初中九年级下册数学《相似三角形的性质》相似PPT优质课件
人教版九年级数学下册 《相似三角形》相似PPT课件
相似比:相似多边形对应边的比叫做相似比.
第三页,共十七页。
注意:相似比为1的两个多边形全等.
性质:(1)相似多边形的对应角相等,对应边的比相等; (2)相似多边形周长的比等于相似比; (3)相似多边形面积的比等于相似比的平方.
第十页,共十七页。
【解析】∵12=12×6·AE,∴AE=4. 设矩形的高为a,则4-a4=x6,a=4-23x, ∴y=x·a=-23x2+4x,
∴当x=-42×-23=3时,
y最大值=6,填3,6.
[预测变形2]一张等腰三角形纸片,底边长15 cm,底边上的高为22.5 cm.现沿底边依次从下往上裁剪宽度均为3 cm的矩形纸条,如图38-4所 示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )
解得x=40,
∴当FG的长为40米时,种草的面积和种花的面积相等.
(2)设改造后的总投资为W元,根据题意,得:
W=12×(120-32x)×(80-x)×6+12×32x×x×10+x×(120-
32x)×4=6x2-240x+28800
=6(x-20)2+26400,
∴当x=20时,W最小=26400.
为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:△ADF∽△DEC;
(2)若AB=4,AD=33,AE=3, 求AF的长.
【解析】(1)证明∠AFD=∠C,∠ADF=∠CED;(2)由△ADF∽△DEC,得 ADDE=FACD,而AD、DE、CD已知或可求,容易求出FA.
第七页,共十七页。
第十四页,共十七页。
九年级数学下册272《相似三角形》PPT课件
3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。
人教版九年级数学下册相似三角形的性质优质PPT
E G C
人 教 版 九 年 级数学 下册相 似三角 形的性 质优质 PPT
例3.如图,△ABC是一块锐角三角形余料, 边BC=120毫米,高AD=80毫米,要把它加 工成正方形零件,使正方形的一边在BC上, 其余两个顶点分别在AB、AC上,这个正方 形零件的边长是多少?
解:设正方形PQMN是符合要求的△ABC的 高AD与PN相交于点E。设正方形PQMN的边
人 教 版 九 年 级数学 下册相 似三角 形的性 质优质 PPT
例人教版九年级数学下册相似三角形的性质优质PPT
题
讲
解
例1、如图在ΔABC 和ΔDEF中,AB=2DE,
AC=2DF,∠A=∠D,ΔABC的周长是24,
面积12是5 ,求ΔDEF的周长和面积。
A
解:在△ABC和△DEF中,
D
∵AB=2DE,AC=2DF,
积
等于梯形BCED的面积,则△ADE与△ABC
的
A
1: 2
相似比是_______
D
E
B
C
人 教 版 九 年 级数学 下册相 似三角 形的性 质优质 PPT
人 教 版 九 年 级数学 下册相 似三角 形的性 质优质 PPT
*变式:如图,△ABC,DE// FG// BC ,且△ADE的面 积,梯形FBCG的面积,梯形DFGE的面积均相等,则
人 教 版 九 年 级数学 下册相 似三角 形的性 质优质 PPT
基本图形: 1.等分边长:
D
B
2.等分面积
人 教 版 九 年 级数学 下册相 似三角 形的性 质优质 PPT
D B
A
D E
F
CB
A A
D EF
《相似三角形的性质》PPT课件
1
1
2
2
∴ ∠ = ∠ BAC, ∠ ′ ′ = ∠ B’AC’
∴ ∠= ∠ ′ ′
∴ △ ∽△ ′ ′ ′
AB
A′B′
=
AD
A′ D′
=k
相似三角形对应角平分线的比等于相似比。
01
归纳
相
似
∴ △ ∽△ ′ ′ ′
∴
AB
A′B′
=
AD
A′ D′
=k
相似三角形对应高的比等于相似比。
01
探究与思考
如图,△∽△^′ ^′ ^′,相似比为,它们中线的比是多少?
解:分别作△ 和 △ ′ ′ ′ 的对应中线AD和A’D’
∵ △ ∽△ ′ ′ ′
02
练一练
1∶3
1.相似三角形对应边的比为1∶3,那么相似比为_________,对
1Байду номын сангаас3
1∶3
应角平分线的比为______.对应高的比为_________.
1∶3
1∶3
对应中线的比为______.对应周长的比为__________.
1∶9
对应面积的比为_________.
2.把一个三角形变成和它相似的三角形,
似
三
角
形
对应周长的比等于相似比
对应面积的比等于相似比的平方
02
练一练
HOMEWORK PRACTICE
1、理解并掌握相似三角形对应高的比、对应角平分线的比、对应中线的
比都等于相似比,相似三角形对应线段的比等于相似比。
2、理解并掌握相似三角形周长比等于相似比,面积比等于相似比的平方。
人教版《相似三角形的性质》PPT优质课件初中数学ppt
DF+EF ( GH
)2=96kk
)2=94
【素养提升】 16.(16分)如图,在△ABC中,BC>AC,点D在BC上,且CA=CD, ∠ACB的平分线交AD于点F,E是AB的中点. (1)求证:EF∥BD; (2)若∠ACB=60°,AC=8,BC=12,求四边形BDFE的面积.
解:
(1)证明:∵CA=CD,CF平分∠ACB,∴CF是 AD边的中线,∵E是AB的中点,∴EF是△ ABD 的中位线,∴EF∥BD
解:可以求出电线杆的高度.过点A作AN⊥EF于点N,交BC于点
M,∵BC∥EF,∴AM⊥BC于点M,△ABC∽△AEF,∴BECF =
AM AN
.又∵AM=0.6
m,AN=30
m,BC=0.18
m,∴EF=BCA·MAN
=0.108.×630 =9 (m).故电线杆的高度为9 m
15.(14分)如图,在△ABC中,D,E两点分别在AB,AC上,点F在DE 上,G,H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若 BG∶GH∶HC=4∶6∶5,求△ADE与△FGH的面积之比.
9.(4分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=____. 2.(4分)如图,在△ABC中,DE∥BC,AH是△ABC的角平分线,交DE于点G,DE∶BC=2∶3,那么AG∶GH等于______________. 16.(16分)如图,在△ABC中,BC>AC,点D在BC上,且CA=CD,∠ACB的平分线交AD于点F,E是AB的中点. (2)△ABC的面积. 6.(4分)已知两个相似三角形的最短边的长分别为5和3,且它们周长的差为12,则较大三角形的周长为__________. A.3∶4 B.9∶16 C.4∶9 D.1∶3 三、解答题(共42分) 10.(9分)(教材P38例3变式)已知△ABC∽△A′B′C′,AB边上的中线CD=4 cm,A′B′边上的中线C′D′=8 cm,△ABC的周长为20 cm, △A′B′C′的面积是64 cm2,求: (1)求证:EF∥BD;
25.5 相似三角形的性质课件(共24张PPT)
例题示范
知识点2 相似三角形的性质定理2问题3 △ABC的周长和△A1B1C1的周长的比与它们的相似比有什么关系?请说明理由.
求证:相似三角形周长的比等于相似比.
证明:设△ABC∽△A1B1C1,相似比为k,
2.若△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC,AC,A′B′,A′C′的长.
解:∵△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm, ∴ , ∵AB=15 cm,B′C′=24 cm, ∴BC=20 cm, AC=25 cm, A′B′=18 cm,A′C′=30 cm.
结论:相似三角形对应高的比等于相似比.
思考:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?问题2 图中△ABC和△A′B′C′相似,AD,A′D′分别为对应边上的中线,BE,B′E′分别为对应角的角平分线,那么它们之间有什么关系呢?
(2)已知:两个三角形相似比为k,即 .求证: .
问题引入
如图,△ABC∽△A′B′C′,相似比为k.AD与A'D',AE与A'E'分别为BC,B'C'边上的高和中线,AF与A'F'分别为∠BAC=∠B'A'C'的平分线.(1)AD和A'D'的比与相似比之间有怎样的关系?请说明理由.(2)AE和A'E'的比、AF和A'F'的比分别与相似比有怎样的关系?请说明理由.
第二十五章 图形的相似
2024版相似三角形ppt初中数学PPT课件
相似三角形ppt初中数学PPT课件目录CONTENCT •相似三角形基本概念与性质•相似三角形在几何图形中应用•相似三角形在解决实际问题中应用•相似三角形证明方法探讨•典型例题解析与练习•课堂小结与拓展延伸01相似三角形基本概念与性质01020304定义AAA 相似SAS 相似SSS 相似定义及判定方法如果两个三角形有两组对应边成比例且夹角相等,则这两个三角形相似。
如果两个三角形的三组对应角分别相等,则这两个三角形相似。
两个三角形如果它们的对应角相等,则称这两个三角形相似。
如果两个三角形的三组对应边成比例,则这两个三角形相似。
相似比与对应角关系相似比两个相似三角形的对应边之间的比值称为相似比。
相等角两个相似三角形的对应角相等。
补角两个相似三角形的非对应角互为补角。
两个相似三角形的对应边之间的比值相等。
对应边成比例两个相似三角形的对应高、中线、角平分线之间的比值也相等,且等于相似比。
对应高、中线、角平分线成比例两个相似三角形的面积之比等于相似比的平方。
面积比等于相似比的平方两个相似三角形的周长之比等于相似比。
周长比等于相似比性质总结02相似三角形在几何图形中应用平行线间距离问题利用相似三角形性质求解平行线间距离通过构造相似三角形,利用对应边成比例的性质,可以求解平行线间的距离。
平行线间距离与相似三角形关系平行线间距离与相似三角形的对应高成比例,因此可以通过相似三角形性质求解平行线间距离。
角度平分线问题利用相似三角形性质求解角度平分线问题通过构造相似三角形,利用对应角相等的性质,可以求解角度平分线问题。
角度平分线与相似三角形关系角度平分线将相邻两边按照相同比例分割,因此可以通过相似三角形性质求解角度平分线问题。
直角三角形中特殊应用利用相似三角形性质求解直角三角形中特殊应用在直角三角形中,通过构造相似三角形,利用对应边成比例的性质,可以求解一些特殊问题,如勾股定理、射影定理等。
直角三角形中特殊应用与相似三角形关系在直角三角形中,一些特殊应用可以通过构造相似三角形进行求解,这些应用与相似三角形的性质密切相关。
九年级数学《相似三角形的性质》课件(共13张PPT)
∴AD:A’D’=比、对应 角平分线的比都等于相似比.
课堂练习:
填空: (1)两个三角形的对应边的比为3:4,则这两 个三角形的对应角平分线的比为_____ ,对应边 上的高的比为____,对应边上的中线的比为____ (2)相似三角形对应角平分线比为0.2,则相似比 为_________,对应中线的比等于______;
△ABC 中,AB = 5cm,BC = 4cm ,CA = 8cm .
已知△ABC∽△A′B′C′,且△A′B′C′的周 长为34cm,求△A′B′C′的各边长.
对应角相等 相 似 三 角 形 的 性 质
对应边成比例 相似比等于对应边的比 对应高的比,对应中线的比、对应角平分 线的比都等于相似比. 周长的比等于相似比 面积的比等于相似比的平方
D’
C’
△ABC~△A’B’C’,相似比为K
S S’ = AD 1/2 · BC · B’C’ · A’D’ 1/2 · = BC · AD B’C’ · A’D’ K K 2 K =
例1 已知: △ABC∽△A′B′C′,它们的周长分 别为 60cm 和 72cm ,且 AB = 15cm , B′C′= 24cm .求:BC、AC、 A′B′、 A′C′.
相似三角形周长的比等于相似比.
如果△ABC∽△A′B′C′,且△ABC与△A′B′C′
的相似比为k,即
AB BC CA k AB BC C A
AB BC CA k AB BC C A
,那么
相似三角形面积的比等于相似比的平方。
A A’
B
D
C
B’
相似三角形的性质
回顾与思考 1.识别两个三角形相似的简便方法有哪些? 2.在△ABC与△A/B/C/ 中,AB=10cm,AC=6cm,BC=8cm,A/B/=5cm,A/C/= 3cm,B/C/=4cm,这两个三角形相似吗?说明理由.如 果相似,它们的相似比是多少?
人教版九年级数学下册课件相似三角形的性质ppt
相似三角 为k,问对题应:线如段果的△比A呢BC?∽△A′B′C形 什′,的么相周关似长系比有?
对应边的比
对应高的比
对应中线的比
=相似比k
对应角平分线的比
……
推广:相似三角形对应线段的比等于相似比. 结论:相似三角形的周长比等于相似比.
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
∴△DEF的边 EF 上的高为 1 6 3 ,
面积为 (1)212 53 5.
2
2
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
应用提高
1.判断
(1)一个三角形的各边长扩大为原来
√ 的5倍,这个三角形的角平分线也扩大为原来
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
情境引入
三角形中有各种各样的几何量. 如: 三条边的长度 三个内角的度数 高、中线、角平分线的长度 周长、面积等等
如果两个三角形相似, 那么它们的这些几何量之 间有什么关系呢?
拓展提升
1.两个相似三角形的周长之比是2:3,它们 的面积之差是60cm2 ,那么它们的面积之和是 多少?
解:∵两个三角形的周长之比是2:3, ∴它们的相似比是2:3, ∴它们的题
意得:9x﹣4x=60
解得 x=12,∴9x+4x=156
答:它们的面积之和是156cm2.
应用提高
例:如图,在△ABC 和△DEF 中,AB=2DE, AC=2DF,∠A=∠D.若△ABC 的边 BC 上的高是 6,面积为1 2 5 ,求△DEF 的边 EF上的高和面积.
相似三角形的性质PPT通用课件
相等
1、相似三角形对应边成____,对应角______.
2、相似三角形对应边上的高、对应边上的中线、
相似比
对应角平分线的比都等于________.
相似比
3、相似三角形周长的比等于________,
相似三角形面积的比等于______________.
当堂训练
1.已知△ABC∽△DEF,BG、EH分别是△ABC和 △DEF的
求它们的相似比. 1∶4
1∶4
(2) △ADE的周长︰△ABC的周长=_______.
A
SADE
.
(3)
_______
D
E
S
ABC
(4)
SADE
S四边形BCED
1
15
B
C
7、如图,在 ABCD中,若E是AB的中点,
1:2
则(1)∆AEF与∆CDF的相似比为______.
AE 1
线AD=40cm,要把它加工成正方形零件,使正方
形的一边在BC上,其余两个顶点分别在AB,AC上
(1)△ ASR与△ ABC相似吗?为什么?
(2)求正方形SPQR的面积。
A
S
B
P
E R
D
Q
C
A
例题解析
(1)△ASR与△ABC相似吗?为什么?
40
(2)求正方形PQRS的面积.
分析:(1) △ASR∽△ABC.理由是:
100厘米、40厘米
———————。
(2)它们的面积之和是58平方厘米,这
两个三角形的面积分别是——————
50平方厘米、8平方厘米
——。
(1)与(2)的相似比=______
相似三角形的性质定理ppt课件
cm2,且
AE AD 3
,求
AC AB 5
四边形 BCDE 的面积.
A
E
D
B
侵权必究
C
3. 连接三角形两边中点的线段把三角形截成的一个
1:2
小三角形与原三角形的周长比等于______,面积
1:4
比等于_____.
4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm,
相似三角形的性质
对应高之比、对应中线之比、对
应角平分线之比都等于相似比
周长之比等于相似比
面积之比等于相似比的平方
侵权必究
k
侵权必究
探索证明
那我们该如何证明呢?
已知: 如图,△ABC ∽△A′B′C′,相似比为 k,
∆
求证:
=k
∆’’’
A
C
B
A'
B'
侵权必究
C'
新课导入
思考:相似三角形的面积比有什么关系呢?
如图(1)(2)(3)分别是边长为1、2、3的等边三角
形,它们都相似.
2:1
(2)与(1)的相似比=_____
A
D'分别是它们的高。
∆
求证:
= 2
∆’’’
B D
A'
B'
侵权必究
D'
C
C'
归纳总结
侵权必究
小试牛刀
1.已知ΔABC与ΔA′B′C′的相似比为4:3,则对
应边上中线之比 4:3 ,面积之比为 16:9 .
2. 如果两个相似三角形的面积之比为1:9,
1:3
人教版九年级下27.2.3相似三角形的性质课件(共14张PPT)
相似三角形的判定方法
1、定义法: 三个角对应相等
三边对应成比例
2、 预备定理(平行得“A”型,“X”型 相 似) 3、 三边对应成比例的两三角形相似.
4、两边对应成比例且夹角相等的两三角形相似
5、两角分别相等的两个三角形相似
6、斜边和一条直角边成比例的两个直角三角形相似
2.相似三角形有哪些性质?
相似三角形的对应角相等,对应边的比相等.
三角形中还有哪些其他重要元素?
探究1:
如图,已知△ABC∽△A'B'C', 相似比是k,其
中AD、A'D'分别是B∠CBA、CB、'C∠'边B'A上'C的'的 中高角线平,分线,
此时AD 、 A'D'的比是多少呢?
A
A A
AA''
A'
B
B B
D DD
CCC
BB'' B' DDD''' CCC' '
形
的
对应角平分线
性
质
周长比等于相似比
面积比等于相似比的平方
6..如图,在 ABCD中,E是BC上一点,AC 与DE相交于F,若AE:EB=1:2,求∆AEF与∆CDF 的相似比。若∆AEF的面积为5平方厘米,求 ∆CDF的面积。
D
F A
E
C B
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月27日星期日2022/2/272022/2/272022/2/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/272022/2/272022/2/272/27/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/272022/2/27February 27, 2022 •4、享受阅读快乐,提高生活质量。2022/2/272022/2/272022/2/272022/2/27
数学人教版《相似三角形的性质》优质课(PPT)1
三角形除了三个角,三条边外,还有哪些要素?
∴∠B=∠B' ,
,
相似三角形对应高的比等于相似比.
如图,在平行四边形 ABCD 中,点 E 是边 AD 的中点,连接 EC 交对角线 BD 于点 F,若 S△DEC=3,则S△BCF=
.
(2)如果S△AEF=6 cm2,求S△CDF的值.
知识点三:相似三角形面积的比等于相似比的平方
人教版 · 数学· 九年级(下)
第27章 相似 27.2.2 相似三角形的性质
学习目标
1.理解并掌握相似三角形中对应线段的比等于相似 比,并运用其解决问题。
2.理解相似三角形面积的比等于相似比的平方,并 运用其解决问题。
回顾旧知
相似三角形的判定方法有哪几种?
定义法:对应边成比例,对应角相等 的两个三角形相似.
AB AC 2
又 ∵∠D=∠A,
∴ △DEF ∽ △ABC ,相似比为 1 : 2.
∵△ABC 的边 BC 上的高为 6,面积为 12 5 ,
∴△DEF 的边 EF 上的高为 1 ×6 = 3,
2
面积为
1 2
2
12
5 3
5.
巩固新知
如图,在平行四边形 ABCD 中,点 E 是边 AD 的中点,连
相似三角形的周长比也等于相似比吗?为 什么?
如果 △ABC ∽△A'B'C',相似比为 k,那么
AB BC CA k, AB BC CA
因此 AB=k A'B',BC=kB'C',CA=kC'A',
从而
AB BC CA kAB kBC kCA k. AB BC CA AB BC CA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
PPT教程: /powerpoint/
资料下载:/ziliao/
个人简历:/jianli/
试卷下载:/shiti/
教案下载:/jiaoan/
手抄报:/shouchaobao/
第二十七章 相似
相似三角形的性质
学习目标
1.理解相似三角形的性质.
2.能够运用相似三角形的性质解决简单的问题. PPT模板:/moban/
PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理载:/jiaoan/
相似三角形对应边的比是相似三角形的相似比. 手抄报:/shouchaobao/
语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
个人简历:/jianli/
试卷下载:/shiti/
4.相似三角形的其他几何量(如对应高、对应中线、对应角平 分线及周长、面积)可能具有什么性质?
探究新知
1.相似三角形对应高的比、对应中线的比、对应角平分
线的比与相似比有怎样的关系?
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
历史课件:/kejian/lish i/
2.从相似三角形的定义出发,能够得到相似三角形的什
么性质?
相似三角形的对应角相等、对应边成比例.
导入新课
3.说出相似三角形的相似比.
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
巩固复习
1.叙述相似三角形的定义.
对应角相等、对应边成比例的两个三角形相似.
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 个人简历:/jianli/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/