0680 -0.0133 0.0129 Bk = 65.5754 -0.0000 -0.0000 -46.8046 -0.0000 0.0000 0.0000 -0.0000 Wc = 2.0482e-004 k= 12 Pk = 1.0000 0 0 1.0000 0 -0.0000 0 0 Vk = 0.7229 0.6899 -0.6907 0.7206 0.0128 -0.0680 -0.0133 0.0129 Bk = 65.5754 -0.0000 -0.0000 -46.8046 -0.0000 0.0000 0.0000 -0.0000 -0.1377 -0.00020.0000 5.0954 -0.0000 0.9903 0.0000 0.0000 -0.0000 12.1338 0.0000 0 1.0000 0 0.0373 0.0600 0.9880 -0.1377 0.0000 0.0000 5.0954 -0.0000 0 0 0 1.0000 0.0059 -0.0103 0.1384 0.9903 0.0000 0.0000 -0.0000 12.1338 0 0.0000 1.0000 0 0.0373 0.0600 0.9880 -0.1377 0.0000 -0.0000 5.0954 -0.0000 0 0 0 1.0000 0.0059 -0.0103 0.1384 0.9903 0.0000 0.0000 -0.0000 12.1338Wc = 6.2740e-007 迭代次数 k,对称矩阵 Bk,以特征向量为列向量的矩阵 V,特征值为对角元的对角矩阵 D 如下: V1 = 0.6899 -0.0373 0.0059 -0.7229 0.7206 -0.0600 -0.0103 0.6907 -0.0680 -0.9880 0.1384 -0.0128 0.0129 0.1377 0.9903 0.0133 D1 = -46.8046 0 0 0 0 5.0954 0 0 0 0 12.1338 0 0 0 0 65.5754 k= 12 Bk = 65.5754 -0.0000 0.0000 0.0000 -0.0000 -46.8046 -0.0000 0.0000 -0.0000 0.0000 5.0954 -0.0000 0.0000 -0.0000 -0.0000 12.1338 V= 0.7229 0.6899 0.0373 0.0059 -0.6907 0.7206 0.0600 -0.0103 0.0128 -0.0680 0.9880 0.1384 -0.0133 0.0129 -0.1377 0.9903 D= 65.5754 0 0 0 0 -46.8046 0 0 0 0 5.0954 0 0 0 0 12.1338 Wc = 6.2740e-007。
雅克比(Jacobi)方法
雅克⽐(Jacobi)⽅法可以⽤来求解协⽅差矩阵的特征值和特征向量。
雅可⽐⽅法(Jacobian method)求全积分的⼀种⽅法,把拉格朗阶查⽪特⽅法推⼴到求n个⾃变量⼀阶⾮线性⽅程的全积分的⽅法称为雅可⽐⽅法。
雅克⽐迭代法的计算公式简单,每迭代⼀次只需计算⼀次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,⽐较容易并⾏计算。
考虑线性⽅程组Ax=b时,⼀般当A为低阶稠密矩阵时,⽤主元消去法解此⽅程组是有效⽅法。
但是,对于由⼯程技术中产⽣的⼤型稀疏矩阵⽅程组(A的阶数很⾼,但零元素较多,例如求某些偏微分⽅程数值解所产⽣的线性⽅程组),利⽤迭代法求解此⽅程组就是合适的,在计算机内存和运算两⽅⾯,迭代法通常都可利⽤A中有⼤量零元素的特点。
雅克⽐迭代法就是众多迭代法中⽐较早且较简单的⼀种,其命名也是为纪念普鲁⼠著名数学家雅可⽐。
原理【收敛性】设Ax=b,其中A=D+L+U为⾮奇异矩阵,且对⾓阵D也⾮奇异,则当迭代矩阵J的谱半径ρ(J)<1时,雅克⽐迭代法收敛。
⾸先将⽅程组中的系数矩阵A分解成三部分,即:A = L+D+U,其中D为对⾓阵,L为下三⾓矩阵,U为上三⾓矩阵。
之后确定迭代格式,X^(k+1) = B*X^(k) +f ,(这⾥^表⽰的是上标,括号内数字即迭代次数),其中B称为迭代矩阵,雅克⽐迭代法中⼀般记为J。
(k = 0,1,......)再选取初始迭代向量X^(0),开始逐次迭代。
【优缺点】雅克⽐迭代法的优点明显,计算公式简单,每迭代⼀次只需计算⼀次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,⽐较容易并⾏计算。
然⽽这种迭代⽅式收敛速度较慢,⽽且占据的存储空间较⼤,所以⼯程中⼀般不直接⽤雅克⽐迭代法,⽽⽤其改进⽅法。
实现通过雅克⽐(Jacobi)⽅法求实对称矩阵的特征值和特征向量操作步骤:S′=G T SG,其中G是旋转矩阵,S′和S均为实对称矩阵,S′和S有相同的Frobenius norm,可以⽤⼀个最简单的3维实对称矩阵为例,根据公式进⾏详细推导(参考 ):通过旋转矩阵将对称矩阵转换为近似对⾓矩阵,进⽽求出特征值和特征向量,对⾓矩阵中主对⾓元素即为S近似的实特征值。
jacobi方法求特征值和特征向量 例题
一、引言Jacobi方法是一种用于计算矩阵特征值和特征向量的迭代数值方法。
它是数值线性代数中的重要算法之一,广泛应用于科学计算、工程技术和金融领域。
本文将通过一个例题来介绍Jacobi方法的原理和求解过程,并分析其在实际问题中的应用。
二、Jacobi方法的原理Jacobi方法是一种通过迭代对矩阵进行相似变换,使得原矩阵逐步转化为对角矩阵的方法。
通过数值迭代,可以逐步逼近矩阵的特征值和对应的特征向量。
其基本原理如下:1. 对称矩阵特征值问题:对于对称矩阵A,存在一个正交矩阵P,使得P^T * A * P = D,其中D为对角矩阵,其对角线上的元素为A的特征值。
所以我们可以通过迭代找到P,使得P逼近正交矩阵,从而逼近A的特征值和特征向量。
2. Jacobi迭代:Jacobi方法的基本思想是通过正交相似变换,逐步将矩阵对角化。
具体来说,对于矩阵A,找到一个旋转矩阵G,使得A' = G^T * A * G为对角矩阵,然后递归地对A'进行相似变换,直到达到精度要求。
三、Jacobi方法求解特征值和特征向量的例题考虑以下矩阵A:A = [[4, -2, 2],[-2, 5, -1],[2, -1, 3]]我们将通过Jacobi方法来计算矩阵A的特征值和特征向量。
1. 对称化矩阵我们需要对矩阵A进行对称化处理。
对称化的思路是找到正交矩阵P,使得P^T * A * P = D,其中D为对角矩阵。
我们可以通过迭代找到逼近P的矩阵序列,直到达到一定的精度。
2. Jacobi迭代在Jacobi迭代的过程中,我们需要找到一个旋转矩阵G,使得A' =G^T * A * G为对角矩阵。
具体的迭代过程是:找到矩阵A中绝对值最大的非对角元素a[i][j],然后构造一个旋转矩阵G,将a[i][j]置零。
通过迭代地对A'进行相似变换,最终使得A'的非对角元素逼近零,即达到对角化的目的。
3. 计算特征值和特征向量经过一定次数的Jacobi迭代后,得到了对称矩阵A的对角化矩阵D和正交矩阵P。
第4章 线性方程组和矩阵特征值的迭代解法
第4章 线性方程组和矩阵特征值的迭代解法线性代数计算方法中的迭代解法(即迭代法)是一类重要方法。
其基本思想是构造适当的矩阵序列或向量序列,使其逐步逼近所求问题的精确解,故又称矩阵迭代方法。
在求解阶数较高且零系数较多的大型稀疏线性代数方程组时,迭代法是很有效的。
矩阵特征值问题的求解通常也要用迭代法。
本章着重介绍求解线性代数方程组常用的简单迭代法及其收敛条件,并对计算矩阵特征值问题的雅可比方法和QR 方法作一些介绍。
4.1 线性代数方程组的迭代解法线性方程组(3.1)的迭代解法其基本思想与一元非线性方程的迭代解法类似,即构造适当的迭代公式,任选一个初始向量)0(x 进行迭代计算,使生成的向量序列,,)1()0(x x …,)(k x ,…收敛于方程组的精确解。
4.1.1 简单迭代法的一般形式设方程组(3.1)的系数矩阵非奇异,把它化为等价的方程组g Mx x += (4.1)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n nn n n n n x x x g g g m m m m m m m m m M M ΛΛΛΛ2121212222111211,,x g M按(4.1)构造迭代公式Λ,2,1,0,)()1(=+=+k k k g x M x (4.2)其中),1,0(],,,[T)()(2)(1)(ΛΛ==k x x x k n k k k x 。
任取初始向量)0(x ,用(4.2)逐次计算近似解向量,,x ,,x ,x ΛΛ)()2()1(k 这种方法称为简单迭代法,称(4.2)为简单迭代公式,M 为迭代矩阵。
公式的分量形式是⎪⎪⎩⎪⎪⎨⎧++++=++++=++++=+++nk n nn k n k n k nk n n k k k k n n k k k g x m x m x m x g x m x m x m x g x m x m x m x )()(22)(11)1(2)(2)(222)(121)1(21)(1)(212)(111)1(1ΛΛΛΛΛΛΛ即 ),2,1,0(,,,2,1,1)()1(ΛΛ==+=∑=+k n i g x m x i nj k j ij k i (4.3)如果)(k x的各分量存在极限n i x x i k i k ,,2,1,lim )(Λ==*∞→ (4.4)则称向量序列}{)(k x 收敛于向量T 21][****=n x x x ,,,x Λ,并记为 *∞→=x x )(lim k k (4.5)这时,称简单迭代法(4.2)是收敛的,否则就是发散的。
雅可比迭代法与矩阵的特征值
雅可⽐迭代法与矩阵的特征值实验五矩阵的lu分解法,雅可⽐迭代法班级:学号::实验五矩阵的LU分解法,雅可⽐迭代⼀、⽬的与要求:熟悉求解线性⽅程组的有关理论和⽅法;会编制列主元消去法、LU 分解法、雅可⽐及⾼斯—塞德尔迭代法德程序;通过实际计算,进⼀步了解各种⽅法的优缺点,选择合适的数值⽅法。
⼆、实验容:会编制列主元消去法、LU 分解法、雅可⽐及⾼斯—塞德尔迭代法德程序,进⼀步了解各种⽅法的优缺点。
三、程序与实例列主元⾼斯消去法算法:将⽅程⽤增⼴矩阵[A ∣b ]=(ij a )1n (n )+?表⽰ 1) 消元过程对k=1,2,…,n-1①选主元,找{}n ,,1k ,k i k +∈使得k ,i k a =ik a ni k max≤≤②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执⾏③。
③如果k i k ≠,则交换第k ⾏与第k i ⾏对应元素位置,j i k j k a a ? j=k,┅,n+1④消元,对i=k+1, ┅,n 计算kk ik ik a a l /=对j=l+1, ┅,n+1计算kj ik ij ij a l a a -=2) 回代过程①若0=nn a ,则矩阵A 奇异,程序结束;否则执⾏②。
②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算ii ni j j ij n i i a x a a x /11,-程序设计如下:#include#includeusing namespace std;void disp(double** p,int row,int col){for(int i=0;ifor(int j=0;jcout<cout<}}void disp(double* q,int n){cout<<"====================================="<for(int i=0;icout<<"X["<cout<<"====================================="<void input(double** p,int row,int col){for(int i=0;icout<<"输⼊第"<for(int j=0;jcin>>p[i][j];}}int findMax(double** p,int start,int end){int max=start;for(int i=start;iif(abs(p[i][start])>abs(p[max][start]))max=i;}return max;}void swapRow(double** p,int one,int other,int col){ double temp=0; for(int i=0;itemp=p[one][i];p[other][i]=temp;}}bool dispel(double** p,int row,int col){for(int i=0;iint flag=findMax(p,i,row); //找列主元⾏号if(p[flag][i]==0) return false;swapRow(p,i,flag,col); //交换⾏for(int j=i+1;jdouble elem=p[j][i]/p[i][i]; //消元因⼦p[j][i]=0;for(int k=i+1;kp[j][k]-=(elem*p[i][k]);}}}return true;}double sumRow(double** p,double* q,int row,int col){ double sum=0; for(int i=0;iif(i==row)continue;sum+=(q[i]*p[row][i]);}return sum;}void back(double** p,int row,int col,double* q){ for(int i=row-1;i>=0;i--){ q[i]=(p[i][col-1]-sumRow(p,q,i,col))/p[i][i];}}int main(){cout<<"Input n:";int n; //⽅阵的⼤⼩double **p=new double* [n];for(int i=0;ip[i]=new double [n+1];}input(p,n,n+1);if(!dispel(p,n,n+1)){ cout<<"奇异"<}double* q=new double[n]; for(int i=0;iback(p,n,n+1,q);disp(q,n); delete[] q;for(int i=0;i1. ⽤列主元消去法解⽅程=++-=++-=++035.3643x .5072x .1835x .2137.2623x .43712x 347x .1 1.1833.555x 2.304x 0.101x 321321321例2 解⽅程组=++++=++++=++++=++++=++++-12.041.0F 1.02E 3.47D 1.04C 3.54B -6.301.0F2.01E 2.51D 4.04C 5.05B -8.531.0F 1.21E 2.92D 1.46C3.53B -20.071.0F 1.10E 4.48D 1.21C 4.93B -32.041.0F 1.55E 5.66D 2.40C 8.77B 计算结果如下B=-1.461954 C= 1.458125D=-6.004824 E=-2.209018 F= 14.719421矩阵直接三⾓分解法算法:将⽅程组A x=b 中的A 分解为A =LU ,其中L 为单位下三⾓矩阵,U 为上三⾓矩阵,则⽅程组A x=b 化为解2个⽅程组Ly =b ,Ux =y ,具体算法如下:①对j=1,2,3,…,n 计算j j a u 11=对i=2,3,…,n 计算1111/a a l i i =1k q qj kq kj kj u l a ub. 对i=k+1,k+2,…,n 计算kk k q qk iq ik ik u u l a l /)(11∑-=-=③11b y =,对k=2,3,…,n 计算∑-=-=11k q q kq k k y l b y④nn n n u y x /=,对k=n-1,n-2,…,2,1计算kk nk q q kqk k u x uy x /)(1∑+=-=注:由于计算u 的公式于计算y 的公式形式上⼀样,故可直接对增⼴矩阵[A ∣b ]=?+++1,211,2222211,111211n n nn n n n nn n a a a a a a a a a a a a施⾏算法②,③,此时U 的第n+1列元素即为y 。
雅可比方法求特征值matlab
雅可比方法求特征值matlab雅可比方法是一种用于求解矩阵的特征值和特征向量的有效算法。
在这个方法中,我们首先将矩阵表示为一个对称矩阵,并通过迭代的方式逐步逼近特征值和特征向量的精确解。
我们需要将矩阵进行对称化处理。
这可以通过将矩阵与其转置相乘来实现。
得到的对称矩阵将具有相同的特征值和特征向量。
接下来,我们需要选择一个初始的特征向量估计值。
这个初始估计可以是任意的非零向量。
然后,我们通过将矩阵与初始估计向量相乘,得到一个新的向量。
这个新向量将与初始估计向量正交,并且具有相同的特征值。
然后,我们需要对新向量进行归一化处理,以确保它具有单位长度。
这可以通过将新向量除以其范数来实现。
接下来,我们需要计算新向量与矩阵的乘积。
这将得到一个新的特征向量估计值。
然后,我们需要对新的特征向量进行归一化处理,并计算其与前一次迭代的特征向量之间的夹角。
如果夹角的差异小于某个预定的阈值,我们就可以认为特征向量已经收敛,并得到了矩阵的特征值和特征向量。
我们可以通过对特征值进行排序,以及相应地对特征向量进行排列,来得到特征值的精确解。
雅可比方法是一种非常强大的求解特征值和特征向量的方法。
它在各种领域中都有广泛的应用,包括物理学、工程学和计算机科学等。
在MATLAB中,我们可以使用eig函数来实现雅可比方法,并得到矩阵的特征值和特征向量。
雅可比方法是一种求解特征值和特征向量的有效算法。
它通过迭代的方式逐步逼近精确解,并在MATLAB中有着广泛的应用。
无论是在学术研究还是实际应用中,雅可比方法都是一个非常有用的工具。
jacobi davidson迭代方法
Jacobi-Davidson迭代方法是一种用于求解对称或非对称特征值问题的迭代方法。
它结合了Jacobi方法和Davidson方法的优点,能够在较短的时间内快速收敛到特征值和特征向量。
本文将从原理、算法流程、收敛性等几个方面介绍Jacobi-Davidson迭代方法的相关内容。
1. 原理Jacobi-Davidson迭代方法的原理基于对称或非对称特征值问题的特征值分解。
在实际问题中,许多矩阵是大规模的、稀疏的,因此直接对其进行特征值分解是非常困难的。
Jacobi-Davidson迭代方法通过迭代的方式,逐步逼近矩阵的特征值和特征向量。
2. 算法流程Jacobi-Davidson迭代方法的算法流程如下:(1) 初始化:选择合适的初始特征向量和雅可比矩阵;(2) 迭代计算:通过迭代计算,逐步逼近特征值和特征向量;(3) 收敛判定:判断迭代过程是否收敛,若收敛则停止计算,否则继续迭代;(4) 输出结果:输出计算得到的特征值和特征向量。
3. 收敛性Jacobi-Davidson迭代方法具有较好的收敛性,尤其适用于对称或近似对称的矩阵。
通过合理的初始化和迭代计算,通常可以在较短的时间内获得较为精确的特征值和特征向量。
然而,由于不同问题的特点不同,有时也需要根据具体情况对算法进行调整,以提高收敛速度和精度。
4. 应用领域Jacobi-Davidson迭代方法在科学计算、物理学、化学、工程学等领域广泛应用。
在材料科学中,通过Jacobi-Davidson迭代方法可以快速求解材料的电子结构和能带结构;在计算流体力学中,可以用于求解流体的稳定性和振动特性等问题。
Jacobi-Davidson迭代方法是一种强大的求解特征值问题的数值方法,它通过结合Jacobi方法和Davidson方法的优点,具有较好的收敛性,适用于大规模、稀疏矩阵的特征值计算。
随着计算机技术的发展和应用需求的不断提高,Jacobi-Davidson迭代方法将在更多的领域得到广泛应用,并为解决实际问题提供重要的数值计算工具。
雅可比迭代法与矩阵的特征值
实验五矩阵的lu分解法,雅可比迭代法班级:学号:姓名:实验五ﻩﻩ矩阵的L U分解法,雅可比迭代一、目的与要求:➢ 熟悉求解线性方程组的有关理论和方法;➢ 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; ➢ 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。
二、实验内容:➢ 会编制列主元消去法、L U 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解各种方法的优缺点。
三、程序与实例➢ 列主元高斯消去法算法:将方程用增广矩阵[A∣b ]=(ij a )1n (n )+⨯表示1) 消元过程对k=1,2,…,n —1①选主元,找{}n ,,1k ,k i k +∈使得k ,i k a =ik a ni k max ≤≤ ②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③.③如果k i k ≠,则交换第k 行与第k i 行对应元素位置,j i k j k a a ↔ j=k,┅,n+1④消元,对i=k+1, ┅,n 计算kk ik ik a a l /=对j=l+1, ┅,n+1计算kj ik ij ij a l a a -=2) 回代过程①若0=nn a ,则矩阵A奇异,程序结束;否则执行②。
②nn n n n a a x /1,+=;对i=n —1, ┅,2,1,计算ii n i j j ij n i i a x a a x /11,⎪⎪⎭⎫ ⎝⎛-=∑+=+程序与实例程序设计如下:#include <iostream>#include <cmath>using namespace std;void disp(double** p,int row,intcol){for(int i=0;i<row;i++){for(int j=0;j〈col;j++)cout〈<p[i][j]〈〈' ';cout〈〈endl;}}void disp(double*q,int n){cout<〈”=====================================”〈<endl;for(int i=0;i〈n;i++)cout〈<”X[”〈<i+1<<"]=”<<q[i]〈〈endl;cout〈〈"=====================================”<<endl;}void input(double** p,int row,int col){for(int i=0;i〈row;i++){cout<<”输入第"<<i+1〈〈”行:";for(int j=0;j<col;j++)cin>>p[i][j];}}int findMax(double** p,int start,int end){int max=start;for(int i=start;i<end;i++){if(abs(p[i][start])>abs(p[max][start]))max=i;}return max;}void swapRow(double** p,int one,int other,int col){double temp=0;for(int i=0;i〈col;i++){temp=p[one][i];p[one][i]=p[other][i];p[other][i]=temp;}}booldispel(double** p,int row,int col){for(int i=0;i〈row;i++){int flag=findMax(p,i,row);//找列主元行号if(p[flag][i]==0)return false;swapRow(p,i,flag,col);//交换行for(int j=i+1;j〈row;j++){double elem=p[j][i]/p[i][i]; //消元因子p[j][i]=0;for(int k=i+1;k<col;k++){p[j][k]—=(elem*p[i][k]);}}}return true;}double sumRow(double** p,double* q,int row,int col){ double sum=0;for(int i=0;i<col-1;i++){if(i==row)continue;sum+=(q[i]*p[row][i]);}return sum;}void back(double** p,int row,int col,double*q){ for(int i=row—1;i>=0;i-—){q[i]=(p[i][col—1]-sumRow(p,q,i,col))/p[i][i];}}int main(){cout〈<"Input n:";int n; //方阵的大小cin〉>n;double **p=new double* [n];for(int i=0;i〈n;i++){p[i]=new double [n+1];}in put(p ,n,n+1);i f(!dispel(p,n,n +1)){co ut<〈”奇异"<<en dl;return 0;}doub le* q=new doubl e[n];fo r(int i=0;i <n ;i++)q[i]=0;back (p,n,n+1,q);disp(q,n);delete[] q;for (i nt i=0;i <n;i++)del ete[] p[i];d elete [] p;}1。
特征值和Jacobi方法
x x
x H Ax x H Ex max max H xCni 1且x 0 x x xCni 1且x 0 x H x
x Ax max i 由定理9.2.3,xCni1且x 0 x H x
又由定理9.2.2,对任意x≠0,有
... a1 a0
它是关于参数λ的n次多项式,称为矩阵A的特 征多项式, 其中a0=(-1)n|A|.
显然,当λ是A的一个特征值时,它必然
是 f ( ) 0的根. 反之,如果λ是 f ( ) 的根, 0
那么齐次方程组(2)有非零解向量x,使(1)式
成立. 从而,λ是A的一个特征值.
k min R( x)或k
xCk 且x 0
xCnk 1且x 0
min
R( x )
9.2.2 极值定理
定理9.2.4(极值定理)n 设Hermite矩阵的n个 1 2 ... 特征值为 , u ,..., u ,其相应的标准酉 u1 2 n 交特征向量为 . 用Ck表示酉空 间Cn中任意的k维子空间,那么
London, England: Millennium ('Wobbly') Bridge (1998-2002, Norman Foster and Partners and Arup Associates)
I decide that I have to write something today, otherwise I would not know how to speak English here. • This is a very quick story about a bridge. • London launched three major construction projects to celebrate the arrival of the Millennium. After all, Greenwich (pronounced green-ich) is supposed to be (supposed to be?!) where the prime meridian lies, and the place where the Millennium officially starts in the world. The three projects are the Millennium Dome in North Greenwich, so far the largest single roofed structure in the world, London Eye right across Westminster, which becomes so far the largest observation wheel in the world, and the Millennium Bridge that links Southeast London with St. Paul’s Cathedral, which is currently…well...not swinging any more, it is said.
四元数矩阵特征值的Jacobi迭代
欧阳哲,王韵
关键词
四元数,四元数矩阵,右特征值,Jacobi迭代
Copyright © 2018 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/
Open Access
1. 引言
四元数是继复数之后的又一新的数系,它是英国数学家哈密尔顿在 1843 年首先提出来的,至今已有 一个半世纪了。哈密尔顿建立四元数理论最初的目的是为研究空间矢量,通过类似解决平面问题中使用 的复数方法寻找到了四元数。但由于当时数学工具所限,四元数最初只是在刚体定位中得到某些简单应 用,学者并未发掘四元数真正的优越性,因而在整整一个世纪中四元数的研究基本上是停滞的。随着研 究不断深入,数学物理学者们发现四元数和四元数矩阵可以较好地处理刚体运动学,尤其是旋转矩阵运 算与单位四元数的运算非常相似,因此四元数作为一种非常有效的工具被运用到理论力学刚体运动的研 究中。之后,在计算机图形学中,四元数被广泛的用于彩色图像处理。如今,四元数及其矩阵在越来越 多的领域得到运用,得到了国内外学者的关注[1] [2] [3] [4]。而矩阵与其特征值不仅仅是数学理论研究中 重要组成部分,在理论物理、工程力学和计算机科学中也有非常重要的应用。因此,国内外许多学者对 四元数矩阵特征值在理论和实际应用方面做了很多研究[5] [6] [7] [8]。 借助于经典的矩阵特征值的计算方 法,我们希望可以对四元数矩阵的特征值问题做简单的理论研究,直观地分析特征值的性质,继而可以 进一步地研究四元数矩阵的特征值的精确计算问题。 本文讨论了自共轭实四元数矩阵特征值的 Jacobi 迭代。 第二部分简单介绍了四元数与四元数矩阵, 第三 部分将经典的 Jacobi 迭代推广到对自共轭四元数矩阵的特征值的计算中, 最后一部分对文章内容进行了小结。
jacobi迭代法求复矩阵特征值和特征向量
jacobi迭代法求复矩阵特征值和特征向量Jacobi迭代法是一种经典的求解复矩阵特征值和特征向量的方法。
在数值分析领域,特征值和特征向量的求解是一个十分重要且常见的问题。
它不仅在理论上有重要意义,还在实际应用中有着广泛的应用,比如在物理、工程、金融等领域。
Jacobi迭代法的提出,极大地简化了这个复杂问题的求解过程,为研究人员和工程师提供了一个高效、可靠的数值计算工具。
我们需要了解什么是特征值和特征向量。
对于一个n阶方阵A,如果存在数λ和一个非零向量x,使得Ax=λx成立,则称λ是A的特征值,x是对应于特征值λ的特征向量。
特征值和特征向量的求解十分重要,因为它们包含了矩阵A的重要特性和信息,对于矩阵的对角化、矩阵的稳定性、矩阵的特征分解等问题有着重要的作用。
接下来,让我们来介绍Jacobi迭代法的基本思想和步骤。
Jacobi迭代法的核心思想是通过一系列相似变换,将原始矩阵对角化,从而得到其特征值和特征向量。
具体步骤如下:1. 我们选择一个n阶方阵A,将其初始化为对角矩阵D,将初始的特征向量矩阵初始化为单位矩阵I。
2. 我们选择两个不同的下标i和j(1≤i,j≤n,i≠j),使得矩阵A的元素aij为非零元素,即aij≠0。
这两个下标表示我们要进行的相似变换的维度。
3. 我们构造一个旋转矩阵P,使得通过P的相似变换,可以将aij对应的元素变为0。
这一步是Jacobi迭代法的核心步骤,旋转矩阵P的构造涉及到对称双射矩阵的变换和特征值的迭代计算。
4. 我们通过P的相似变换,更新矩阵A和特征向量矩阵I,得到新的对角矩阵D和新的特征向量矩阵。
5. 我们检查新得到的对角矩阵D的非对角线元素是否足够小,如果满足要求,则停止迭代,否则继续进行第2步的操作。
通过这样一系列的迭代操作,我们可以逐步地将矩阵A对角化,并得到其特征值和特征向量。
Jacobi迭代法以其简洁、直观的特点,在复矩阵特征值和特征向量的求解中得到了广泛的应用。
雅克比法求矩阵特征值特征向量
C语言课程设计报告课程名称:计算机综合课程设计学院:土木工程学院设计题目:矩阵特征值分解级别: B学生姓名:学号:同组学生:无学号:无指导教师:2012年 9 月 5 日C语言课程设计任务书(以下要求需写入设计报告书)学生选题说明:➢以所发课程设计要求为准,请同学们仔细阅读;➢本任务书提供的设计案例仅供选题参考;也可自选,但难易程度需难度相当;➢鼓励结合本专业(土木工程、力学)知识进行选题,编制程序解决专业实际问题。
➢限2人选的题目可由1-2人完成(A级);限1人选的题目只能由1人单独完成(B级);设计总体要求:➢采用模块化程序设计;➢鼓励可视化编程;➢源程序中应有足够的注释;➢学生可自行增加新功能模块(视情况可另外加分);➢必须上机调试通过;➢注重算法运用,优化存储效率与运算效率;➢需提交源程序(含有注释)及相关文件(数据或数据库文件);(cpp文件、txt或dat文件等) ➢提交设计报告书,具体要求见以下说明。
设计报告格式:目录1.课程设计任务书(功能简介、课程设计要求);2.系统设计(包括总体结构、模块、功能等,辅以程序设计组成框图、流程图解释);3.模块设计(主要模块功能、源代码、注释(如函数功能、入口及出口参数说明,函数调用关系描述等);4.调试及测试:(调试方法,测试结果的分析与讨论,截屏、正确性分析);5.设计总结:(编程中遇到的问题及解决方法);6.心得体会及致谢;参考文献1.课程设计任务书功能简介:a)输入一个对称正方矩阵A,从文本文件读入;b)对矩阵A进行特征值分解,将分解结果:即U矩阵、S矩阵输出至文本文件;c)将最小特征值及对应的特征向量输出至文本文件;d)验证其分解结果是否正确。
提示:A=USU T,具体算法可参考相关文献。
功能说明:矩阵特征值分解被广泛运用于土木工程问题的数值计算中,如可用于计算结构自振频率与自振周期、结构特征屈曲问题等。
注:以三阶对称矩阵为例2.系统设计3.模块设计#include<stdio.h>#include<stdlib.h>#include<math.h>int main(){FILE *fp;int tezheng(double *a,int n,double *s,double *u,double eps,int itmax); //函数调用声明int i,j,p,itmax=1000; //itmax为最大循环次数double eps=1e-7,s[3][3],u[3][3]; //eps为元素精度,s为对角矩阵S,u为矩阵Udouble a[9];//a为待分解矩阵Ai=tezheng(a,3,s,u,eps,1000);if(i>0) //i对应函数中的返回值it{if((fp=fopen("juzhen.txt","w"))==NULL) //打开待输入txt文件{printf("无法打开文件.\n");return;}printf("U矩阵为:\n"); //下几句分别向屏幕和txt文件输入矩阵Ufprintf(fp,"U矩阵为:\n");for(i=0;i<3;i++){for(j=0;j<3;j++){printf("%10.6f",u[i][j]);fprintf(fp,"%10.6f",u[i][j]);}printf("\n");fprintf(fp,"\n");}printf("S对角矩阵为:\n"); //下几句分别向屏幕和txt文件输入矩阵Sfprintf(fp,"S对角矩阵为:\n");for(i=0;i<3;i++){for(j=0;j<3;j++){printf("%10.6f",s[i][j]);fprintf(fp,"%10.6f",s[i][j]);}printf("\n");fprintf(fp,"\n");}p=0;for(i=0;i<3;i++)//下面几句为求最小特征值及其对应特征向量,并输出到屏幕和txt 文件中if(s[i][i]<s[0][0])p=i;printf("最小特征值为:%10.6f\n",s[p][p]);fprintf(fp,"最小特征值为:%10.6f\n",s[p][p]);printf("对应特征向量为:\n");fprintf(fp,"对应特征向量为:\n");for(i=0;i<3;i++){printf("%10.6f\n",u[i][p]);fprintf(fp,"%10.6f\n",u[i][p]);}}}int tezheng(double *a,int n,double s[3][3],double u[3][3],double eps,int itmax){FILE *A;char line[1000]; //存放从文件juzhen A.txt读入的数据char *k=" ";int i,j,p,q,it;double sint,cost,sin2t,cos2t,d,tmp,t1,t2,t3,fm;it=0;if((A=fopen("juzhen A.txt","r"))==NULL){printf("无法打开文件\n");return;}fgets(line,1000,A); //从文件指针A指向的文件,即juzhen A.txt中读入字符数据到数组line 中strtok(line,k); //原型char *strtok(char *s, const char *delim);说明:strtok()用来将字符串分割成一个个片段。
jacobi迭代法求复矩阵特征值和特征向量
题目:深入探究jacobi迭代法求复矩阵特征值和特征向量上线性代数的学习过程中,我们经常会遇到求解复矩阵的特征值和特征向量的问题。
而jacobi迭代法则是一种被广泛应用的方法之一。
本文将深入探讨jacobi迭代法的原理、应用以及个人观点和理解。
### 1. jacobi迭代法的原理和概念jacobi迭代法是一种通过不断相似变换将矩阵对角化的方法,它可以被用于求解实对称矩阵的特征值和特征向量,而在这篇文章中,我们将着重讨论其在求解复矩阵时的应用。
### 2. jacobi迭代法的算法步骤在使用jacobi迭代法求解复矩阵特征值和特征向量时,我们需要经历一系列的算法步骤。
我们可以通过对角线元素的绝对值大小来判断矩阵是否已经对角化,然后进行迭代,直到满足精度要求为止。
### 3. jacobi迭代法的实际应用在实际应用中,jacobi迭代法除了可以求解复矩阵的特征值和特征向量外,还可以在解决其他涉及特征值和特征向量的问题时发挥重要作用。
通过简单的算法步骤和迭代过程,我们可以有效地得到复矩阵的特征值和特征向量,为进一步的分析和计算提供便利。
### 4. 个人观点和理解从个人的角度来看,jacobi迭代法在求解复矩阵特征值和特征向量时具有一定的优势,尤其在算法实现的过程中,我们可以通过简单的迭代步骤快速得到结果。
然而,对于大规模复矩阵的计算,可能还需要考虑其他更高效的方法或并行计算的应用。
### 结论通过本文的深入探讨,我们对jacobi迭代法求解复矩阵特征值和特征向量有了更深入的了解。
在实际应用中,我们需要灵活运用不同的方法和算法,以便更好地解决实际问题。
总结来说,jacobi迭代法是一种常用的求解复矩阵特征值和特征向量的方法,它通过简单的算法步骤和迭代过程,能够快速有效地得到结果。
然而,在实际应用中,我们还需要综合考虑不同的因素,以便获得更好的计算效果。
通过本文的阐述,希望读者能够更加深入地理解jacobi迭代法以及其在求解复矩阵特征值和特征向量中的应用,为进一步的学习和研究打下良好的基础。
求特征值的方法
求特征值的方法
特征值是矩阵理论中的重要概念,它在很多领域都有着广泛的应用,比如在物理学、工程学和计算机科学等领域。
求解特征值是矩阵分析中的一个重要问题,下面我们将介绍几种常用的求特征值的方法。
首先,最常见的求特征值的方法是使用特征方程。
对于一个n阶矩阵A,其特征值满足特征方程|A-λI|=0,其中I为单位矩阵,λ为特征值。
我们可以通过解特征方程来求解特征值,进而得到矩阵A的特征值。
其次,雅可比迭代法也是一种常用的求特征值的方法。
雅可比迭代法是通过矩阵的相似变换来逐步逼近特征值的方法。
通过不断迭代,可以得到矩阵的特征值和对应的特征向量。
另外,幂法也是一种常用的求特征值的方法。
幂法是通过不断迭代矩阵的幂次来逼近矩阵的最大特征值和对应的特征向量。
幂法的收敛速度较快,适用于大规模矩阵的特征值求解。
除了上述方法外,拉盖尔法和QR方法也是常用的求特征值的方法。
拉盖尔法是通过将矩阵转化为特定的三对角矩阵,再通过求解三对角矩阵的特征值来求解原矩阵的特征值。
而QR方法则是通过矩阵的相似变换和正交相似变换来逼近矩阵的特征值和特征向量。
总结一下,求解特征值是矩阵分析中的一个重要问题,有很多种方法可以用来求解特征值。
常见的方法包括特征方程、雅可比迭代法、幂法、拉盖尔法和QR方法等。
不同的方法适用于不同类型的矩阵,我们可以根据具体的问题和需求选择合适的方法来求解特征值。
希望本文介绍的方法对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五
矩阵的lu分解法,雅可比迭代法
班级:
学号:
姓名:
实验五 矩阵的LU 分解法,雅可比迭代
一、目的与要求:
熟悉求解线性方程组的有关理论和方法;
会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。
二、实验内容:
会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解
各种方法的优缺点。
三、程序与实例
列主元高斯消去法
算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+⨯表示 1) 消元过程 对k=1,2,…,n-1
①选主元,找{}n ,,1k ,k i k +∈使得
k ,i k a =
ik a n
i k max ≤≤
②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。
③如果k i k ≠,则交换第k 行与第k i 行对应元素位置,
j i kj k a a ↔ j=k,┅,n+1
④消元,对i=k+1, ┅,n 计算
kk ik ik a a l /=
对j=l+1, ┅,n+1计算
kj ik ij ij a l a a -=
2) 回代过程
①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。
②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算
ii n
i j j ij n i i a x a a x /11,⎪⎪⎭
⎫ ⎝
⎛-
=∑+=+
程序与实例
程序设计如下:
#include <iostream>
#include <cmath>
using namespace std;
void disp(double** p,int row,int col){
for(int i=0;i<row;i++){
for(int j=0;j<col;j++)
cout<<p[i][j]<<' ';
cout<<endl;
}
}
void disp(double* q,int n){
cout<<"====================================="<<endl; for(int i=0;i<n;i++)
cout<<"X["<<i+1<<"]="<<q[i]<<endl;
cout<<"====================================="<<endl; }
void input(double** p,int row,int col){
for(int i=0;i<row;i++){
cout<<"输入第"<<i+1<<"行:";
for(int j=0;j<col;j++)
cin>>p[i][j];
}
}
int findMax(double** p,int start,int end){
int max=start;
for(int i=start;i<end;i++){
if(abs(p[i][start])>abs(p[max][start]))
max=i;
}
return max;
}
void swapRow(double** p,int one,int other,int col){
double temp=0;
for(int i=0;i<col;i++){
temp=p[one][i];
p[one][i]=p[other][i];
p[other][i]=temp;
}
}。