复变函数 第二章复习题
复变函数期末考试分章节复习题
第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D.142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π-B.4π-C.4πD.43π 6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=wD .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( )A. e 2+2xB. e |2i+2z|C. e 2+2zD. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________.21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程. 29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线.30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg 43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34)D .ln5+i(π-arctg 34)4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( ) A.xy+x B.2x+2y C.2xy+y D.x+y 8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.310. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2D. 211.正弦函数sinz=( )A .i e e iz iz 2-- B .2iziz ee --C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂yv. 14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________. 16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg xy,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v .24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式.27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πiD. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C.-i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Czdz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz ( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. a i 2π-B. ai π- C. a i2πD. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πiC.2πiD.6πi9.设C 为正向圆周|z |=1,则⎰=c z d z co t ( )A. -2πi B. 2πi C.-2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21i π 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .iπ2D .014.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e 3π B .e6πC .ei π2D .i e3π 16.复积分iizedz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2zz i e z i --=-⎰ dz 的值是( )A .i e B .i e - C .2πi ieD .2πi ie -18.设C为正向圆周⎰=ξ-ξξ=<=ξC 3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.设C 为正向圆周|z |=1,则=-⎰dz ie cz22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________.23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2.34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向. 36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π 38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰ ,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i 2n n e z π=的极限为() A.-1 B.0 C.1D.不存在2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .05. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z -=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( ) A. 0 B. 1 C. 2 D. 38. f(z)=211z+在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1- D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z-的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z )1z (1 C.∑∞=--0n nn )1z ()1(D. ∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n nz )z ( C.∑∞=-02n n )z (D.∑∞=---0121n n n)z ()(18. 设i 1a a lim n 1n n +=+∞→,则幂级数∑∞=+0n nn z 1n a 的收敛半径为___________.19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n nn z b 中,i b bn n n 43lim 1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n nn nz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数. 29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie-C.4ie D.4e 2. 设f(z)=1z z22-,则Res[f(z),1]=( ) A.0 B.1 C.πD.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( ) A .2 B .i C .1 D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i7.设f(z)= +--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z2i z 4e)z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x xx 1sin 2. 12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e zz21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰ ,其中C 为正向圆周||z =2.17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点.(2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0 B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0; (2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1;(2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( )A.-2B.-1C.1D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC .22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0,y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0,y ′(0)=0,求L [y ′(t)]、L [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π3.设n 为整数,则Ln (-ie )=( )A .1-2πi B .)22(πn π-i C .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23-B .i π3-C .i π43D .i π23 7.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1 二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________.14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________.16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程.18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域.20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。
复变函数第2章
By 宋朝红2.1 复变函数的极限2.2 复变函数的连续性2.3 导数2.4 解析函数2.5 调和函数Math HZAU第二章导数zz f z z f z Δ)()Δ(lim 000Δ−+→1 导数与微分定义:设函数w=f(z)在包含z 0的某邻域D 内有定义,点z 0+⊿z ∈D. 如果极限存在, 则称f (z )在z 0可导, 此极限值就称为f (z )在z 0的导数, 记作0000Δ0(Δ)()d ()lim .d Δ|z z z f z z f z w f z z z=→+−′==如果f (z )在区域D 内处处可导, 则称f(z)在D内可导.例1求f (z )=z 2的导数例3讨论函数f (z )=|z|2的可导性函数可导一定连续,但连续却不一定可导例2问:函数f (z )=x +2yi 是否可导?求导公式与法则①常数的导数c ′=(a+ib )′=0.②(z n )′=nz n-1(n 是自然数).③设函数f (z ),g (z ) 均可导,则[f (z )±g (z )]′=f ′(z )±g ′(z ),[f (z )g (z )]′= f ′(z )g (z )+ f (z )g ′(z )----实函数中求导法则的推广)0)((,)()(')()()('')()(2≠−=⎥⎦⎤⎢⎣⎡z g z g z g z f z g z f z g z f④复合函数的导数( f [g (z )])′=f ′(w )g ′(z ),其中w=g (z )。
.0)()()()(10处可导点外)处在复平面上(除分母为导;在整个复平面上处处可由以上讨论z Q z P z R z a z a a z P nn =+++=⇒"⑤反函数的导数,其中: w=f (z )与z=ϕ(w )互为单值的反函数,且ϕ′(w )≠0。
)('1)('w z f ϕ=例3求f (z )=Arcsinz=-iLn (iz+ )的导数。
复变函数习题解答(第2章)
p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
复变函数第二章答案
第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.2.下列函数在何处可导何处不可导何处解析何处不解析 (1) 2().f z z z =⋅ 解:22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =⋅=⋅⋅=⋅=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =⋅仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++ 当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数;(4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件,,u v u vx y y x∂∂∂∂==-∂∂∂∂ 又()f z u iv =-也在D 中解析,也满足C R -条件()(),.u v u v x y y x∂∂-∂∂-==-∂∂∂∂ 从而应有0u u v v x y x y∂∂∂∂====∂∂∂∂恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u u u x y u u u yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ 则可推出0u ux y∂∂==∂∂,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u=,从而22(/)(/)0,0,1(/)1(/)v u v u y x v u v u ∂∂∂∂==++ 计算得2222()/0v u u u v u x x u v∂∂-∂∂=+,2222()/0,v u u u v u y y u v ∂∂-∂∂=+ 化简,利用C R -条件得0,0.uu u v y x u u u v xy ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪-=⎪∂∂⎩ 所以0,u u x y ∂∂==∂∂同理0,v vx y∂∂==∂∂即在D 中,u v 为常数,故()f z 在D 中为常数.(4) 法一:设0,a ≠则()/,u c bv a =-求导得,,u b vu b vx a xy a y∂∂∂∂=-=-∂∂∂∂ 由C R -条件,,u b uv b v x a yx a y∂∂∂∂==∂∂∂∂ 故,u v 必为常数,即()f z 在D 中为常数.设0,0,0a b c =≠≠则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数.法二:等式两边对,x y 求偏导得:0x x y y au bv au bv +=⎧⎨+=⎩,由C R -条件,我们有0,00x y x xy y au bu u a b bu au u b a -=-⎧⎛⎫⎛⎫=⎨ ⎪ ⎪+=⎝⎭⎩⎝⎭即, 而220a b +≠,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数.5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y∂∂'+=∂∂证: 设 222(),|()|,f z u iv f z u v =+=+222(),|()|()().u u u u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x yu u v v u u v v u v u v xx x x y y y y ∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u uv vu v x yx y∂∂∂∂=+==+=∂∂∂∂V V则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y∂∂==+-∂∂所以 22(363)v x xy y dy =+-⎰22333(),x y xy y x ϕ=+-+又222263(),363,()3,v uxy y x x xy y x x x xϕϕ∂∂''=++=--=-∂∂而所以 则 3()x x C ϕ=-+.故222233222222223()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ci z i x y xyi iz i Ci i z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---⋅-+=---+=-+(2) 23;v xy x =+ 解: 因23,2,v vy x x y∂∂=+=∂∂由()f z 解析,有 22,2().u v x u xdx x y x yφ∂∂====+∂∂⎰又23,u v y y x ∂∂=-=--∂∂而(),u y yφ∂'=∂所以()23,y y φ'=--则2()3.y y y C φ=--+ 故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=- 解: 因2,2(1),u u y x x y ∂∂==-∂∂由()f z 的解析性,有2(1),v ux x y∂∂=-=--∂∂22(1)(1)(),v x dx x y φ=--=--+⎰又2,v u y y x ∂∂==∂∂而(),v y yφ∂'=∂所以2()2,(),y y y y C φφ'==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx px px y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩8.试解方程:(1) 1z e =+解: (2)312(cos sin )233i k ze i eππππ+=+=+=ln 2(2)3,0,1, 2.i k e k ππ++==±±故ln 2(2),0,1, 2.3z i k k ππ=++=±±(2) ln ;2iz π=解: 2cossin.22iz e i i πππ==+=9.求下列各式的值。
复变函数第二章习题-答案
故 Re(
五、证明题(每题10分,2题共20分)
1、试证下列函数 f ( z ) e x ( x cos y y sin y) ie x ( y cos y ix sin y) 在 z 平面上解析,
并分别求出其导数.
2、若函数 f ( z ) 与 f z 在区域 D 内都解析,试证: f ( z ) 在区域 D 内必为常数.
5、解 令 z a bi , 则
w z 1 2 2(a 1 bi) 2(a 1) 2b 1 1 1 . 2 2 2 2 2 2 z 1 z 1 (a 1) b (a 1) b (a 1) b z 1 2(a 1) z 1 2b ) 1 ) , Im( . 2 2 2 2 z 1 (a 1) b z 1 (a 1) b
2、若函数 f ( z ) u( x, y) iv( x, y) 在 D 内连续,则 u( x,y)与 v( x,y)都在 D 内连续. ( ) 3、若函数 f( z)在 z0 解析,则 f( z)在 z0 连续. 4、若 f( z)在区域 D 内解析,则|f( z)|也在 D 内解析. 5、cos z 与 sin z 的周期均为 2k . ( ( ( ) ) )
1、×
2、√
3、√ 4、×
5、√
三、填空题(每题2分,10题共20分)
1、 1 2i ,2 i
1 2、 Re( w ) 2
6、 ln 5 i arg tg
4 2k 1 π 3
7、 i 8、 e 2 k
( k 0,1,2,)
3、 7 2i 4、 1 i 5、
由柯西-黎曼定理,故 f z 在 z 平面上解析,且
复变函数第二章答案
32页9. 设
f ( z ) u iv 是Z的解析函数, 证明 2 | f ( z ) | )2 | f ( z )|2 (1) ( | f ( z ) | ) ( y x 证 | f ( z ) | u2 v 2 2u ux 2v v x u ux v v x | f (z) | x u2 v 2 2 u2 v 2 2u u y 2v v y u v x v ux | f (z) | 2 2 y 2 u v u2 v 2
z 0 时 ux v y , u y v x
因此 f ( z ) 在除去原点的 复平面上处处 可导 处处 解析
(4) 解
u y 1, 0, v y 0, ux 由 u y v x 得 f ( z ) Im z
f ( z ) Im z y v 0 u y,
33页16. 计算
3
i
Ln 3 ln 3 i 2k
解
3 e
iБайду номын сангаас
i Ln 3
e
2k [cos(ln 3) i sin(ln 3)]
k 0, 1, 2,...,
e
2k i ln 3
计算
解
(1 i ) i Ln(1 i ) i (1 i ) e
i
e
ln 2 ( 2k ) i 2 4
ln 2 ln 2 4 i sin ) (cos e 2 2 i 1 4) ln 2 i ( 2k ) Ln( 1 i ) Ln( 2 e
2 4
(
2k )
满足 u y v x f ( z ) x 2 iy 只有在直线 2 x 1 上可导 因此 在复平面上处处 不解析 2 2 (2) f ( z ) xy ix y 2 v x2 y 解 u xy , 2 由 ux v y 得 x y ux y , v y x 2 u y 2 xy , v x 2xy 由 u y v x 得 xy 0
复变函数第二章习题答案
复变函数第二章习题答案第二章 解析函数1-6题中:(1)只要不满足C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。
(3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。
(4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。
解析函数求导:x x iv u z f +=')(4、若函数)(z f 在区域D 上解析,并满足下列的条件,证明)(z f 必为常数。
(1)证明:因为)(z f 在区域上解析,所以。
令),(),()(y x iv y x u z f +=,即x v y u y v x u ∂∂-=∂∂∂∂=∂∂,0=∂∂+∂∂='yvi x u z f )(。
由复数相等的定义得:00=∂∂-=∂∂=∂∂=∂∂xv y u y v x u ,。
所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。
5、证明函数在平面上解析,并求出其导数。
(1)()()0f z z D '=∈z (cos sin )(cos sin ).x xe x y y y ie y y x y -++证明:设=则,;;满足xvy u y v x u ∂∂-=∂∂∂∂=∂∂,。
即函数在平面上),(y x 可微且满足C-R 条件,故函数在平面上解析。
8、(1)由已知条件求解析函数iv u z f +=)(,xy y x u +-=22,i i f +-=1)(。
复变函数与积分第二章(1)答案
1、函数2)(z z z f =在何处可导?何处不可导?何处解析?何处不解析? 解:2()f z zz =223223()()()()()f z zz x iy x iy x xy i x y y ==-+=+++32u x xy =+ ,23v x y y =+ 223u x y x∂=+∂ ,2u xy y ∂=∂2v xy x ∂=∂ ,223v x y y ∂=+∂ 显然只有当x=y=0时,四个偏导才能满足C-R 方程,因此函数只是在原点,即z=0处可导,但在整个复平面上处处不解析。
2、如果iv u z f +=)(为解析函数,试证u -是v 的共轭调和函数。
证明:由于()f z u iv =+是解析函数,所以有 u v x y∂∂=∂∂ ,u v y x ∂∂=-∂∂ 即()v u x y ∂∂-=∂∂ ,()v u y x ∂∂-=-∂∂ 也就是说,以v 为实部,以–u 为虚部构成的复变函数是一个解析函数,所以–u 是v 的共轭调和函数。
3、由下列条件求解析函数iv u z f +=)(。
(1) i f y x u -=-=)0(,)1(2;(2) (cos sin ),(0)0x u e x y y y f =-=。
解:(1) 2(1),(0)u x y f i =-=-由柯西-黎曼方程得 )12--=∂∂-=∂∂x y u x v ( ① y xu y v 2=∂∂-=∂∂ ② 由式①得)()1()()1(22⎰+--=+--=y g x y g dx x v将所得v 代入式②有 所以,)(2)(2c y y g y y g +=⇒=' []222222)1()(,0)0()1()1()1(2)()1(),(--==⇒-=+-⇒-=+--=++--+-=+=++--=z i z f c i ic i i f ic z i c y x i y x iv u z f cy x y x v 即又(2) (cos sin ),(0)0x u e x y y y f =-=因 []c y y e y x e c ydy ydy y y y x e cydy ydy y ydy x e cdy y e y y y x e dx c dy xu dx y u y x v y e y y y x e yv y y y y x e yu x v z f y y y y x e yu y e y y y x e xu x x y y x y y y x x x y x y x x x x x x x +-=++--=++-=++-+=+∂∂+∂∂-=+-=∂∂----=∂∂-=∂∂---=∂∂+-=∂∂⎰⎰⎰⎰⎰⎰⎰⎰cos sin )cos cos cos sin ()cos sin cos (cos )sin cos (0),(,cos )sin cos ()cos sin sin ()()cos sin sin (cos )sin cos (0000000),()0'0(则的解析性,有由因此ic y y y x ie y y y x e z f x x +-+-=)cos sin ()sin cos ()(由0,0)0(==C f 知,即z x x ze y y y x ie y y y x e z f =-+-=)cos sin ()sin cos ()(。
复变函数论第二章习题全解
第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有 0)()(lim)(0101001=--='→t t t z t z t z n n t t n此与假设矛盾. 01001),(t t t t t >⇒+∈δ 因为 [])()(arg )()(arg010101t z t z t t t z t z -=--所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-=()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微. (2)在C 上处处不满足C R -条件.(3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且 00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-=且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Qx ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+= ()sin sin cos x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有xchy v xshy v xshy u xchy u y x y x cos ,sin ,sin ,cos =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x cos sin cos )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有xchy v xshy v xshy u xchy u y x y x sin ,cos ,cos ,sin -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x sin cos sin )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1cos sin sin cos r i u i u rθθθθθ=--+()()cos sin sin cos r r i u i v θθθθ=-++ ()()cos sin r r i u iv θθ=-+ ()()1cos sin r r r r ru iv u iv i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e-+++=cos11sin1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)cos()cos(cos nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=-- (4) z z iz i iz cos )cos()cos()cosh(=-=⋅=(5) z i zz i iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121shz shz chz chz +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshyi xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( shz e e e e chz zz z z =-='+='--2)2()( 20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z +=(4)z z sin cos -=,即1tan -=z ,所以ππk i i i z +-=+-=411ln21 (5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255iz i e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此 1)()(4+-=-=R z f z f AB.26.证明:()f z = 0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()arg f z π=得()()arg c i f z i f i e π∆=()2arg 1arg 3c c i z z ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z z f z z z f z z z z+-+⋅==---()4242121Re mz I z i z z-+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i yv x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x vy u y v x u ∂∂-=∂∂∂∂=∂∂,,得0=∂∂zf 5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y shy Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 chR t ≤sin又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有 (1) 10182)(,8)(arg ie c ei f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆2]0[21ππ-=-=故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f π-==,i f 162)1(-=-''.。
2022年复变函数与积分变换第二章解析函数练习题及答案
第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xvix u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w . 四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz wd dz dw .六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(. 八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ,n 的方向导数). 九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析. 十、解方程i z i z 4cos sin =+.第二章 解析函数一、1.(B ) 2.(B ) 3.(D ) 4.(C ) 5.(A ) 6.(C ) 7.(C ) 8.(C ) 9.(A ) 10.(D ) 11.(A ) 12.(C ) 13.(D ) 14.(B ) 15.(C )二、填空题1.i +1 2.常数 3.x vx u ∂∂∂∂,可微且满足222222,xv y x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.i 827427- 5.ic xyi y x ++-222或ic z +2,c 为实常数 6.i 7.3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.),2,1,0(2 ±±=π-k e k9.34arctan- 10.),2,1,0(2 ±±=πk i k 四、1.;sin )(z z f -=' 2..)1()(ze z zf +='五、zw e w dz dw z2322--=, 22222222)23(2431268234)(6z w z e e w e w w e w z w e dzdw dz dw w dzwd z z z z z-+---+=--+-=. 七、c i z i z f )1(21)(2++-=.c 为任意实常数. 十、),2,1,0(4ln 2 ±±=+π-=k i k z .。
复变函数第二章答案
第二章第二章 解析函数解析函数1.用导数定义,求下列函数的导数:.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z D ®+D -D0()Re()Re lim z z z z z z zz D ®+D +D -=D 0Re Re Re limz z z z z z zz D ®D +D +D D =D0Re lim(ReRe )z zz z z z D ®D =+D +D00Re lim(Re )lim(Re ),z x y zx z z z z z x i y D ®D ®D ®D D =+=+D D +D当0z ¹时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =× 解: 22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =×=××=×=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x yu u v v 均连续,故2().f z z z =×仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az bc d cz d++至少有一不为零解: 当0c ¹时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点, 222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +¢¢=+¢¢++-++=++-+-==++ 当0c =时,显然有0d ¹,故()az b f z d +=在复平面上处处解析,且()a f z d ¢=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数; (4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件条件,,u v u v x y y x¶¶¶¶==-¶¶¶¶又()f z u iv =-也在D 中解析,也满足C R -条件条件()(),.u v u v x y y x¶¶-¶¶-==-¶¶¶¶ 从而应有0u u v v x y x y¶¶¶¶====¶¶¶¶恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u uu x y u u u yx ¶¶ì=ﶶïí¶¶ï=-ﶶî 则可推出0u u x y¶¶==¶¶,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u =,从而22(/)(/)0,0,1(/)1(/)v u v u yx v u v u ¶¶¶¶==++计算得计算得2222()/0v uu u v u xxu v ¶¶-¶¶=+,2222()/0,v uu u v u yy u v ¶¶-¶¶=+化简,利用C R -条件得条件得0,0.uu u v yx u u u v xy ¶¶ì--=ﶶïí¶¶ï-=ﶶî 所以0,u u x y ¶¶==¶¶同理0,v vx y ¶¶==¶¶即在D 中,u v 为常数,故()f z 在D 中为常数. (4) 法一:设0,a ¹则()/,u c bv a =-求导得求导得,,u b v u b v xa x ya y ¶¶¶¶=-=-¶¶¶¶由C R -条件条件,,u b u v b vx a y x a y ¶¶¶¶==¶¶¶¶ 故,u v 必为常数,即()f z 在D 中为常数. 设0,0,0a b c =¹¹则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数. 法二:等式两边对,x y 求偏导得:00x x y y au bv au bv +=ìí+=î,由C R -条件,我们有条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-ìæöæö=íç÷ç÷+=èøîèø即, 而220a b+¹,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z xy¶¶¢+=¶¶证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().uuu u f z i f z x yx y ¶¶¶¶¢¢=-=+¶¶¶¶ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v xyx y u u v v u u v vu v u v x x x x y y y y ¶¶¶¶+=+++¶¶¶¶éù¶¶¶¶¶¶¶¶=+++++++êú¶¶¶¶¶¶¶¶ëû又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v v u v xyx y¶¶¶¶=+==+=¶¶¶¶则22222222()|()|4(()())4|()|.u u f z f z x yxy¶¶¶¶¢+=+=¶¶¶¶6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y ¶¶==+-¶¶所以所以 22(363)v x xy y dy =+-ò22333(),x y xy y x j =+-+又222263(),363,()3,v u xy y x x xy y x x xxj j ¶¶¢¢=++=--=-¶¶而所以 则3()x x C j =-+.故2222222233332222222233()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ciz i x y xyi iz i Cii z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---×-+=---+=-+ (2) 23;v xy x =+解: 因23,2,v v y x xy¶¶=+=¶¶由()f z 解析,有22,2().u v x u xdx x y x yf ¶¶====+¶¶ò又23,u v y y x ¶¶=-=--¶¶而(),u y y f ¶¢=¶所以()23,y y f ¢=--则2()3.y y y C f =--+故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=-解: 因2,2(1),u u y x x y ¶¶==-¶¶由()f z 的解析性,有2(1),v ux x y ¶¶=-=--¶¶22(1)(1)(),v x d x x y f =--=--+ò 又2,v uy y x ¶¶==¶¶而(),v y yf ¶¢=¶所以2()2,(),y y y y C f f ¢==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,pxv e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yyv v v D =+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.xy y x uv u v ==-1(,)cos cos (),1sin ()sin .pxpx x px px y u x y u dx e ydx e y y pu e y y pe y pf f ===+¢=-+=-òò()3i 33)i 3p),i p p p.22ee e e ==c t 3(1)l n 2(2)4l n22l n 2244ln 224cos(ln 2)sin(ln 2).44i i k k i k k ee ei p p p p p p pp p p éù++-+êúëûéù+-++-êúëû+-==éù=-+-êúëû(4) 33;i- 解: 3(3)ln3(3)(ln32)3ii i k i eep---+==(3)l n 323l n 32227(c o s l n3s i n l n 3).i k k i ik ee eee i p p p-+-=×=×=-。
复变函数 刘敏思 第二章 习题解答
z =iy
+i
∂v ∂x
z =iy
= k ⋅ 0 + i ⋅0 = 0 。
3. 讨论下列函数在复平面 ℂ 上的可微性和解析性,并在可导的情况下求它们的导函数: ( 1) f ( z ) = x + i y ; (2) f ( z ) = e + ie ; (3) f ( z ) = x − 3 xy + i (3 x y − y ) ; ( 4) f ( z ) = e x ( x cos y − y sin y ) + i e x ( y cos y + x sin y ) . 解 (1)记 f ( z ) = u ( x, y ) + iv ( x , y ) ,则 u ( x, y ) = x , v( x, y ) = y 。易见它们都在复平面上可 微。要使柯西—黎曼条件满足,只须
4. 设 f ( z ) 在区域 D 内解析,若下列关系之一成立, ( 1) Im[ f ( z)] ≡ c ,其中 c 为实常数; ( 2) α Re[ f ( z )] + β Im[ f ( z)] = c ,其中 α , β , c ∈ ℝ 且 α + β ≠ 0 ;
2 2
( 3) Re[ f ( z )] = {Im[ f ( z)]} , 则 f ( z) 在区域 D 内为常数 . 证明 记 f ( z ) = u ( x, y ) + iv ( x , y ) ( 1)由条件得, v( x, y ) ≡ c ,因为 f ( z ) 在区域 D 内解析,由柯西—黎曼条件,在区域 D 内
f ( z ) = x 2 + y 2 , u ( x, y ) = x 2 + y 2 , v( x, y) = 0 。
复变函数1到5章测试题及答案
第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。
复变函数复习题二(参考答案)
复习题二一、 判断题(正确打∨,错误打⨯,把判断结果填入下表。
):1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内解析。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若0z 为)(z f 的孤立奇点,且)(lim 0z f z z →存在且有限,则z 0是函数f (z )的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )二、 单项选择题(将选择结果填入下表。
).)Re()Re()(;)(;)(;)()(,12121212121z z D z z C z z B z z A z z =====则必有若、.)2,3,2()()2,3,2()(;)2,3,2()(;)2,2,3()()(),,()23()()(222----=+++++-=D C B A c b a y x cxy i by ax y x z f 处处解析,则若、.2)(;2)(;)12()(;)()12()()(13ππππk D i k z C k z B k i k z A e z =-=+==为整数,则此方程解为方程、.0)(;0)(;)(;)()(4122但发散,通项趋于通项不趋于绝对收敛条件收敛为级数、D C B A ne n in ∑∞=.)(;)(;)(;)()(0sin 52二级极点一级极点可去奇点本性奇点是在点函数、D C B A z zz =三、填空题.,2,1,0,23,2311 ±±=+-=-=k k Argz iz ππ则设、2、=+-++→11lim 22z iz z i z _21i -_________。
复变函数习题答案第2章习题详解
第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()zz z z z n n z nz z zz z z znn n n n z nn z n ∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 2210121limlim'()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim'2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂x v ,1-=∂∂y v 都是连续函数。
只有12-=x ,即21-=x 时才满足柯西—黎曼方程。
()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。
2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂x v ,29y yv =∂∂都是连续函数。
只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。
()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。
3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy yu 2=∂∂,xy x v 2=∂∂,2x y v =∂∂都是连续函数。
只有22x y =且xy xy 22-=,即0==y x 时才满足柯西—黎曼方程。
复变函数与积分变换第二章测验题与答案
第二章 解析函数一、选择题:1.函数在点处是( )23)(z z f =0=z (A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( ))Im()(2z z z f =0=z (A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是)(z f D(A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D (D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( )i i (A ) (B ) (C ) (D )012πe 2π-e 11.在复平面上( )z e (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( )(A ) (B ) (C ) (D )3)1(i -i cos i ln e23π-15.设是复数,则( )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则 i f f +='=1)0(,1)0(=-→zz f z 1)(lim2.设在区域内是解析的,如果是实常数,那么在内是 iv u z f +=)(D v u +)(z f D 3.导函数在区域内解析的充要条件为 xv i x u z f ∂∂+∂∂=')(D 4.设,则 2233)(y ix y x z f ++==+-')2323(i f 5.若解析函数的实部,那么 iv u z f +=)(22y x u -==)(z f 6.函数仅在点 处可导)Re()Im()(z z z z f -==z 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 8.复数的模为 i i 9.=-)}43Im{ln(i 10.方程的全部解为01=--z e 三、设为的解析函数,若记),(),()(y x iv y x u z f +=iy x z +=,则.)2,2(2,2(,(i z z z z iv i z z z z u z z w -++-+=0=∂∂zw四、试证下列函数在平面上解析,并分别求出其导数z 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设,求.023=+-ze zw w 22,dz wd dz dw六、设试证在原点满足柯西-黎曼方程,但却不可导.⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f )(z f 七、已知,试确定解析函数.22y x v u -=-iv u z f +=)(八、设和为平面向量,将按逆时针方向旋转即得.如果为解析函数,s n s2πniv u z f +=)(则有(与分别表示沿,的方向导数).s v n u n v s u ∂∂-=∂∂∂∂=∂∂,s ∂∂n∂∂s n 九、若函数在上半平面内解析,试证函数在下半平面内解析.)(z f )(z f 十、解方程.i z i z 4cos sin =+答案第二章 解析函数一、1.(B ) 2.(B ) 3.(D ) 4.(C ) 5.(A ) 6.(C ) 7.(C ) 8.(C ) 9.(A ) 10.(D ) 11.(A ) 12.(C ) 13.(D ) 14.(B ) 15.(C )二、填空题1.2.常数3.可微且满足i +1x vx u ∂∂∂∂,222222,xv y x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.5.或,为实常数6.i 827427-ic xyi y x ++-222ic z +2c i7.8.3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k ),2,1,0(2 ±±=π-k ek 9. 10.34arctan-),2,1,0(2 ±±=πk ik 四、1.2.;sin )(z z f -='.)1()(ze z zf +='五、,zw e w dz dw z2322--=.22222222)23(2431268234)(6z w z e e w e w w e w z w e dzdw dz dw w dzwd z z z z z-+---+=--+-=七、.为任意实常数.c i z i z f )1(21)(2++-=c 十、.),2,1,0(4ln 2 ±±=+π-=k i k z。
复变函数第二章
第二章全纯函数§2.1习题1.研究下列函数的可微性: (i )();f z z = 解: 0z ≠时00000()()limlim z z z z z z f z f z z z z z →→--=--不存在 这是因为当0z x iy =+时,000limlimy y y y →→=当0z x iy =+时,000limlimx x x x →→==故0z ≠时,()f z 不可导.当0z =时,有()(0)i i z f z f r e z z reθθ-∆∆-∆===∆∆∆ 即知()f z z =在0z =也不可导. 从而()f z z =处处不可导. (ii) 2();f z z = 解:0z ≠时00220000()()lim lim z z z z z z f z f z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时0022220000000000()()lim lim 2x x x x x y x y x x x x x x iy x iy x x →→+---+==+--- 当0z x iy =+时,0022220000000000()()2lim lim ()y y y y x y x y y y y y y x iy x iy y y i i→→+---+==+--- 0z =时可导,(0)0f '=.(iii )()Re ;f z z =00000()()Re Re limlimz z z z f z f z z z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时,000lim1x x x x x iy x iy →-=+--.当0z x iy =+时,00000lim0y y x x x iy x iy →-=+--从而()Re f z z =处处不可导 (v) ()f z 为常数不妨设(),f z C =显然'()0f z = 故()f z C =在处处可导.2.设f 和g 都在0z 处可微,且'000()()0,()0f z g z g z ==≠证明:0'0'0()()lim()()z z f z f z g z g z →= 提示:0000()()()limlim ()()()z z z z f z f z f z g z g z g z →→-=- 0000000()()()lim()()()z z f z f z z z f z z z g z g z g z →'--=⋅='--4.设域G 和域D 关于实轴对称,证明:如果()f z 是D 上的全纯函数,那么()f z 是G 上的全纯函数. 提示:00()()()()limlim (),z z f z z f z f z z f z f z z G z z →→⎡⎤+-+-'==∈⎢⎥⎣⎦§2.2习题1.设D 是域,).(D H f ∈如果对每个,D z ∈都有'()0f z =,证明f 是一常数. 证明:因为'()0f z =,而'()f z =u vi x x∂∂+∂∂=0(定理2.2.4) 所以u x ∂∂=0, v x ∂∂=0,而u x ∂∂=v y ∂∂,u y ∂∂=vx∂-∂.故u y ∂∂=0, v y ∂∂=0.因此f 是一个常数.3.设iy x z +=,证明xy z f =)(在z=0处满足Cauchy-Reimann 方程,但f 在z=0处不可微.提示: u =,0v =.直接算偏导.8.设D 是域, ()f H D ∈,f 在D 中不取零值,证明: 对于任意p>0,有2222()p f z x y ⎛⎫∂∂+ ⎪∂∂⎝⎭=2p 2()p f z -2'()f z . 提示:∆=2222x y ∂∂+∂∂= 42z z∂∂∂,将()f z 写成12()()f z f z ⎡⎤⎣⎦,利用f z∂∂=0, f z ∂∂=0, fz ∂∂='f , f z ∂∂='f ,计算.11.设D 是域,(]:D \ ,0f →-∞ 是非常数的全纯函数,则log ()f z 和Arg ()f z 是D 上的调和函数,而()f z 不是D 上的调和函数.提示: 2221log ()log ()2log |()|2f z f z f z z z∂∆=∆=∂∂ 21()()2|()|f z f z z f z z ⎛⎫∂∂= ⎪∂∂⎝⎭2()()2|()|f z f z z f z ⎛⎫'∂= ⎪∂⎝⎭ ()20()f z z f z ⎛⎫'∂== ⎪∂⎝⎭2a r g ()()()i f z f z e f z =对z 求偏导(a r g ())f z z ∂∂=12i '()()f z f z 2z z∂∂∂(a r g ())f z =0 42z z∂∂∂(())f z =12()'()f z f z - 如果()f z 调和,则'()f z ≡0,从而f 是常数,矛盾.12.设D,G 是域, :f D G →是全纯函数,证明:若u 是G 上的调和函数,则u f 是D 上的调和函数.证明: 因为u 是G 上的调和函数,局部存在全纯函数g ,s.t. Re u g =, 则g f 局部全纯,于是局部有Re()u f g f = ,从而u f 调和.15.举例说明:存在B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. 解: ()log ||u z z =是B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. (反证) 假设存在B(0,1)\{0}上的全纯函数()f z ,使得Re ()log f z z =, 设()log ||()f z z iv z =+,()v z 是实值函数.则()()||f z iv z ez e =⋅,从而()()1,(0,1)\{0}f z iv z e e z B z==∀∈. 由题2.(iv) 可知()f z e z≡常数, 故存在θ∈ s.t. ()f z i e ze θ= 即()||iv z i z e ze θ⋅=()(arg )iv z i z e e θ+⇒=()2v z argz k θπ⇒=++.由()v z 的连续性可知k 是常数.于是()2argz v z k θπ=--在B(0,1)\{0}连续,不可能.16.设f u iv =+, 000z x iy =+.证明: (i) 如果极限000()()lim Rez z f z f z z z →--存在,那么()00,ux y x ∂∂和()00,v x y y ∂∂存在,并且相等. (ii) 如果极限000()()l i m Imz z f z f z z z →--存在,那么()00,u x y y ∂∂和()00,vx y x∂∂存在,而且()00,u x y y ∂∂=-()00,vx y x∂∂.证明:(i)()00,ux y x∂∂=00000(,)(,)limx x u x y u x y x x →-- ()0z x i y =+ ()()000,z x y = =00000(,)(,)lim Rex x f x y f x y x x →--=000()()lim Rez z f z f z z z →--()00,vx y y∂∂=00000(,)(,)lim y y v x y v x y y y →-- =00000(,)(,)lim Imy y f x y f x y y y →-- ()0z x iy =+=()000()()lim Imz z f z f z i z z →---=()00()()lim Im z z f z f z iz z →--=000()()lim Rez z f z f z z z →--(ii)利用[]Im ()Re ()f z if z =-,由(i)即得.1.求映射i z iz w +-=在11-=z 和i z =2处的转动角和伸缩率. 解:因为 z if z i-=+222()()f z i z i iz z i z i ∂+-+==∂++ 122'()(1)if z i =-+=1 1arg '()f z =arg(1)-=π 2221'()(2)22i i f z i ===- 2a r g '()2f z π=-2.设f 是域D 上的全纯函数,且'()f z 在D 上不取零值,试证:(i )对每一个00()u iv f D +∈,曲线0Re ()f z u =和曲线0Im ()f z v =正交; 证明:(i )0u u =和0v v =是uv 平面中的正交直线.因为()0f z '≠,故f 是保角的. 从而曲线0Re ()f z u =和曲线0Im ()f z v =的夹角等于直线0u u =和0v v =的夹角,等于2π1.验证zze e =证明:令z x iy =+,则z x iy =-(cos sin )z x e e y i y =+(cos sin )z x e e y i y ⇒=- (cos sin )z x e e y i y =-所以z ze e =.3.证明:若1ze =,则必有2,0,1,.z k i k π==±… 证明:1ze =||1xze e ⇔==,20zArge y k π=+=0,2,x y k k π⇔==∈Z2z k i π⇔=,k ∈Z .4.设f 是整函数,()0 1.f =证明:(i)若'()(),();zf z f z z f z e =∈≡ 对每个成立则(ii) 若对每个,z ω∈ ,有()()()f z f z f ωω+=,且'(0)1f =,则()zf z e ≡. 证明(i )''(())()()()()0.z zz z z f z e f z ef z e f z e f z e -----=-=-=()z f z e c -=,11,1c c ⨯==,故()z f z e ≡(ii) ()()()f z f z f ωω''+=,令0()()z f f ωω'=⇒=7.设f 在\(,0]-∞ 中全纯,(1)0.f =证明: (i )若(]'()(),\,0,()log f z f z ez f z z -=∈-∞≡ 则;(ii)若()()()f z f z f ωω=+,(]\,0z ∈-∞ ,()0,ω∈∞,且'(1)1f =,则()log f z z ≡.证明:(i )令()()f z F z ez =-,则'()'()()10f z F z e f z =⋅-=()F z c ⇒=(常数)令z=1,则(1)0110f e c -=-==F(1)=e.故()()log (1)1f z e z f z z f ⎫=⇒=⎬=⎭(ii)提示()()f z f z ωω''=,令1z =得1()f ωω'=.8.证明:32)(2++=z z z f 在()1,0B 中单叶.证明: 取()12120,1,z z B z z ∀∈≠,12()()f z f z -=1212()(2)z z z z -++()12121212,0,1()()0()()z z z z B f z f z f z f z ≠∈⇒-≠⇒≠,故)(z f 在()0,1B 中单叶.12.设f 在(]\,0-∞ 上全纯,(1)1,0.f μ=>证明:)(i 若(]'()(),\,0f z f z z zμ=∈-∞C ,则arg ();i z f z z e μμ≡ )(ii 若()()()f z f z f ωω=,(]\,0z ∈-∞C ,()0,ω∈∞,且'(1),f μ=则arg ()i z f z z e μμ≡证明:(i) 要证arg ()i zf z z eμμ=,即证log ()z f z e μ=()log ()0zf z eμ'=,及(1)1f =log ()||z i Argz f z e z e μμμ⇒==⋅.(ii) ()()()zf z f z f ωω'=令1ω=得()()zf z f z μ= 即()()f z f z zμ'= 14.证明:)(i cos()cos cos sin sin ;z z z ωωω+=⋅-⋅ )(ii sin()sin cos cos sin ;z z z ωωω+=⋅+⋅证明:(i) cos()sin()z i z ωω+++()i z e ω+=()cos cos sin sin sin cos cos sin z z i z z ωωωω=-++ (1 ) 在上式中以z -,ω-代入,得cos()sin()z i z ωω+-+()cos cos sin sin sin cos cos sin z z i z z ωωωω=--+ (2)(1)+(2)得 cos()cos cos sin sin z z z ωωω+=-(1)(2)得 sin()sin cos cos sin z z z ωωω+=+19.证明:sin z ω=将半条形域:Re ,Im 022z z z ππ⎧⎫∈-<<>⎨⎬⎩⎭一一地映为上半平面. 证明: sin cos()cos()22z z z ππω==-=-令2u z π=-,则cos w u =是由指数,(Re 0,Im 0),iuz e u u π=-<<>与Rokovsky 函数{}11(),((0,1)\0,0),2zz z B argz ωπ=+∈-<<的复合.故sin w z =将半条形区域{:Re ,Im 0}22z z z ππ∈-<<> 一一映成上半平面.20.证明(0,1)B 是2()(1)zf z z =-的单叶性域,并求出((0,1))f B . 证明: []1212122121()()()(1)(1)z z f z f z z z z z --=--- 给出f 的单叶性0z ≠时,112()z f z z=+-由Rokovsky 函数的性质易得 1((0,1))\(,]4f B =-∞-21.当z 按逆时针方向沿圆周{:2}z z =}旋转一圈后,计算下列函数辐角的增量:(iii) 124(23);z z +- (iv) 1211z z -⎛⎫⎪+⎝⎭. 解:(iii) 124(23)z z +-14[(3)(1)]z z =+⋅- 3-在圆周||2z =外,1在圆周||z =内所以当z 按逆时针方向沿圆周旋转一圈后, 辐角的增量为2π(iv) 11122221(1)(1)1(1)(1)1|1||1|z z z z z z z z ⎡⎤⎡⎤--+⎛⎫==-+⎢⎥⎢⎥ ⎪+++⎝⎭⎣⎦⎣⎦1z =±均在圆周||2z =内,所以辐角的增量为0.22.设1(),0 1.(1)p p z f z p z -=<<-证明:f 能在域[]\0,1D = 上选出单值的全纯分支.证明: 11()(1)1pp i p i z z f z e z e z z ππ-⎛⎫== ⎪+-⎝⎭只需考虑()1pz g z z ⎛⎫= ⎪-⎝⎭设γ是D 中的简单闭曲线,则当z 沿γ逆时针绕行一周时, 若γ内部不含[0,1],则辐角增量为0, 若[0,1]位于γ内部,则辐角增量为22()0p p ππ+-=. 故g 从而f 能在域[]\0,1D = 上选出单值的全纯分支.23.证明: 21()z f z Log z ⎛⎫-= ⎪⎝⎭能在域(][]()\,10,1D =-∞-⋃ 上选出单值的全纯分支.证明: 21z z-将(][]()\,10,1-∞-⋃ 映入(]\,0-∞ ,而对数函数在(]\,0-∞ 上能选出全纯分支.24.设单叶全纯映射f 将域D 一一地映为G,证明:G 的面积为2'().f z dxdy ⎰⎰证明:令iy x z +=,),(),()(y x iv y x u z f +=变换行列式(,)(,)uu v xvx y x∂∂∂=∂∂∂ u y v y∂∂∂∂= u v v u x y x y ∂∂∂∂⋅-⋅∂∂∂∂ = 22()()u v x x∂∂+∂∂= 2u v i x x ∂∂+∂∂ = 2'()f z∴ 2'(,)||()(,)G D Du v S dxdy f z dxdy x y ∂==∂⎰⎰⎰⎰.25.设f 是域D 上的单叶全纯映射,)(),(βαγ≤≤=t t z 是D 中的光滑曲线, 证明:(())f t ωγ=的长度为''(())()f t t dt βαγγ⎰证明:''(())()d f t t dtωγγ= 故(())w f t γ=的长度为''(())()f t t dt βαγγ⎰26.设D 是z 平面上去掉线段[][]1,,1,i i -和射线z it = ()1t ≤<∞后得到的域,证明函数2(1)Log z -能在D 上分出单值的全纯分支.设f 是满足0)0(=f 的那个分支,试计算)2(f 的值.解: 取D 中任一简单闭曲线γ,则1±都不在γ内部,从而z 沿γ逆时针绕行一周时,21(1)(1)z z z -=-+辐角的增量为0,故能选出全纯分支.设22()log |1|(1)2f z z iarg z k π=-+-+. 由(0)00f k =⇒=, 故(2)log3(3)log3f iarg i π=+-=+.§2.5习题1. 试求把上半平面映为上半平面的分式线性变换,使得∞,0,1分别映为0,1,∞.解: 1()1T z z ω-==-2. 证明: 分式线性变换az b cz dω+=+把上半平面映为上半平面的充要条件是d c b a ,,,都是 实数,而且0>-bc ad .证明: 必要性:因为线性变换把实轴映为实轴, 故az b cz dω+=+中d c b a ,,,都是实数; 因为2()()ac bd ad bc i i cω++-=属于上半平面,故0>-bc ad . 充分性:对0,1,,z =∞都有()z ω∈R ,从而ω将实轴映为实轴,又Im ()0i ad bc ω=->,故将上半平面映为上半平面.4.试求把单位圆盘的外部{}1:>z z 映为右半平面{}:Re 0ωω>的分式线性变换,使得 (i)1,-i,-1分别变为i,0,-i;(ii)-i,i,1分别变为i,0,-i.解:(i)()z i T z z i ω+==- (ii)()(2)21z i T z i z i ω-==-+- 10.设()az b T z cz d +=+是一个分式线性变换,如果记a c ⎛ ⎝ 1b d -⎫⎪⎭=αγ⎛ ⎝ βδ⎫⎪⎭,那么1()z T z z αβγδ-+=+. 证明:a c ⎛ ⎝ 1b d -⎫⎪⎭=dc ⎛ -⎝ b a -⎫⎪⎭=αλ⎛ ⎝ βδ⎫⎪⎭ ()az b T z cz d+=+()()czT z dT z az b ⇒+=+ 1()b dz z T z cz a z αβγδ--+⇒==-+ 从而证得1()z T z z αβγδ-+=+.11.设11111)(d c b a z T ++=,=)(2z T 2222d c b a ++是两个分式线性变换,如果记11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭那么12()()az b T T z cz d +=+ . 证明: 12()()T T z =1212121212121212a a z ab bc z bd c a z c b d c z d d ++++++ 又 11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭∴121212121212a a b c a a b b d c c b d d d +=⎧⎪+=⎨⎪+=⎩⇒1212121212121212a a z a b b c z b d az b c a z c b d c z d d cz d ++++=++++ 从而12()()az b T T z cz d +=+ .12.设Γ是过-1和1的圆周,z 和w 都不在圆周上.如果,1=zw 那么z 和w 必分别于Γ的内部或外部.证明:由圆的对称性知Γ的圆心必然在虚轴上,设圆周与虚轴交个交点为12z z ,. 又由平面几何知识知12||||1z z ⋅=,从而211z z =. 设z 在Γ内部,则z 位于走向1,1z ,-1的左边,因此分式线性变换1(x)T x =,将1()z T z =映为走向1(1)()(1)T T z T -,,,即1,2z ,-1的左边.注意()T Γ=Γ,走向1,2z ,-1的左边即Γ的外部,故1z 在Γ外部.15.求一单叶全纯映射,把除去线段[]i +1,0的第一象限映为上半平面.提示: 先作变换41z z =,再作412+=z z ,最后作变换23z z =可得.16. 求一单叶全纯映射,把半条形域:Re ,Im 022z z z ππ⎧⎫-<<>⎨⎬⎩⎭映为上半平面,且把2π,0,2π-分别映为1,-1,0. 提示: 先作变换1z iz = ,再作12z e z =,)1(21,33423z z z iz z +=-=.即11()2iz iz w ie ie=-+- 17.求一单叶全纯映射,把除去线段[]hi a a +,的条形域{}:0Im1z z <<映为条形域{}:0Im 1w w <<,其中,a 是实数, 01h <<提示:先作变换1z z e π=,再作变换ππa a e z e z z +-=112便可得结论.19.求一单叶全纯映射,把除去线段[]2,1的单位圆盘的外部映为上半平面.提示:先作变换111z z z -=+,再作变换221324351,,,9z iz z z z z z ===+=即w =.。
第二章、复变函数 试题库
第二章、复变函数 试题库第一部分、判断与填空:1、若),(),()(y x iv y x u z f +=在区域D 上满足柯西黎曼条件,则它在区域D 内解析。
2、若)(z f 在点0z 可导,则)(z f 在点0z 解析。
3、若)(z f 在点0z 解析,则存在0>δ,使得)(z f 在),(0δz U 内解析。
4、若)(z f 在点0z 不连续,则)(z f 在点0z 不可导。
5、设i z π+=1ln ,则___=z .6、当___=z 时,z e 为实数。
7、求3πi e -的值。
8、求)1sin(i +的值。
9、z sin 的周期为___。
10、5)1(z +的解析区域为___,其导数为____。
11、设1-=z e ,则___=z 。
12、z e 的周期为___。
13、设),(),()(y x iv y x u z f +=在区域D 上,若),(y x u 与),(y x v 在D 上有界,则在D 上有界。
第二部分、证明与计算:1、 试问函数211z+在单位圆盘1||<z 内是否连续?是否一致连续?2、 证明函数2||)(z z f =除去在0=z 外,处处不可微。
3、 函数)(z f 在区域D 内解析。
证明:如果对每一点D z ∈,有0)('=z f ,那么)(z f 在D 内为常数。
4、 函数)(z f 在区域D 内解析。
证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数。
5、 函数)(z f 在区域D 内解析。
证明:如果)(Re z f 在D 内为常数,那么它在D 内为常数。
6、 证明:若函数)(z f 在上半平面解析,则函数z 在下半平面解析。
7、 试用柯西-黎曼条件,证明下列函数在复平面解析:z z e z zcos ,sin ,,2而下列函数不解析: z z e z z cos ,sin ,,2。
8、 证明在极坐标下的柯西-黎曼条件是:rv r u v r r u ∂∂-=∂∂∂∂=∂∂θθ,1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 复习题
一、单项选择题:
1.函数()w f z =在点0z 则称()f z 在点0z 解析。
A )连续
B )可导
C )可微
D )某一邻域内可微
2.函数()(,)(,)f z u x y iv x y =+在点(,)x y 的C R -条件指:
A ),u v u v x y y x
∂∂∂∂=-=-∂∂∂∂ B ),u v u v x y y x ∂∂∂∂=-=∂∂∂∂ C ),v u v u x y y x ∂∂∂∂=-=∂∂∂∂ D ),v u v u x y y x
∂∂∂∂==-∂∂∂∂ 3.函数3w z =把Z 平面上单位圆在第二象限弧段变成W 平面上单位圆的 象限弧段.
A )第一、二、三
B )第二、三、四
C )第三、四、一
D )第四、一、二
4.函数()(,)(,)f z u x y iv x y =+在区域D 内有定义,则(1)(,)u x y ,(,)v x y 在区域D 满足C R -条件.(2),,,x y x y u u v v 在D 连续,是()f z 在区域D 可微的 条件
A )必要非充分
B )充分非必要
C )充分必要
D )以上都不对
5.指数函数z e ω=的基本周期为
A )2π
B )2i π
C )i π
D )π
6.设12,22
i z i z ==+,则ln z 2z (ln z 表示主值) A )〈 B 〉= C ) 〉 D )无法比较大小
7.cos(2i A )≤1 B )=2 C )〈2 D 〉2
8.设z x iy =+,则2z e = A )2z e B )22x y e
- C )22x y e - D 22x y e - 9.2()f z x iy =-,直线1:2
L x =-
,则()f z 在 A )Z 平面上解析 B )L 上可微 C )L 上可析 D )Z 平面上可微
10.以0,1,∞为支点的函数有
A B C D
11.设()f z =0C 为单位圆,则0arg ()C f z ∆=
A )π
B )2π
C )
43π D )23π 12.函数z w e =把Z 平面上实轴变换成W 平面上
A )负实轴
B )正实轴
C )实轴
D )单位圆
13.一般幂函数i
w z =是 函数
A )单值
B )有限的多值
C )无限多值
D )以上都不对
14.若()(),,,u x y v x y 在点(),x y 满足C R -条件.则()f z u iv =+在点(),x y
A )可微
B )不可微
C )不一定可微
D )解析
15.复数i z i =,其幅角主值arg z = A )2π
- B )2
π C )π D )0 二、多项选择题:
1. 函数()f z z -=在Z 平面上处处
A )不连续
B )连续
C )不可微
D )可微
E )解析
2. 函数()()(),,f z u x y iv x y =+在点z 可微,则()f z '=
A )u v i x x ∂∂+∂∂
B )u u i x y ∂∂-∂∂
C )u v i x y ∂∂+∂∂
D )v v i y x ∂∂+∂∂
E )v u i y y
∂∂-∂∂ 3. 在Z 平面上任何一点不解析的函数有
A )2
()f z z = B )()Re f z z = C )22()f z xy ix y =+ D )22x iy + E )3323x iy +
4. 方程ln 2i
z π=的解为
A )z i =-
B )z i =
C )2i
z e
π-=
D )2i z e π=
E )z e π=
5. 复数3i z i =的幅角Argz 可以是
A )0
B )
2π C )2π- D )2π E )2π- 二、填空题:
1若()f z 在点0z 则称0z 为()f z 的奇点。
2.函数()()(),,f z u x y iv x y =+在区域D 内解析的充要条件是:(1)
(2)
3.对任意复数z ,若z w z e
e +=,则必有w =
4.根式函数w == 5具有这种性质的点:使当 则称此点为多值函数的支点。
6.根式函数w 只以 及 为支点,以 为支割线, 且在 能分出n 个单值解析分支.
7.()34Ln i --=
8.对一般幂函数a w z =,
(1)当 a z 是z 的单值函数
(2)当 a z 取 个不同的值
(3)当 a z 是无限多值的
9.函数()w f z ==,其中12m z z z 互不相同,且12m a a a N +++=
(1)当且仅当 时,k z 是()f z 的支点
(2)当且仅当 时,∞是()f z 的支点
10.由已给单值解析分支的初值1()f z ,计算终值2()f z ,即2()f z = 其中arg ()c f z ∆为
四、计算题:
1.()()()cos sin cos sin x x f z e x y y y ie y y x y =-++是否在Z 平面上解析?
如果是,求其导函数。
2.设z x iy =+,试求1Re z e ⎛⎫ ⎪⎝⎭
3.试求函数()cos 1i -之值
第二章
一、1.D 2.C 3.D 4.B 5.B 6.C 7.D 8.C 9.B 10.
11.D 12.B 13.C 14.C 15.D
二、1.BC 2.ABDE 3.ABCDE 4.BD 5.ADE
三、1、不解析,但在0z 的任一领域内总有()f z 的解析点
2、(1)二元函数(),u x y 、(),v x y 在D 内满足C R -条件。
3、2k i π(k 为整数)
4、arg 21
z k n n z e π+,0,1,,1k n =-
5、变点z 绕这点一整周时,多值函数从其一支变到另一支。
6、,,z a z ==∞以z a =出发并伸向无穷的广义简单曲线,割破后的z 平面上。
7、()4ln 5arg 213i tg k π⎡⎤++-⎢⎥⎣⎦
8、(1)a 是一整时, (2)a 是一有理数学
p q
,(既约分数) (3)a 是一无理数或虚数。
9、(1) 10、()()arg 2c i f z f z e ∆,()1arg i f z e ,当z 从1z 沿曲线C 到终点2z 时,()f z 的幅
角的连续改变量
四、1、解:()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()c o s s i n c o s x x y u e x y y y y v =-+
= ()s i n s i n c o s x y x u e x y y y
y v =--+=-
故()f z 在z 平面上解析,且
()()()'cos 1sin sin 1cos x x f z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦ 2、解:11
x yi x y i x iy x y
x y x y z e e e e e
--++++===⋅ 21R e c o s x y x y
x y z e e ++⎛⎫∴= ⎪⎝⎭ 3、解:()()()11cos 12i i i i e e
i ---+-=
()112i i i e e -+++=
c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭。