《平面向量数量积》说课稿

合集下载

人教版高二数学必修四《平面向量的数量积》说课稿

人教版高二数学必修四《平面向量的数量积》说课稿

人教版高二数学必修四《平面向量的数量积》说课稿一、引入大家好,我是今天的数学课老师。

本节课我们将学习人教版高二数学必修四中的《平面向量的数量积》这一部分内容。

在这个章节中,我们将学习什么是向量的数量积以及它的性质和应用。

二、概述本节课的重点是向量的数量积。

首先,我们会详细介绍向量的数量积的定义及其几何意义。

然后,我们将讨论数量积的性质,包括交换律、分配律和数量积的几何性质。

最后,我们会应用数量积解决实际问题。

三、向量的数量积及其几何意义1. 向量的数量积定义向量的数量积,也叫点积或内积,定义为两个向量的长度乘积与它们夹角的余弦值的乘积。

记作 $ \mathbf{a} \cdot \mathbf{b} $。

2. 向量的数量积几何意义向量的数量积有很重要的几何意义。

当两个向量夹角为锐角或直角时,数量积为正;当两个向量夹角为钝角时,数量积为负;当两个向量互相垂直时,数量积为零。

四、数量积的性质1. 交换律向量的数量积满足交换律,即 $ \mathbf{a} \cdot\mathbf{b} = \mathbf{b} \cdot \mathbf{a} $。

2. 分配律向量的数量积还满足分配律,即 $ \mathbf{a} \cdot(\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} $。

3. 数量积的几何性质数量积的几何性质包括向量的垂直、平行和夹角的余弦值。

•垂直性质:如果两个非零向量的数量积为零,那么它们垂直。

•平行性质:如果两个向量的数量积非零,那么它们平行。

•夹角余弦公式:数量积的定义可以进一步推导出夹角的余弦公式: $ \cos \theta = \frac{\mathbf{a}\cdot \mathbf{b}}{|\mathbf{a}|\times |\mathbf{b}|} $。

精品《平面向量的数量积》说课稿

精品《平面向量的数量积》说课稿

尊敬的各位评委、各位老师:大家好!今天我说课的题目是《平面向量的数量积》。

下面我将从五个方面阐述我对本节课的分析和设计。

第一部分:教学内容分析:1、教材的地位及作用:将平面向量引入高中课程,是现行数学教材的重要特色之一。

由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。

而这一切之所以能够实现,平面向量的数量积功不可没。

《平面向量的数量积》是人教A版必修4第二章第四节的内容。

平面向量数量积是中学数学的一个重要概念。

它的性质很多,应用很广,是后面学习的重要基础。

本课是第一课时,学生对概念的理解尤为重要。

2、学情分析:(1)学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算。

(2)具备了功等物理知识,并且初步体会了研究向量运算的一般方法。

3、教学目标的设定:(1)知识与技能目标:理解平面向量的数量积及其物理意义、几何意义;掌握平面向量数量积的重要性质及运算律;能够运用定义和运算性质解决相关问题.通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。

(2)过程与方法:解决数学、物理和生活中问题。

(3)情感态度与价值观:通过本节课的学习,培养学生自主探究与合作交流的良好学习品质,激发学生学习数学的兴趣,体会学习的快乐。

4、教学重点:平面向量的数量积定义。

5、教学难点:平面向量的数量积定义及平面向量数量积的运用。

第二部分:教法与学法分析:采用问题引领,诱思启发式教学,具体流程为:创设情境,提出问题,类比联想,探索问题,合作交流,感知问题,教材重组,典例引领;总结反思,学以致用;并借助多媒体教学手段,使学生通过自主探索,合作交流的方法理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

第三部分:教学程序设计:(二)讲授新课2、数量积的定义已知两个非零向量Z与b,它们的夹角为■,我们把数量|将cos.叫做a与b的数量积(或内积),-b—fr-►-B--*T记作:a■,即:a■b=ab cos・规定:0・■0提问:数量积、实数与向量乘积、实数与实数乘积的区别与联系?注意:数量积:a■b=l a ll b lcosB(1)符号“■”在数量积运算中既不能省略也不能用“■”代替(2)a■表示数量而不表示向量,与■a,a■b,a■b不同,它们表示向量。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案教案:平面向量数量积一、教学目标:1.理解平面向量的数量积的概念和性质。

2.掌握平面向量的数量积的运算法则。

3.能够利用平面向量的数量积解决实际问题。

二、教学内容:1.平面向量的数量积的概念和性质。

2.平面向量的数量积的运算法则。

3.平面向量数量积的应用。

三、教学步骤:1.引入平面向量的数量积的概念。

首先通过提问和示例,引导学生思考两个平面向量的乘积是否有意义,以及该乘积有什么特殊的性质。

然后给出平面向量的数量积的定义:设有两个非零向量a和b,数量积定义为,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示向量a和b之间的夹角。

2.平面向量的数量积的性质。

通过具体的例子,讲解平面向量数量积的性质:(1)数量积的结果是一个数。

(2)数量积满足交换律、分配律。

(3)数量积的结果为0时,表示两个向量垂直,即cosθ=0。

(4)数量积的结果为正数时,表示两个向量同向,即θ为锐角。

(5)数量积的结果为负数时,表示两个向量反向,即θ为钝角。

3.平面向量的数量积的运算法则。

通过示例演算,教导学生具体的运算法则:(1)计算向量的模长:,a,=√(a1²+a2²)。

(2)计算向量的数量积:a·b = ,a,·,b,·cosθ。

(3)计算两个向量的夹角:cosθ = (a·b) / (,a,·,b,)。

(4)根据数量积的定义,解方程组:a·b=0,求出向量a与向量b 互相垂直的条件。

4.平面向量数量积的应用。

通过实际问题解决的例子,帮助学生将平面向量数量积的概念和运算法则应用到实际问题的解决中。

例如:已知有三个向量a、b和c,其中a·b=30,a·c=40,求b与c的夹角。

五、教学反思:在教学过程中,可以通过举一些具体的实际问题,提高学生的兴趣和参与度。

说课稿平面向量的数量积

说课稿平面向量的数量积

说课稿平面向量的数量积数学组徐晓飞【教材分析】两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.【教学目标】1。

理解并掌握平面向量的数量积、几何意义会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.2。

通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.【教学重点】平面向量数量积的概念【教学难点】平面向量数量积的定义及运算律的理解,平面向量数量积的应用【教学方法】启发、合作探究式【教具】多媒体、投影仪【课时】1课时任务分析两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.两向量的数量积“a·b”不同于两实数之积“ab".通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.【教学过程】一、问题情景如图40-1所示,一个力f 作用于一个物体,使该物体发生了位移s ,如何计算这个力所做的功.由于图示的力f 的方向与前进方向有一个夹角θ,真正使物体前进的力是f 在物体前进方向上的分力,这个分力与物体位移的乘积才是力f 做的功.即力f 使物体位移S 所做的功W 可用下式计算.W =|s ||f |cosθ.其中|f |cosθ就是f 在物体前进方向上的分量,也就是力f 在物体前进方向上正射影的数量.问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?二、建立模型1。

平面向量数量积的坐标表示说课稿通用二篇

平面向量数量积的坐标表示说课稿通用二篇

平面向量数量积的坐标表示说课稿通用二篇平面向量数量积的坐标表示说课稿 1一、教材分析1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的__。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。

因此结合中学生的认知结构特点和学生实际。

我将本节教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。

理解掌握向量的模、夹角等公式。

能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

教学重点平面向量数量积的坐标表示及应用教学难点探究发现公式二、教学方法和__1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生__思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。

在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案一、教学目标1. 理解平面向量的概念,掌握向量的表示方法。

2. 掌握向量的数量积运算,了解数量积的性质和运算规律。

3. 能够运用数量积解决实际问题,提高数学应用能力。

二、教学内容1. 向量的概念及表示方法2. 向量的数量积定义及计算公式3. 数量积的性质和运算规律4. 数量积在坐标系中的运算5. 数量积的应用三、教学重点与难点1. 重点:向量的概念,数量积的计算公式,数量积的性质和运算规律。

2. 难点:数量积在坐标系中的运算,数量积的应用。

四、教学方法1. 采用讲授法,讲解向量及数量积的基本概念、性质和运算规律。

2. 利用案例分析法,分析数量积在实际问题中的应用。

3. 利用数形结合法,直观展示数量积在坐标系中的运算。

4. 引导学生通过小组讨论、探究,提高学生的参与度和自主学习能力。

五、教学安排1. 第一课时:向量的概念及表示方法2. 第二课时:向量的数量积定义及计算公式3. 第三课时:数量积的性质和运算规律4. 第四课时:数量积在坐标系中的运算5. 第五课时:数量积的应用六、教学过程1. 导入:通过复习实数乘法的分配律,引导学生思考向量数量积的定义。

2. 讲解向量的概念,向量的表示方法,向量的几何直观。

3. 引入向量数量积的概念,讲解数量积的计算公式。

4. 通过实例,演示数量积的运算过程,让学生感受数量积的意义。

5. 总结数量积的性质和运算规律,引导学生发现数量积与向量坐标的关系。

七、案例分析1. 利用数量积解释物理学中的力的合成与分解。

2. 利用数量积解决几何问题,如求解平行四边形的对角线长度。

3. 利用数量积判断两个向量是否垂直。

八、数量积在坐标系中的运算1. 讲解坐标系中向量的表示方法,向量的坐标运算。

2. 推导数量积在坐标系中的运算公式。

3. 通过实例,演示数量积在坐标系中的运算过程。

4. 引导学生掌握数量积在坐标系中的运算方法,提高运算能力。

九、数量积的应用1. 利用数量积解决线性方程组。

平面向量的数量积说课稿

平面向量的数量积说课稿

平面向量的数量积说课稿本文介绍了平面向量的数量积及其运算律,是普通高中数学必修第四册第二章第五节第一课时的内容。

向量的数量积是一种新的乘法,与数的乘法不同,是整个向量部分的重要内容之一,对其他向量内容的研究具有承上启下的作用。

本节课的教学目标是通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维惯。

在教学重点和难点方面,平面向量数量积的定义及运算律的理解和应用是重点和难点。

在教法上,本节课主要采用引导发现法,通过物理情景中功的概念抽象出向量数量积的定义,再引导学生探究其几何意义和运算律。

同时,采用讲授法、讨论法和练法等相结合的方式进行教学。

在学法上,本节课主要采用类比法,通过物理情景中功的概念来理解向量数量积的物理意义,进而理解其几何意义。

再通过实数的运算律类比发现向量数量积的运算律,同时结合例题讲解和练巩固。

教学过程中,首先通过一个物理实例引出向量数量积的定义,为以后理解向量数量积打下基础。

然后引导学生从“功”的模型中得到向量数量积的概念,包括内积、夹角、投影等。

同时,讨论了数量积的性质,如单位向量和垂直向量的数量积等。

最后,本节课的教学目标是通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维惯。

在教学重点和难点方面,平面向量数量积的定义及运算律的理解和应用是重点和难点。

3.向量数量积的运算律回顾实数的运算律,让学生类比和归纳出向量数量积的一些运算律。

讨论它们是否成立。

已知向量a,b,c和λ∈R,则1) a·b=b·a(交换律)。

2) (λa)·b=λ(a·b)=a·(λb)(数乘结合律)。

3) (a+b)·c=a·c+b·c(乘法对加法的分配律)。

学生可以板书证明(1)(2),老师讲解证明(3)。

思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?4.例题讲解1)已知|a|=5,|b|=4,〈a,b〉=120°,求a·b。

基于高三数学二轮复习的平面向量数量积说课稿

基于高三数学二轮复习的平面向量数量积说课稿

基于高三数学二轮复习背景下平面向量数量积的简单应用各位老师大家好:我是来自荣昌中学的高三数学老师陶光利。

今天我说课的题目是《基于高三数学二轮复习背景下的平面向量数量积的简单应用》,下面我就围绕这节课“教什么?”、“怎么教?”、“为什么这么教?”这三个问题为入手方向,从说教材、说教学方法、说教学过程三方面对《基于高三数学二轮复习背景下的平面向量数量积的简单应用》进行说课。

第一部分:说教材1.教材所处的地位和作用我们都知道:向量的平行、垂直关系是向量间最基本、最重要的位置关系;向量的模长是向量的重要数量特征;平面向量的数量积是继向量的线性运算之后的又一重要运算,是解决问题的重要工具,是与其它知识链接的桥梁。

因此平面向量数量积是高考命题中“在知识交汇处设计考题”的重要载体。

2.学情分析高三数学一轮复习后,学生对平面向量数量积知识点有了大致了解,但还不够系统,没有形成较完整的知识框架体系(即思维导图)。

3.教学目标通过二轮专题复习达到以下目标:3.1.知识与技能:夯实中档题,强调通性通法的基础与学生合作完成平面向量数量积的知识网络体系(即思维导图)(体验痛苦的过程);3.2.过程与方法:在建立完整知识网络体系(即思维导图)的基础上,结合高考热点训练和综合模拟训练,逐步让学生感受有完整的知识网络体系(即思维导图)后对解数量积问题带来的收获,从而探索答题技巧,提高解题能力和应考能力(感受愉悦的过程)。

3.3.情感态度价值观:让学生经历思维导图的形成过程,感受由此带来的解题愉悦。

4.教学重难点重点:构建知识网络体系(即思维导图);难点:把构建的知识网络体系(即思维导图)用于解题中。

定义法第二部分:说教学方法1.教法主要通过启发式、合作探究式教学的方法开展教学 2.学法自主探究、合作交流、归纳总结 第三部分:说教学过程1.梳理知识,形成思维导图1.1.引导学生回顾如何利用平面向量数量积知识证明正弦定理、余弦定理;1.2.(创设问题情景)通过一轮复习、周考、月考、模拟考试卷中出现的平面向量数量积问题与学生一起归纳、总结出平面向量数量积有哪些运算方法;3.形成思维导图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量数量积》说课稿
一:说教材
平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。

本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。

为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。

本节内容也是全章重要内容之一。

二:说学习目标和要求
通过本节的学习,要让学生掌握
(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的手段(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。

通过精讲多练,充分调动学生自主学习的积极性。

如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五:说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1)模的计算公式
(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

然后是学习小结(由学生完成)最后作业布置!。

相关文档
最新文档