复变函数 第二章复习题

合集下载

复变函数期末考试分章节复习题

复变函数期末考试分章节复习题

第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D.142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π-B.4π-C.4πD.43π 6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=wD .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( )A. e 2+2xB. e |2i+2z|C. e 2+2zD. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________.21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程. 29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线.30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg 43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34)D .ln5+i(π-arctg 34)4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( ) A.xy+x B.2x+2y C.2xy+y D.x+y 8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.310. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2D. 211.正弦函数sinz=( )A .i e e iz iz 2-- B .2iziz ee --C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂yv. 14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________. 16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg xy,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v .24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式.27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πiD. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C.-i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Czdz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz ( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. a i 2π-B. ai π- C. a i2πD. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πiC.2πiD.6πi9.设C 为正向圆周|z |=1,则⎰=c z d z co t ( )A. -2πi B. 2πi C.-2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21i π 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .iπ2D .014.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e 3π B .e6πC .ei π2D .i e3π 16.复积分iizedz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2zz i e z i --=-⎰ dz 的值是( )A .i e B .i e - C .2πi ieD .2πi ie -18.设C为正向圆周⎰=ξ-ξξ=<=ξC 3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.设C 为正向圆周|z |=1,则=-⎰dz ie cz22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________.23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2.34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向. 36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π 38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰ ,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i 2n n e z π=的极限为() A.-1 B.0 C.1D.不存在2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .05. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z -=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( ) A. 0 B. 1 C. 2 D. 38. f(z)=211z+在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1- D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z-的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z )1z (1 C.∑∞=--0n nn )1z ()1(D. ∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n nz )z ( C.∑∞=-02n n )z (D.∑∞=---0121n n n)z ()(18. 设i 1a a lim n 1n n +=+∞→,则幂级数∑∞=+0n nn z 1n a 的收敛半径为___________.19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n nn z b 中,i b bn n n 43lim 1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n nn nz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数. 29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie-C.4ie D.4e 2. 设f(z)=1z z22-,则Res[f(z),1]=( ) A.0 B.1 C.πD.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( ) A .2 B .i C .1 D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i7.设f(z)= +--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z2i z 4e)z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x xx 1sin 2. 12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e zz21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰ ,其中C 为正向圆周||z =2.17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点.(2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0 B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0; (2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1;(2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( )A.-2B.-1C.1D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC .22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0,y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0,y ′(0)=0,求L [y ′(t)]、L [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π3.设n 为整数,则Ln (-ie )=( )A .1-2πi B .)22(πn π-i C .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23-B .i π3-C .i π43D .i π23 7.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1 二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________.14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________.16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程.18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域.20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

复变函数第2章

复变函数第2章

By 宋朝红2.1 复变函数的极限2.2 复变函数的连续性2.3 导数2.4 解析函数2.5 调和函数Math HZAU第二章导数zz f z z f z Δ)()Δ(lim 000Δ−+→1 导数与微分定义:设函数w=f(z)在包含z 0的某邻域D 内有定义,点z 0+⊿z ∈D. 如果极限存在, 则称f (z )在z 0可导, 此极限值就称为f (z )在z 0的导数, 记作0000Δ0(Δ)()d ()lim .d Δ|z z z f z z f z w f z z z=→+−′==如果f (z )在区域D 内处处可导, 则称f(z)在D内可导.例1求f (z )=z 2的导数例3讨论函数f (z )=|z|2的可导性函数可导一定连续,但连续却不一定可导例2问:函数f (z )=x +2yi 是否可导?求导公式与法则①常数的导数c ′=(a+ib )′=0.②(z n )′=nz n-1(n 是自然数).③设函数f (z ),g (z ) 均可导,则[f (z )±g (z )]′=f ′(z )±g ′(z ),[f (z )g (z )]′= f ′(z )g (z )+ f (z )g ′(z )----实函数中求导法则的推广)0)((,)()(')()()('')()(2≠−=⎥⎦⎤⎢⎣⎡z g z g z g z f z g z f z g z f④复合函数的导数( f [g (z )])′=f ′(w )g ′(z ),其中w=g (z )。

.0)()()()(10处可导点外)处在复平面上(除分母为导;在整个复平面上处处可由以上讨论z Q z P z R z a z a a z P nn =+++=⇒"⑤反函数的导数,其中: w=f (z )与z=ϕ(w )互为单值的反函数,且ϕ′(w )≠0。

)('1)('w z f ϕ=例3求f (z )=Arcsinz=-iLn (iz+ )的导数。

复变函数习题解答(第2章)

复变函数习题解答(第2章)

p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

复变函数第二章答案

复变函数第二章答案

第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.2.下列函数在何处可导何处不可导何处解析何处不解析 (1) 2().f z z z =⋅ 解:22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =⋅=⋅⋅=⋅=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =⋅仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++ 当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数;(4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件,,u v u vx y y x∂∂∂∂==-∂∂∂∂ 又()f z u iv =-也在D 中解析,也满足C R -条件()(),.u v u v x y y x∂∂-∂∂-==-∂∂∂∂ 从而应有0u u v v x y x y∂∂∂∂====∂∂∂∂恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u u u x y u u u yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ 则可推出0u ux y∂∂==∂∂,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u=,从而22(/)(/)0,0,1(/)1(/)v u v u y x v u v u ∂∂∂∂==++ 计算得2222()/0v u u u v u x x u v∂∂-∂∂=+,2222()/0,v u u u v u y y u v ∂∂-∂∂=+ 化简,利用C R -条件得0,0.uu u v y x u u u v xy ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪-=⎪∂∂⎩ 所以0,u u x y ∂∂==∂∂同理0,v vx y∂∂==∂∂即在D 中,u v 为常数,故()f z 在D 中为常数.(4) 法一:设0,a ≠则()/,u c bv a =-求导得,,u b vu b vx a xy a y∂∂∂∂=-=-∂∂∂∂ 由C R -条件,,u b uv b v x a yx a y∂∂∂∂==∂∂∂∂ 故,u v 必为常数,即()f z 在D 中为常数.设0,0,0a b c =≠≠则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数.法二:等式两边对,x y 求偏导得:0x x y y au bv au bv +=⎧⎨+=⎩,由C R -条件,我们有0,00x y x xy y au bu u a b bu au u b a -=-⎧⎛⎫⎛⎫=⎨ ⎪ ⎪+=⎝⎭⎩⎝⎭即, 而220a b +≠,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数.5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y∂∂'+=∂∂证: 设 222(),|()|,f z u iv f z u v =+=+222(),|()|()().u u u u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x yu u v v u u v v u v u v xx x x y y y y ∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u uv vu v x yx y∂∂∂∂=+==+=∂∂∂∂V V则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y∂∂==+-∂∂所以 22(363)v x xy y dy =+-⎰22333(),x y xy y x ϕ=+-+又222263(),363,()3,v uxy y x x xy y x x x xϕϕ∂∂''=++=--=-∂∂而所以 则 3()x x C ϕ=-+.故222233222222223()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ci z i x y xyi iz i Ci i z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---⋅-+=---+=-+(2) 23;v xy x =+ 解: 因23,2,v vy x x y∂∂=+=∂∂由()f z 解析,有 22,2().u v x u xdx x y x yφ∂∂====+∂∂⎰又23,u v y y x ∂∂=-=--∂∂而(),u y yφ∂'=∂所以()23,y y φ'=--则2()3.y y y C φ=--+ 故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=- 解: 因2,2(1),u u y x x y ∂∂==-∂∂由()f z 的解析性,有2(1),v ux x y∂∂=-=--∂∂22(1)(1)(),v x dx x y φ=--=--+⎰又2,v u y y x ∂∂==∂∂而(),v y yφ∂'=∂所以2()2,(),y y y y C φφ'==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx px px y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩8.试解方程:(1) 1z e =+解: (2)312(cos sin )233i k ze i eππππ+=+=+=ln 2(2)3,0,1, 2.i k e k ππ++==±±故ln 2(2),0,1, 2.3z i k k ππ=++=±±(2) ln ;2iz π=解: 2cossin.22iz e i i πππ==+=9.求下列各式的值。

复变函数第二章习题-答案

复变函数第二章习题-答案

故 Re(
五、证明题(每题10分,2题共20分)
1、试证下列函数 f ( z ) e x ( x cos y y sin y) ie x ( y cos y ix sin y) 在 z 平面上解析,
并分别求出其导数.
2、若函数 f ( z ) 与 f z 在区域 D 内都解析,试证: f ( z ) 在区域 D 内必为常数.
5、解 令 z a bi , 则
w z 1 2 2(a 1 bi) 2(a 1) 2b 1 1 1 . 2 2 2 2 2 2 z 1 z 1 (a 1) b (a 1) b (a 1) b z 1 2(a 1) z 1 2b ) 1 ) , Im( . 2 2 2 2 z 1 (a 1) b z 1 (a 1) b
2、若函数 f ( z ) u( x, y) iv( x, y) 在 D 内连续,则 u( x,y)与 v( x,y)都在 D 内连续. ( ) 3、若函数 f( z)在 z0 解析,则 f( z)在 z0 连续. 4、若 f( z)在区域 D 内解析,则|f( z)|也在 D 内解析. 5、cos z 与 sin z 的周期均为 2k . ( ( ( ) ) )
1、×
2、√
3、√ 4、×
5、√
三、填空题(每题2分,10题共20分)
1、 1 2i ,2 i
1 2、 Re( w ) 2
6、 ln 5 i arg tg

4 2k 1 π 3
7、 i 8、 e 2 k
( k 0,1,2,)
3、 7 2i 4、 1 i 5、
由柯西-黎曼定理,故 f z 在 z 平面上解析,且

复变函数第二章答案

复变函数第二章答案

32页9. 设
f ( z ) u iv 是Z的解析函数, 证明 2 | f ( z ) | )2 | f ( z )|2 (1) ( | f ( z ) | ) ( y x 证 | f ( z ) | u2 v 2 2u ux 2v v x u ux v v x | f (z) | x u2 v 2 2 u2 v 2 2u u y 2v v y u v x v ux | f (z) | 2 2 y 2 u v u2 v 2
z 0 时 ux v y , u y v x
因此 f ( z ) 在除去原点的 复平面上处处 可导 处处 解析
(4) 解
u y 1, 0, v y 0, ux 由 u y v x 得 f ( z ) Im z
f ( z ) Im z y v 0 u y,
33页16. 计算
3
i
Ln 3 ln 3 i 2k

3 e
iБайду номын сангаас
i Ln 3
e
2k [cos(ln 3) i sin(ln 3)]
k 0, 1, 2,...,
e
2k i ln 3
计算

(1 i ) i Ln(1 i ) i (1 i ) e
i
e

ln 2 ( 2k ) i 2 4
ln 2 ln 2 4 i sin ) (cos e 2 2 i 1 4) ln 2 i ( 2k ) Ln( 1 i ) Ln( 2 e
2 4
(
2k )
满足 u y v x f ( z ) x 2 iy 只有在直线 2 x 1 上可导 因此 在复平面上处处 不解析 2 2 (2) f ( z ) xy ix y 2 v x2 y 解 u xy , 2 由 ux v y 得 x y ux y , v y x 2 u y 2 xy , v x 2xy 由 u y v x 得 xy 0

复变函数第二章习题答案

复变函数第二章习题答案

复变函数第二章习题答案第二章 解析函数1-6题中:(1)只要不满足C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。

(3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。

(4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。

解析函数求导:x x iv u z f +=')(4、若函数)(z f 在区域D 上解析,并满足下列的条件,证明)(z f 必为常数。

(1)证明:因为)(z f 在区域上解析,所以。

令),(),()(y x iv y x u z f +=,即x v y u y v x u ∂∂-=∂∂∂∂=∂∂,0=∂∂+∂∂='yvi x u z f )(。

由复数相等的定义得:00=∂∂-=∂∂=∂∂=∂∂xv y u y v x u ,。

所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。

5、证明函数在平面上解析,并求出其导数。

(1)()()0f z z D '=∈z (cos sin )(cos sin ).x xe x y y y ie y y x y -++证明:设=则,;;满足xvy u y v x u ∂∂-=∂∂∂∂=∂∂,。

即函数在平面上),(y x 可微且满足C-R 条件,故函数在平面上解析。

8、(1)由已知条件求解析函数iv u z f +=)(,xy y x u +-=22,i i f +-=1)(。

复变函数与积分第二章(1)答案

复变函数与积分第二章(1)答案

1、函数2)(z z z f =在何处可导?何处不可导?何处解析?何处不解析? 解:2()f z zz =223223()()()()()f z zz x iy x iy x xy i x y y ==-+=+++32u x xy =+ ,23v x y y =+ 223u x y x∂=+∂ ,2u xy y ∂=∂2v xy x ∂=∂ ,223v x y y ∂=+∂ 显然只有当x=y=0时,四个偏导才能满足C-R 方程,因此函数只是在原点,即z=0处可导,但在整个复平面上处处不解析。

2、如果iv u z f +=)(为解析函数,试证u -是v 的共轭调和函数。

证明:由于()f z u iv =+是解析函数,所以有 u v x y∂∂=∂∂ ,u v y x ∂∂=-∂∂ 即()v u x y ∂∂-=∂∂ ,()v u y x ∂∂-=-∂∂ 也就是说,以v 为实部,以–u 为虚部构成的复变函数是一个解析函数,所以–u 是v 的共轭调和函数。

3、由下列条件求解析函数iv u z f +=)(。

(1) i f y x u -=-=)0(,)1(2;(2) (cos sin ),(0)0x u e x y y y f =-=。

解:(1) 2(1),(0)u x y f i =-=-由柯西-黎曼方程得 )12--=∂∂-=∂∂x y u x v ( ① y xu y v 2=∂∂-=∂∂ ② 由式①得)()1()()1(22⎰+--=+--=y g x y g dx x v将所得v 代入式②有 所以,)(2)(2c y y g y y g +=⇒=' []222222)1()(,0)0()1()1()1(2)()1(),(--==⇒-=+-⇒-=+--=++--+-=+=++--=z i z f c i ic i i f ic z i c y x i y x iv u z f cy x y x v 即又(2) (cos sin ),(0)0x u e x y y y f =-=因 []c y y e y x e c ydy ydy y y y x e cydy ydy y ydy x e cdy y e y y y x e dx c dy xu dx y u y x v y e y y y x e yv y y y y x e yu x v z f y y y y x e yu y e y y y x e xu x x y y x y y y x x x y x y x x x x x x x +-=++--=++-=++-+=+∂∂+∂∂-=+-=∂∂----=∂∂-=∂∂---=∂∂+-=∂∂⎰⎰⎰⎰⎰⎰⎰⎰cos sin )cos cos cos sin ()cos sin cos (cos )sin cos (0),(,cos )sin cos ()cos sin sin ()()cos sin sin (cos )sin cos (0000000),()0'0(则的解析性,有由因此ic y y y x ie y y y x e z f x x +-+-=)cos sin ()sin cos ()(由0,0)0(==C f 知,即z x x ze y y y x ie y y y x e z f =-+-=)cos sin ()sin cos ()(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 复习题
一、单项选择题:
1.函数()w f z =在点0z 则称()f z 在点0z 解析。

A )连续
B )可导
C )可微
D )某一邻域内可微
2.函数()(,)(,)f z u x y iv x y =+在点(,)x y 的C R -条件指:
A ),u v u v x y y x
∂∂∂∂=-=-∂∂∂∂ B ),u v u v x y y x ∂∂∂∂=-=∂∂∂∂ C ),v u v u x y y x ∂∂∂∂=-=∂∂∂∂ D ),v u v u x y y x
∂∂∂∂==-∂∂∂∂ 3.函数3w z =把Z 平面上单位圆在第二象限弧段变成W 平面上单位圆的 象限弧段.
A )第一、二、三
B )第二、三、四
C )第三、四、一
D )第四、一、二
4.函数()(,)(,)f z u x y iv x y =+在区域D 内有定义,则(1)(,)u x y ,(,)v x y 在区域D 满足C R -条件.(2),,,x y x y u u v v 在D 连续,是()f z 在区域D 可微的 条件
A )必要非充分
B )充分非必要
C )充分必要
D )以上都不对
5.指数函数z e ω=的基本周期为
A )2π
B )2i π
C )i π
D )π
6.设12,22
i z i z ==+,则ln z 2z (ln z 表示主值) A )〈 B 〉= C ) 〉 D )无法比较大小
7.cos(2i A )≤1 B )=2 C )〈2 D 〉2
8.设z x iy =+,则2z e = A )2z e B )22x y e
- C )22x y e - D 22x y e - 9.2()f z x iy =-,直线1:2
L x =-
,则()f z 在 A )Z 平面上解析 B )L 上可微 C )L 上可析 D )Z 平面上可微
10.以0,1,∞为支点的函数有
A B C D
11.设()f z =0C 为单位圆,则0arg ()C f z ∆=
A )π
B )2π
C )
43π D )23π 12.函数z w e =把Z 平面上实轴变换成W 平面上
A )负实轴
B )正实轴
C )实轴
D )单位圆
13.一般幂函数i
w z =是 函数
A )单值
B )有限的多值
C )无限多值
D )以上都不对
14.若()(),,,u x y v x y 在点(),x y 满足C R -条件.则()f z u iv =+在点(),x y
A )可微
B )不可微
C )不一定可微
D )解析
15.复数i z i =,其幅角主值arg z = A )2π
- B )2
π C )π D )0 二、多项选择题:
1. 函数()f z z -=在Z 平面上处处
A )不连续
B )连续
C )不可微
D )可微
E )解析
2. 函数()()(),,f z u x y iv x y =+在点z 可微,则()f z '=
A )u v i x x ∂∂+∂∂
B )u u i x y ∂∂-∂∂
C )u v i x y ∂∂+∂∂
D )v v i y x ∂∂+∂∂
E )v u i y y
∂∂-∂∂ 3. 在Z 平面上任何一点不解析的函数有
A )2
()f z z = B )()Re f z z = C )22()f z xy ix y =+ D )22x iy + E )3323x iy +
4. 方程ln 2i
z π=的解为
A )z i =-
B )z i =
C )2i
z e
π-=
D )2i z e π=
E )z e π=
5. 复数3i z i =的幅角Argz 可以是
A )0
B )
2π C )2π- D )2π E )2π- 二、填空题:
1若()f z 在点0z 则称0z 为()f z 的奇点。

2.函数()()(),,f z u x y iv x y =+在区域D 内解析的充要条件是:(1)
(2)
3.对任意复数z ,若z w z e
e +=,则必有w =
4.根式函数w == 5具有这种性质的点:使当 则称此点为多值函数的支点。

6.根式函数w 只以 及 为支点,以 为支割线, 且在 能分出n 个单值解析分支.
7.()34Ln i --=
8.对一般幂函数a w z =,
(1)当 a z 是z 的单值函数
(2)当 a z 取 个不同的值
(3)当 a z 是无限多值的
9.函数()w f z ==,其中12m z z z 互不相同,且12m a a a N +++=
(1)当且仅当 时,k z 是()f z 的支点
(2)当且仅当 时,∞是()f z 的支点
10.由已给单值解析分支的初值1()f z ,计算终值2()f z ,即2()f z = 其中arg ()c f z ∆为
四、计算题:
1.()()()cos sin cos sin x x f z e x y y y ie y y x y =-++是否在Z 平面上解析?
如果是,求其导函数。

2.设z x iy =+,试求1Re z e ⎛⎫ ⎪⎝⎭
3.试求函数()cos 1i -之值
第二章
一、1.D 2.C 3.D 4.B 5.B 6.C 7.D 8.C 9.B 10.
11.D 12.B 13.C 14.C 15.D
二、1.BC 2.ABDE 3.ABCDE 4.BD 5.ADE
三、1、不解析,但在0z 的任一领域内总有()f z 的解析点
2、(1)二元函数(),u x y 、(),v x y 在D 内满足C R -条件。

3、2k i π(k 为整数)
4、arg 21
z k n n z e π+,0,1,,1k n =-
5、变点z 绕这点一整周时,多值函数从其一支变到另一支。

6、,,z a z ==∞以z a =出发并伸向无穷的广义简单曲线,割破后的z 平面上。

7、()4ln 5arg 213i tg k π⎡⎤++-⎢⎥⎣⎦
8、(1)a 是一整时, (2)a 是一有理数学
p q
,(既约分数) (3)a 是一无理数或虚数。

9、(1) 10、()()arg 2c i f z f z e ∆,()1arg i f z e ,当z 从1z 沿曲线C 到终点2z 时,()f z 的幅
角的连续改变量
四、1、解:()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()c o s s i n c o s x x y u e x y y y y v =-+
= ()s i n s i n c o s x y x u e x y y y
y v =--+=-
故()f z 在z 平面上解析,且
()()()'cos 1sin sin 1cos x x f z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦ 2、解:11
x yi x y i x iy x y
x y x y z e e e e e
--++++===⋅ 21R e c o s x y x y
x y z e e ++⎛⎫∴= ⎪⎝⎭ 3、解:()()()11cos 12i i i i e e
i ---+-=
()112i i i e e -+++=
c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭。

相关文档
最新文档