最新2018年春人教版部编版九年级数学下册全册教案
人教版九年级下册数学教案大全(5篇)
人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。
1、教材编排。
(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。
并且已经采取逐步渗透的方法来培养代数思维。
例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。
(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。
第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)寻找简单情况下的等价关系,会用方程表示。
(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。
3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。
抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
(2)难点:数量关系向等量关系的转化。
二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。
由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。
列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
新人教版九年级数学下册全册教案-((精品教案))
人教版九年级数学下册全册教案精品教案正弦和余弦(一)一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A 1,A 2,A 3重合在一起,记作A ,并使直角边AC 1,AC 2,AC 3……落在同一条直线上,则斜边AB 1,AB 2,AB 3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B 1C 1∥B 2C 2∥B 3C 3……,∴△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽……,∴形中,∠A 的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用. 练习题为2360sin =︒作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计正弦和余弦(二)一、素质教育目标(一)知识教学点使学生初步了解正弦、余弦概念;能够较正确地用sinA 、cosA 表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.(二)能力训练点逐步培养学生观察、比较、分析、概括的思维能力.(三)德育渗透点渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.第十四章 解直角三角形一、锐角三角函数 证明:------------------结论:--------------------练习:---------------------二、教学重点、难点1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.三、教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.(二)整体感知只要知道三角形任一边长,其他两边就可知.而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.(三)重点、难点的学习与目标完成过程正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.学生练习1中1、2、3.让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.例2 求下列各式的值:为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:(1)sin45°+cos45;(2)sin30°·cos60°;在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.(四)总结、扩展首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即0<sinA<1,0<cosA<1(∠A为锐角).还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”四、布置作业教材习题14.1中A组3.预习下一课内容.五、板书设计正弦和余弦(三)一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.(三)德育渗透点培养学生独立思考、勇于创新的精神.二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.3.教师板书:任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.已知∠A和∠B都是锐角,(1)把cos(90°-A)写成∠A的正弦.(2)把sin(90°-A)写成∠A的余弦.这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6′=0.6807,求sin42°54′.(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:(2)已知sin35°=0.5736,则cos______=0.5736.(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.为了配合例3的教学,教材中配备了练习题2.(2)已知sin67°18′=0.9225,求cos22°42′;(3)已知cos4°24′=0.9971,求sin85°36′.学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.(四)小结与扩展1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.四、布置作业教材习题14.1A组4、5.五、板书设计正弦和余弦(四)一、素质教育目标(一)知识教学点使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育训练点培养学生良好的学习习惯.二、教学重点、难点1.重点:“正弦和余弦表”的查法.2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.三、教学步骤(一)明确目标1.复习提问1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.(二)整体感知我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.(三)重点、难点的学习与目标完成过程1.“正弦和余弦表”简介学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.2)表中角精确到1′,正弦、余弦值有四位有效数字.3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.2.举例说明例4 查表求37°24′的正弦值.学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.例5 查表求37°26′的正弦值.学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).解:sin37°24′=0.6074.角度增2′值增0.0005sin37°26′=0.6079.例6 查表求sin37°23′的值.如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.解:sin37°24′=0.6074角度减1′值减0.0002sin37°23′=0.6072.在查表中,还应引导学生查得:sin0°=0,sin90°=1.根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.可引导学生查得:cos0°=1,cos90°=0.根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.(四)总结与扩展1.请学生总结本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.四、布置作业预习教材中例8、例9、例10,养成良好的学习习惯.五、板书设计正弦和余弦(五)一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.三、教学步骤(一)明确目标1.锐角的正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆.答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).2.若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______.3.不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°.学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.(三)重点、难点的学习与目标完成过程.例8 已知sinA=0.2974,求锐角A.学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.解:查表得sin17°18′=0.2974,所以锐角A=17°18′.例9 已知cosA=0.7857,求锐角A.分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.解:查表得cos38°12′=0.7859,所以:0.7859=cos38°12′.值减0.0002角度增1′0.7857=cos38°13′,即锐角A=38°13′.例10 已知cosB=0.4511,求锐角B.例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.解:0.4509=cos63°12′值增0.0003角度减1′0.4512=cos63°11′∴锐角B=63°11′为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.2.已知下列正弦值或余弦值,求锐角A或B:(1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;(2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931.此题是配合例题而设置的,要求学生能快速准确得到答案.(1)45°6′,69°34′,20°39′,34°40′;(2)34°0′,40°26′,72°34′,6°44′.3.查表求sin57°与cos33°,所得的值有什么关系?此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).(四)、总结、扩展本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.四、布置作业教材复习题十四A组3、4,要求学生只查正、余弦。
新人教版九年级数学下册全册教案.pdf
新人教版九年级数学下册全册教案第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)xy 2−= (3)xy =21 (4)25+=x y (5)31+=x y例2.(补充)当m 取什么值时,函数23)2(m x m y −−=是反比例函数?(四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y −+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
春季最新部编人教版九年级数学下册全册教学设计
春季最新部编人教版九年级数学下册全册教学设计一. 教材分析部编人教版九年级数学下册全册教学设计,主要包括以下几个部分:1.第四章锐角三角函数2.第五章统计与概率3.第六章相似4.第七章方程与不等式本教材内容紧密联系学生的生活实际,注重引导学生自主探究、合作交流,从而提高学生的数学素养。
二. 学情分析九年级的学生已具备一定的数学基础,但个体差异较大。
在学习新知识时,部分学生可能存在恐惧心理,因此,在教学过程中,教师要关注学生的情感态度,激发学生的学习兴趣,引导学生积极主动地参与课堂活动。
三. 教学目标1.知识与技能:使学生掌握锐角三角函数、统计与概率、相似、方程与不等式等基本概念和性质,能运用所学知识解决实际问题。
2.过程与方法:培养学生的自主探究、合作交流能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生的学习兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 教学重难点1.教学重点:锐角三角函数的定义和性质、统计与概率的基本概念和方法、相似图形的性质和判定、方程与不等式的解法。
2.教学难点:锐角三角函数的应用、概率的计算、相似三角形的判定和性质、方程与不等式的解法。
五. 教学方法1.情境教学法:创设生活情境,让学生在实际问题中感受数学的魅力。
2.启发式教学法:引导学生主动思考、探究问题,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,提高学生的合作交流能力。
4.信息技术辅助教学:利用多媒体课件、网络资源等,丰富教学手段,提高教学质量。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学活动。
2.学生准备:预习教材,了解新知识,准备相关学习用品。
七. 教学过程1.导入(5分钟)教师通过一个生活实例,引出本节课的学习内容,激发学生的学习兴趣。
2.呈现(10分钟)教师展示教材中的知识点,引导学生自主阅读,理解新知识。
3.操练(10分钟)教师设计一些练习题,让学生在课堂上独立完成,检查学生对新知识的理解和掌握程度。
2018最新人教版九年级下册数学全册教案教学设计(新教材)
新版人教版九年级下册数学全册教案教学设计XX学校教学设计(高效课堂模式教案定稿)教案说明:本教案严格按照高效课堂模式进行编写,同时注重了培优辅差及学困生的转化,注重学生的全面发展,教案环节齐全、内容详细,可以A4纸直接打印。
学科:;任课班级:;任课教师:;年月日教学时间课题26.1 二次函数(1)课型新授课教学目标知识和能力能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围过程和方法注重学生参与,联系实际,丰富学生的感性认识情感态度价值观培养学生的良好的学习习惯教学重点能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学难点教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
2018年春九年级数学人教版下册说课稿:28.2
2018年春九年级数学人教版下册说课稿:28.2一、教材分析《人教版数学九年级下册》是根据新课程标准编写的一本教材,为九年级学生提供了全面系统的数学学习内容。
本说课稿主要针对教材中的第28章第2节的内容进行讲解。
本节课主要介绍了“常用公式与定理”的相关知识点。
通过本节课的学习,学生将能够掌握常规的公式与定理,进一步提高数学运算的能力和思维能力。
二、教学目标本节课的教学目标如下:1.知识目标:了解常用公式与定理的定义和应用,掌握运用公式与定理解决实际问题的方法;2.能力目标:培养学生的数学运算能力和逻辑思维能力,提高解决实际问题的能力;3.情感目标:培养学生对数学学习的兴趣,激发他们对数学的好奇心。
三、教学重点与难点本节课的教学重点为:1.掌握常用公式与定理的定义;2.学会应用公式与定理解决实际问题。
本节课的教学难点为:1.理解并掌握常用公式与定理的应用方法;2.运用公式与定理解决实际问题时注意问题的转化和逻辑推理。
四、教学过程1. 情境导入通过一个生活中常见的实际问题来引入本节课的内容。
如:“小明家的墙面有2米高,小明想在墙上贴上一张海报,如果购买的海报尺寸是3米高,那么需要将海报剪裁为多大尺寸才能完全贴满墙面?”引导学生思考并尝试解决这个问题。
2. 知识讲解在情境导入的基础上,引入常用公式与定理的概念和定义,通过示例和练习的方式进行讲解与巩固。
重点讲解并带领学生掌握关于三角形的定理,如“正弦定理”和“余弦定理”。
3. 案例分析给学生提供一系列实际案例,要求他们应用所学的公式与定理解决问题。
通过分组合作的方式,让学生互相讨论、共同解决问题。
鼓励学生思考并提供多样的解决方法。
4. 拓展延伸对于学生的学习能力较强的情况下,可以提供一些拓展问题来考察学生的深层次思维能力。
引导学生探索更多的数学知识点,为他们的进一步学习打下良好的基础。
5. 归纳总结在本节课的最后阶段,对学生所学的内容进行归纳总结,并梳理重点、难点知识点。
新人版2018春九年级数学(下册)(全册)教学案
义务教育课程标准人教版数学教案九年级下册 2017年春第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)x y 2-= (3)xy =21 (4)25+=x y (5)31+=xy 例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
部编九年级下数学人教版九年级下数学全册教案1
16.1.1 二次根式教案序号:1 时间: 教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知(a ≥0)•的式子叫做二(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?3.当a<0 老师点评:(略)例11xx>0)、1x y+(x ≥0,y•≥0).分析”;第二,被开方数是正数或0.x>0x ≥0,y ≥0);不是二1x 1x y+.例2.当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P5练习1、2、3. 四、应用拓展例3.当x +11x +在实数范围内有意义?分析+11x +中的≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25) 五、归纳小结(学生活动,老师点评) 本节课要掌握:1(a ≥02.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业1.教材P5 1,2,3,4 2.选用课时作业设计.第一课时作业设计 一、选择题1.下列式子中,是二次根式的是( )A .BCD .x 2.下列式子中,不是二次根式的是( )ABCD.1x3.已知一个正方形的面积是5,那么它的边长是()A.5 BC.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1(a≥0)23.没有三、1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0时,x+x2在实数范围内没有意义.3.134.B5.a=5,b=-416.1.2 二次根式(2)教案序号:2 时间:教学内容1a≥0)是一个非负数;22=a(a≥0).教学目标a≥0)2=a(a≥0),并利用它们进行计算和化简.a≥0)是一个非负数,用具体2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a≥02=a(a≥0)及其运用.2a≥0)是一个非负数;•用探究的方法导2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0a<0老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______2=_______2=______2=_______;2=______2=_______2=_______.44的2=4.2=2,(2=9)2=32=132=72,2=0,所以例1 计算12 2.(2 32 4.(2)2分析)2=a (a ≥0)的结论解题.2 =32,(2 =322=32·5=45,2=56,(2)274=. 三、巩固练习计算下列各式的值:2 2 (4)2 2 ()222-四、应用拓展例2 计算12(x ≥0) 22 324 2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 =a 2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略) 五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;22=a (a ≥0);反之:a=2(a ≥0). 六、布置作业1.教材P5 5,6,7,82.选用课时作业设计. 第二课时作业设计 一、选择题1、的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.()2=________.2_______数. 三、综合提高题 1.计算(12 (2)-2 (3)(12)2 (4)( 2(5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3,求x y 的值.4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案: 一、1.B 2.C二、1.3 2.非负数三、1.(12=9 (2)-2=-3 (3)(12)2=14×6=32(4)(2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=((2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)()( (3)略16.1 二次根式(3)教案总序号:3 时间: 教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知(学生活动)填空:=_______;=________. (老师点评):根据算术平方根的意义,我们可以得到:=0.011102337.例1 化简(1 (2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2=4(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2.分析:(略)五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P5习题16.1 3、4、6、8.2.选作课时作业设计.第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是().A BC D.二、填空题1.=________.2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以=a,a-2000=19952,所以a-19952=2000.3. 10-x16.2 二次根式的乘除教案总序号:4 时间:教学内容a≥0,b≥0(a≥0,b≥0)及其运用.教学目标(a≥0,b≥0(a≥0,b≥0),并利用它们进行计算和化简(a≥0,b≥0)并运用它进行计算;•(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0(a≥0,b≥0)及它们的运用.(a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1;(2=_______.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空(1,(2(34,(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3(4例2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5三、巩固练习(1)计算(学生练习,老师点评)①②×2(2) 化简: ; ;教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1(2=4解:(1)不正确.×3=6(2)不正确.五、归纳小结本节课应掌握:(1(a≥0,b≥0a≥0,b≥0)及其运用.六、布置作业1.课本P111,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1.化简).A B C.D.2=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-13.下列各等式成立的是().A.B.C.D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:==16.2 二次根式的乘除(2)教案总序号:5 时间:教学内容a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1=________;(2;(3=________;(4.3.利用计算器计算填空:,(2,(3=______,(4=________.(1。
2018最新人教版九年级数学下册全册教案
2018最新人教版九年级数学下册全册教案第二十六章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。
补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成x k y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是x x y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? 分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。
部编人教版九年级数学下册全册教案
部编人教版九年级数学下册全册教案一、教材概述本教材是部编人教版九年级数学下册,共分为{教材章节数}章,涵盖了{教材内容的范围}。
教案的目的是帮助学生全面了解和掌握数学知识,培养他们的数学思维和解决问题的能力。
二、教学目标1. 熟悉并掌握本教材每一章的重点知识和难点。
2. 培养学生的逻辑思维和数学推理能力。
3. 培养学生解决实际问题的能力,提高他们的数学应用能力。
三、教学内容本教案包括以下教学内容:1. 第一章:{第一章的名称}- 重点知识:{第一章的重点知识}- 难点:{第一章的难点}- 教学方法:{第一章的教学方法}2. 第二章:{第二章的名称}- 重点知识:{第二章的重点知识}- 难点:{第二章的难点}- 教学方法:{第二章的教学方法}(依此类推,列出每一章的教学内容)四、教学步骤1. 引入:通过实际生活中的问题引发学生对本章知识的兴趣和思考。
2. 讲解:结合教材内容,逐步讲解每一个知识点,解释相关的公式和定理。
3. 练:提供大量的练题和例题,让学生进行巩固和运用。
4. 检查:及时检查学生的研究情况,发现并纠正错误。
5. 总结:总结本章的重点知识和研究方法,帮助学生理清思路。
6. 练:提供一些拓展练,加深学生对知识的理解和应用能力。
7. 小结:对本节课进行总结,并预告下节课的教学内容。
五、教学评价1. 利用平时作业、课堂练和考试等形式,对学生的研究情况进行评价。
2. 针对学生成绩进行分类,及时给予弱势学生帮助和补充教学。
六、教学资源1. 教材:部编人教版九年级数学下册。
2. 辅助教材:根据学生实际情况选择合适的辅助教材。
3. 多媒体设备:使用投影仪等多媒体设备展示教学相关内容。
以上是关于部编人教版九年级数学下册全册教案的概述,本教案将按照教学目标、教学内容和教学步骤进行教学。
通过本教案的指导,相信学生能够更好地掌握数学知识,提高数学水平。
最新人教版九年级数学下册 全册教案全集(187页)
[本章知识重点]部编版一年级语文下册期末复习课件(完整).第二十六章二次函数1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念.3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴.5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.[本课知识重点]26.1 二次函数通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[MM 及创新思维](1)正方形边长为 a (cm ),它的面积 s (cm 2)是多少?(2)矩形的长是 4 厘米,宽是 3 厘米,如果将其长与宽都增加 x 厘米,则面积增加 y 平 方厘米,试写出 y 与 x 的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习 一次函数概念的经验,给它下个定义. [实践与探索]例 1. m 取哪些值时,函数 y (m2 m )x2 mx (m 1) 是以 x为自变量的二次函数?分 析 若 函 数y (m2 m )x2 mx (m 1) 是 二 次 函 数 ,须 满 足 的 条 件 是 :m2m 0 .解 若函数 y(m2 m )x2 mx (m 1) 是二次函数,则m2m 0 .解得m 0 ,且m1.因此,当 m 0 ,且m1时,函数 y (m2m )x2mx(m 1) 是二次函数. 回顾与反思 形如 yax 2 bx c的函数只有在 a 0 的条件下才是二次函数.探索 若函数 y(m 2m )x 2 mx (m 1) 是以 x 为自变量的一次函数,则 m 取哪些 值?例 2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000 元本金,若不计利息,求本息和y(元)与所存年数x 之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得S 6a 2 (a 0) ,其中S 是a 的二次函数;(2)由题意,得yx(x 0) ,其中y 是x 的二次函数;4(3)由题意,得y 10000 1.98%x 10000 (x≥0 且是正整数),其中y 是x 的一次函数;(4)由题意,得S1x (26 x)1x2 13x (0 x26) ,其中S 是x 的二次函数.2 2例3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余22下的部分做成一个无盖的盒子.(1)求盒子的表面积 S (cm 2)与小正方形边长 x (cm )之间的函数关系式; (2)当小正方形边长为 3cm 时,求盒子的表面积. 解 (1)S152 4x22254x 2 (0 x15) ;2(2)当 x=3cm 时,S 225 432189 (cm 2).[当堂课内练习] 1.下列函数中,哪些是二次函数? (1) yx2(3)yx21x(2) y(x 2)(x 2) (x 1)2(4)y2.当 k 为何值时,函数 y(k1)x kk1 为二次函数?3.已知正方形的面积为 y (cm 2) ,周长为 x (cm ).x 2 + 2x - 3(1)请写出y 与x 的函数关系式;(2)判断 y 是否为 x 的二次函数.[本课课外作业]A 组21.已知函数y (m 3)x m 7 是二次函数,求m 的值.2.已知二次函数y ax 2 ,当x=3 时,y= -5,当x= -5 时,求y 的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3,求此时的y.4.用一根长为40 cm 的铁丝围成一个半径为r 的扇形,求扇形的面积y 与它的半径x 之间的函数关系式.这个函数是二次函数吗?请写出半径r 的取值范围.B 组5.对于任意实数m,下列函数一定是二次函数的是()A.y(m 1)2 x 2B.y (m1)2 x 2C.y (m21)x 2D.y (m21)x 26.下列函数关系中,可以看作二次函数y ax2 bx c (a 0 )模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系[本课学习体会]§26.2 用函数观点看一元二次方程(第一课时)教学目标(一)知识与技能1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h 是实数)交点的横坐标.(二)过程与方法1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x 轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论.培养大家的合作交流意识.(三)情感态度与价值观1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造.感受数学的严谨性以及数学结论的确定性,2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h 是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.教学过程Ⅰ.创设问题情境,引入新课1.我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0 时,一次函数y=kx+b 就转化成了一元一次方程kx+b=0,且一次函数)y=kx+b(k≠0)的图象与x 轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?2.选教材提出的问题,直接引入新课Ⅱ.合作交流解读探究1.二次函数与一元二次方程之间的关系探究:教材问题师生同步完成.观察:教材22 页,学生小组交流.归纳:先由学生完成,然后师生评价,最后教师归纳.Ⅲ.应用迁移巩固提高1 .根据二次函数图像看一元二次方程的根同期声2 .抛物线与x 轴的交点情况求待定系数的范围.3 .根据一元二次方程根的情况来判断抛物线与x 轴的交点情况Ⅳ.总结反思拓展升华本节课学了如下内容:1.经历了探索二次函数与一元:二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根,两个相等的实根和没有实根.3.数学方法:分类讨论和数形结合.反思:在判断抛物线与x 轴的交点情况时,和抛物线中的二次项系数的正负有无关系?拓展:教案1.3.5Ⅴ.课后作业P23[本课知识重点]26.2 二次函数的图象与性质(1)会用描点法画出二次函数y ax 2 的图象,概括出图象的特点及函数的性质.[MM 及创新思维]我们已经知道,一次函数y 2x 1,反比例函数y3的图象分别是、x,那么二次函数y x 2 的图象是什么呢?(1)描点法画函数y x 2 的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(2)观察函数y x 2 的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)y 2x 2解列表(2)y 2x 2x y2y 2x 226.2.1. 共同点:都以 y 轴为对称轴,顶点都在坐标原点. 不同点: y2x 2 的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左 向右下降;在对称轴的右边,曲线自左向右上升.y2x 2 的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接. 例 2.已知 y (k2)x kk 4是二次函数,且当 x 0 时,y 随 x 的增大而增大.(1)求 k 的值;(2)求顶点坐标和对称轴.k 2 k 42解 (1)由题意,得k 2 0, 解得 k=2.(2)二次函数为 y 4x 2 ,则顶点坐标为(0,0),对称轴为 y 轴.例 3.已知正方形周长为 Ccm ,面积为 S cm 2. (1)求 S 和 C 之间的函数关系式,并画出图象; (2)根据图象,求出 S=1 cm 2 时,正方形的周长; (3)根据图象,求出 C 取何值时,S ≥4 cm 2.分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时, 自变量 C 的取值应在取值范围内. 解 (1)由题意,得S列表:1 C2 ( C0) .16S1(2)根据图象得 S=1 cm 2 时,正方形的周长是 4cm . (3)根据图象得,当 C ≥8cm 时,S ≥4 cm 2. 回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母 C 、S ,不要习惯地写成 x 、y . (3)在自变量取值范围内,图象为抛物线的一部分.[当堂课内练习] 1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和 顶点坐标. (1)y3x 2(2)y3x 2 (3)y1 x 232.(1)函数y2 x 2 的开口 ,对称轴是,顶点坐标是 ;3(2)函数y1x 2 的开口,对称轴是,顶点坐标是.43.已知等边三角形的边长为 2x ,请将此三角形的面积 S 表示成 x 的函数,并画出图象的 草图. [本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象. (1)y4x 22.填空:(2) y1 x 24222(1)抛物线y 5x 2 ,当 x=时,y 有最 值,是 .(2)当 m=时,抛物线 y(m1)x mm开口向下.(3)已知函数 y (k 2k )x k2k 1是二次函数,它的图象开口 ,当x 时,y 随 x 的增大而增大. 3.已知抛物线 ykx kk 10中,当x 0 时,y 随 x 的增大而增大.(1)求 k 的值; (2)作出函数的图象(草图). 4.已知抛物线 yax 2 经过点(1,3),求当 y=9 时,x 的值.B 组5.底面是边长为 x 的正方形,高为 0.5cm 的长方体的体积为 ycm 3.(1)求 y 与 x 之间 的函数关系式;(2)画出函数的图象;(3)根据图象,求出 y=8 cm 3 时底面边长 x 的值; (4)根据图象,求出 x 取何值时,y ≥4.5 cm 3. 6.二次函数y ax 2 与直线y 2x 3 交于点 P (1,b ).(1)求 a 、b 的值;(2)写出二次函数的关系式,并指出 x 取何值时,该函数的 y 随 x 的增大而减小.7.一个函数的图象是以原点为顶点,y 轴为对称轴的抛物线,且过M(-2,2).(1)求出这个函数的关系式并画出函数图象;(2)写出抛物线上与点M 关于y 轴对称的点N 的坐标,并求出⊿MON 的面积.[本课学习体会][本课知识重点]26.2 二次函数的图象与性质(2)会画出y ax2 k 这类函数的图象,通过比较,了解这类函数的性质.[MM 及创新思维]同学们还记得一次函数y 2x 与y 2x 1 的图象的关系吗?,你能由此推测二次函数y x 2 与y x2 1 的图象之间的关系吗?,那么y x 2 与y x2 2 的图象之间又有何关系?.[实践与探索]例1.在同一直角坐标系中,画出函数y 2x 2 与y 2x2的图象.解列表.描点、连线,画出这两个函数的图象,如图26.2.3 所示.回顾与反思当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数y 2x 2 与y 2x2 2 的图象之间的关系吗?例2.在同一直角坐标系中,画出函数y x2 1 与y x2 1的图象,并说明,通过怎样的平移,可以由抛物线y x2 1 得到抛物线y描点、连线,画出这两个函数的图象,如图26.2.4 所示.可以看出,抛物线y x 2 1 是由抛物线y x 2 1 向下平移两个单位得到的.回顾与反思抛物线y x 2 1 和抛物线y x 2 1 分别是由抛物线y x 2 向上、向下平移一个单位得到的.探索如果要得到抛物线y x 2 4 ,应将抛物线y x 2 1 作怎样的平移?例3.一条抛物线的开口方向、对称轴与y 1x2 相同,顶点纵坐标是-2,且抛物线经过2点(1,1),求这条抛物线的函数关系式.解由题意可得,所求函数开口向上,对称轴是y 轴,顶点坐标为(0,-2),因此所求函数关系式可看作y ax2 2(a 0) , 又抛物线经过点(1,1), 所以, 1 a12 2 ,解得a3 .故所求函数关系式为y3x22 .回顾与反思y ax 2 k (a 、k 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:y ax 2aa1. 在同一直角坐标系中,画出下列二次函数的图象:y 1x2,2y 1x 2 2 , 2y1x 22 .2观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说 出抛物线 y1 x2 k 的开口方向及对称轴、顶点的位置吗?22.抛物线 y1x 29 的开口,对称轴是,顶点坐标是,它可4以看作是由抛物线y1x 2 向平移个单位得到的.43.函数y 3x2 3 ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最值,最值y=.[本课课外作业]A 组1.已知函数y1x 2 ,3y1x23 ,3y1x 2 2 .3(1)分别画出它们的图象;(2)说出各个图象的开口方向、对称轴、顶点坐标;(3)试说出函数y1x2 5 的图象的开口方向、对称轴、顶点坐标.32.不画图象,说出函数y1x2 3 的开口方向、对称轴和顶点坐标,并说明它是由函4数 y1 x2 通过怎样的平移得到的.43.若二次函数y ax2 2 的图象经过点(-2,10),求a 的值.这个函数有最大还是最小值?是多少?B 组4 .在同一直角坐标系中y ax2 b 与y ax b(a 0,b0) 的图象的大致位置是( )5.已知二次函数y 8x 2 (k 1)xk 7 ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式.[本课学习体会][本课知识重点]26.2 二次函数的图象与性质(3)会画出y a (x h )2 这类函数的图象,通过比较,了解这类函数的性质.[MM 及创新思维]我们已经了解到,函数y ax2 k 的图象,可以由函数y ax 2 的图象上下平移所得,那么函数y 1(x2)2 的图象,是否也可以由函数y1x 2 平移而得呢?画图试一22试,你能从中发现什么规律吗? [实践与探索]例 1.在同一直角坐标系中,画出下列函数的图象.y1x 2 ,y1 (x 2)2 ,y1(x2)2 ,并指出它们的开口方向、对称轴和顶点坐222标. 解 列表.xy1x 2y1(x 2)2y1(x 2) 2它们的开口方向都向上;对称轴分别是y 轴、直线x= -2 和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).回顾与反思 对于抛物线 y 1(x2)2 ,当 x 时,函数值 y 随 x 的增大而减小;2当 x 时,函数值 y 随 x 的增大而增大;当 x 时,函数取得最值,最值 y=.探索 抛物线 y1(x2)2 和抛物线 y1(x 2) 2 分别是由抛物线y1x 2向左、向右222平移两个单位得到的.如果要得到抛物线 y1(x4)2 ,应将抛物线 y1x 2 作怎样的22平移?例 2.不画出图象,你能说明抛物线 y 3x 2 与 y 3(x 2)2 之间的关系吗?解 抛物线 y3x 2 的顶点坐标为(0,0);抛物线 y 3(x 2)2 的顶点坐标为(-2,0).因此,抛物线y 3x 2 与y 3(x 2)2 形状相同,开口方向都向下,对称轴分别是 y轴和直线x 2 .抛物线y 3(x 2)2 是由y 3x 2 向左平移2 个单位而得的.回顾与反思ya (x h )2 (a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:ya (xaa[当堂课内练习]1 . 画图填空: 抛物线 y (x 1)2 的开口, 对称轴是, 顶点坐标是 ,它可以看作是由抛物线 yx 2 向平移 个单位得到的.2.在同一直角坐标系中,画出下列函数的图象.y 2x 2 ,y 2(x3)2 ,y 2(x 3)2 ,并指出它们的开口方向、对称轴和顶点坐标. [本课课外作业]A 组1.已知函数y1x 2 ,y 1 (x1)2 ,y1(x1)2 .222(1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y 1x 2得到抛物2线y1(x 1)2 和y 1(x1)2 ?223.函数y 3(x 1)2 ,当 x时,函数值y 随x 的增大而减小.当x 时,函数取得最值,最值y= .4.不画出图象,请你说明抛物线y 5x 2 与y 5(x 4)2 之间的关系.B 组5.将抛物线y ax 2 向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点(1,3),求 a 的值. [本课学习体会][本课知识重点]26.2 二次函数的图象与性质(4)1.掌握把抛物线yax 2 平移至y a ( x h ) 2 +k 的规律;2.会画出y a ( x h ) 2 +k 这类函数的图象,通过比较,了解这类函数的性质.[MM 及创新思维]由前面的知识,我们知道,函数y 2x 2 的图象,向上平移 2 个单位,可以得到函数y2x22 的图象;函数y 2x 2 的图象,向右平移 3 个单位,可以得到函数y 2(x3)2的图象,那么函数y 2x 2 的图象,如何平移,才能得到函数y 2(x 3)22 的图象呢?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.y1x 2 ,y1(x 1)2 ,y1(x 1)2 2 ,并指出它们的开口方向、对称轴和顶点2 2 2坐标.解列表.xy1x 2y1(xy1(x1)2 23232描点、连线,画出这三个函数的图象,如图26.2.6 所示.它们的开口方向都向,对称轴分别为、、,顶点坐标分别为、、.请同学们完成填空,并观察三个图象之间的关系.回顾与反思二次函数的图象的上下平移,只影响二次函数y a( x h) 2 +k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.22探索 你能说出函数y a ( x h ) 2 +k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称 轴和顶点坐标吗?试填写下表.例 2.把抛物线 y x 2 bx c 向上平移 2 个单位,再向左平移 4 个单位,得到抛物线y x 2 ,求 b 、c 的值.分析 抛物线 y x 2 的顶点为(0,0),只要求出抛物线 y x 2 bxc 的顶点,根据顶 点坐标的改变,确定平移后的函数关系式,从而求出 b 、c 的值.解 yx 2 bx c x 2bxbb c (xb)2 cb.44 2 4向上平移 2 个单位,得到 y (xb)2 cb2 ,222 4再向左平移4 个单位,得到y (xb4)2 cb2 ,2 4其顶点坐标是(b4, c b2) ,而抛物线y x 2 的顶点为(0,0),则2 4b242cb42 0b 8解得c 14 22探索把抛物线y x 2 bx c 向上平移2 个单位,再向左平移4 个单位,得到抛物线y x 2,也就意味着把抛物线y x 2 向下平移2 个单位,再向右平移4 个单位,得到抛物线y x 2 bx c .那么,本题还可以用更简洁的方法来解,请你试一试.[当堂课内练习]1.将抛物线y 2(x 4)2 1如何平移可得到抛物线y 2x 2 ()A.向左平移4 个单位,再向上平移1 个单位B.向左平移4 个单位,再向下平移1 个单位C.向右平移4 个单位,再向上平移1 个单位D.向右平移4 个单位,再向下平移1 个单位2.把抛物线y 3x 2 向左平移3 个单位,再向下平移4 个单位,所得的抛物线的函数2关系式为 .3.抛物线 y 1 2x1x 2 可由抛物线 y1x 2 向平移个单位,再向平22移个单位而得到.[本课课外作业]A 组1.在同一直角坐标系中,画出下列函数的图象.y3x 2 , y 3(x 2)2 , y 3(x 2)21 ,并指出它们的开口方向、对称轴和顶 点坐标.2.将抛物线y x2 2x 5 先向下平移 1 个单位,再向左平移 4 个单位,求平移后的抛物线的函数关系式.1 231 23.将抛物线yx 2x如何平移,可得到抛物线yx 22B 组2x3 ?4.把抛物线y x2 bx c 向右平移3 个单位,再向下平移 2 个单位,得到抛物线y x2 3x 5 ,则有( )A .b =3,c=7B .b= -9,c= -15C .b=3,c=3D .b= -9,c=215.抛物线y3x2 bx c 是由抛物线y 3x2bx1 向上平移 3 个单位,再向左平 移2 个单位得到的,求 b 、c 的值.6.将抛物线y ax 2 (a 0) 向左平移 h 个单位,再向上平移 k 个单位,其中h >0,k <0,求所得的抛物线的函数关系式.[本课学习体会][本课知识重点]26.2 二次函数的图象与性质(5)1.能通过配方把二次函数y ax2 bx c 化成y a(x h)2 +k的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象.[MM及创新思维]我们已经发现,二次函数y 2(x 3)2 1 的图象,可以由函数y2x 2 的图象先向平移个单位,再向平移个单位得到,因此,可以直接得出:函数y 2(x3)2 1的开口,对称轴是,顶点坐标是.那么,对于任意一个二次函数,如y x2 3x 2 ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?[实践与探索]例 1.通过配方,确定抛物线 y 2x 2 4x 6 的开口方向、对称轴和顶点坐标,再描点 画图.解y 2x2 4x62(x2 2x )62(x2 2x 1 1)62(x 1)2162(x 1)2 8因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8)由对称性列表:xy 2x 24x 62回顾与反思 (1)列表时选值,应以对称轴 x=1 为中心,函数值可由对称性得到,. (2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然 后再对称描点,最后用平滑曲线顺次连结各点. 探索 对于二次函数yax2 bx c ,你能用配方法求出它的对称轴和顶点坐标吗?请 你完成填空:对称轴 ,顶点坐标.例 2.已知抛物线y x 2 ( a 2)x 9 的顶点在坐标轴上,求 a 的值.分析 顶点在坐标轴上有两种可能:(1)顶点在 x 轴上,则顶点的纵坐标等于 0;(2) 顶点在 y 轴上,则顶点的横坐标等于 0.解y x2( a 2)x 9 (xa2 )29( a2),24a 2则抛物线的顶点坐标是,9( a 2)2.24当顶点在 x 轴上时,有解得a 20 ,2a 2 .当顶点在 y 轴上时,有(a2) 2940 ,解得a 4 或a 8 .所以,当抛物线y x 2 (a 2)x 9 的顶点在坐标轴上时,a 有三个值,分别是–2,4,8.[当堂课内练习]1.(1)二次函数y x2 2x 的对称轴是.(2)二次函数y 2x2 2x 1的图象的顶点是,当x 时,y 随x 的增大而减小.(3)抛物线y ax2 4x 6 的顶点横坐标是-2,则a = .2.抛物线y ax2 2x c 的顶点是(1,1) ,则a 、c 的值是多少?32[本课课外作业]1.已知抛物线y1x223xA 组5,求出它的对称轴和顶点坐标,并画出函数的图象.2 2.利用配方法,把下列函数写成y a (x h )2 +k 的形式,并写出它们的图象的开口方向、对称轴和顶点坐标. (1)yx2 6x1(2)y2x2 3x 4(3)yx2nx(4)y x2 px q3.已知 y (k2)x k2k 6是二次函数,且当x 0 时,y 随 x 的增大而增大.(1)求 k 的值;(2)求开口方向、顶点坐标和对称轴.B 组4.当a 0 时,求抛物线y x 2 2ax 1 2a 2 的顶点所在的象限.5. 已知抛物线y x 2 4x h 的顶点A 在直线y 4x 1上,求抛物线的顶点坐标.[本课学习体会][本课知识重点]26.2 二次函数的图象与性质(6)1.会通过配方求出二次函数y ax2 bx c(a 0) 的最大或最小值;2.在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值.[MM 及创新思维]在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为 80 元的某种商品按每件 100 元出售,一天可销出约 100 件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低 1 元,其销售量可增加约 10 件.将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,设每件商品降价x 元,该商品每天的利润为y 元,则可得函数关系式为二次函数y 10x2 100x 2000 .那么,此问题可归结为:自变量x 为何值时函数y 取得最大值?你能解决吗? [实践与探索]例1.求下列函数的最大值或最小值.(1)y 2x2 3x 5 ;(2)y x2 3x 4 .分析由于函数y 2x2 3x 5 和y x2 3x 4 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.解(1)二次函数y 2x2 3x 5 中的二次项系数2>0,因此抛物线y 2x2 3x 5 有最低点,即函数有最小值.因为y 2x2 3x 5 = 2(x3)249,4 83 49所以当x时,函数y 2x2 3x 5 有最小值是.4 8(2)二次函数y x2 3x 4 中的二次项系数-1<0,因此抛物线y x2 3x 4 有最高点,即函数有最大值.因为y x2 3x 4 =(x3)225,2 4所以当x32时,函数y x2 3x4 有最大值是 25. 4回顾与反思 最大值或最小值的求法,第一步确定 a 的符号,a >0 有最小值,a <0 有最大 值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 探索 试一试,当 2.5≤x ≤3.5 时,求二次函数yx2 2x3 的最大值或最小值. 例 2.某产品每件成本是 120 元,试销阶段每件产品的销售价 x (元)与产品的日销售量 y (件)之间关系如下表:元?此时每日销售利润是多少?分析日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量. 解 由表可知 x+y=200, 因此,所求的一次函数的关系式为 yx200 . 设每日销售利润为 s 元,则有sy (x 120) (x 160)21600 . 因为x2000, x1200 ,所以120x200 .所以,当每件产品的销售价定为 160 元时,销售利润最大,最大销售利润为 1600 元.。
2017-2018年新人教版九年级数学下册全册教案【初中】
新人教版九年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第二十六章反比例函数26.1反比例函数26.2实际问题与反比例函数第二十七章相似27.1图形的相似27.2相似三角形27.3位似第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形及其应用第二十九章投影与视图29.1投影29.2三视图29.3课题学习制作立体模型第二十六章反比例函数26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点理解一般地,形如y k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数, x自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.也就是说,分母不能是多项式,只能是 x 的一次单项式,如 y = , y = 等都是反比例函数,但 y = 就不是关于 x 的反比例函数.y 是 x 的反比例函数 ⇔ y =数为 k.k x(k ≠0) ⇔ xy =k(k ≠0)⇔ 变量 y 与 x 成反比例,比例系拓展 (1)在反比例函数 y = k x(k ≠0)的左边是函数 y ,右边是分母为自变量 x 的分式,1 3x1 x 22x + 1(2)反比例函数可以理解为两个变量的乘积是一个不为 0 的常数 ,因此可以写成y =kx -1 或 xy =k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点 2 用待定系数法确定反比例函数的表达式 难点:运用由于反比例函数 y = k中只有一个待定系数 ,因此只要有一对对应的 x ,y 值,或已x知其图象上一点坐标,即可求出 k ,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式 y = k(k ≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于 k 的方程.(3)解方程,求出待定系数 k 的值.(4)将待定系数 k 的值代回所设的关系式,即得所求的反比例函数关系式.知识点 3 反比例函数图象的画法 难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以 0 为中心点,沿 0 的两边取三对(或三对以上)相反数,分别计算 y 的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点 ,双曲线的两个分支是断开的 ,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展 (1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数y=k(k≠0)的图象的两个分支关于原点对称. x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数(k≠0)的性质难点;灵活应用(1)如图所示,反比例函数的图象是双曲线,反比例函数y=k的图象是由两支曲x线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
新人教版九年级数学下册全册教案
义务教育课程标准人教版数学教案九年级下册2017年春第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)xy 2-= (3)xy =21 (4)25+=x y (5)31+=x y例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
最新部编人教版九年级数学下册教学设计(全册教案)
人教版九年级数学下册(全册)教案九年级数学下册教学计划一、基本情况分析1.学生情况通过一个学期的努力多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于一些学生数学基础太差,学生数学成绩两极分化的现象没有显著改观,给教学带来很大难度。
设法关注每一个学生,重视学生的全面协调发展是教学的首要地位。
2.学习内容分析本期教学进程主要分为新课教学和总复习教学两大阶段。
新课教学共分四章。
第一章《反比例函数》、《相似》、《锐角三角函数》、《投影与视图》。
总复习是本期教学的一个重点。
通过系统的总复习使学生全面熟悉初中数学教学内容,在牢固掌握基础知识的前提下,能娴熟的运用所学知识分析和解决问题。
本学期就将开始进入专题总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。
如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。
因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:(1)审题不清,不能正确理解题意;(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;(3)对所学知识综合应用能力不够;(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
(5)阅读理解能力偏差,见到字数比较多的解答题先产生畏惧心理。
(6)不能对知识灵活应用。
二、学习目标师生共同努力,使绝大多数学生达到或基本达到《课标》的要求,注重基础训练,顾及多数人的水平和接受能力,促进全体学生的全面协调发展。
人教版九年级下册数学全册教学设计
人教版九年级下册数学全册教学设计一. 教材分析人教版九年级下册数学教材内容包括:相似三角形、锐角三角函数、平面直角坐标系中的距离和角度、统计、概率、反比例函数、二次函数等。
这些内容是初中数学的重要知识点,为高中的数学学习打下基础。
二. 学情分析九年级的学生已经掌握了基本的数学知识,具备一定的逻辑思维和分析问题的能力。
但是,对于一些抽象的概念和理论,学生可能还存在着理解上的困难。
因此,在教学过程中,需要引导学生通过实例去理解和掌握知识点。
三. 教学目标1.知识与技能:使学生掌握相似三角形、锐角三角函数、平面直角坐标系中的距离和角度、统计、概率、反比例函数、二次函数等知识点,并能够运用这些知识解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方式,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力,使学生认识到数学在生活中的重要性。
四. 教学重难点1.相似三角形的判定和性质2.锐角三角函数的定义和应用3.平面直角坐标系中距离和角度的计算4.统计、概率的知识点和应用5.反比例函数、二次函数的图象和性质五. 教学方法1.情境教学法:通过生活实例、图片、视频等引导学生进入学习情境,激发学生的学习兴趣。
2.启发式教学法:提问、讨论等方式引导学生主动思考,培养学生的分析问题和解决问题的能力。
3.小组合作学习:分组讨论、共同完成任务,培养学生的团队协作能力和沟通能力。
4.实践教学法:让学生通过动手操作、实践验证等,加深对知识点的理解和记忆。
六. 教学准备1.教学课件:制作与教材内容相关的课件,包括图片、动画、视频等,丰富教学手段。
2.教学素材:准备相关的例题、习题、实际问题等,用于引导学生进行学习。
3.教学设备:多媒体投影仪、计算机、黑板等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,如:“一个长方形的长是10cm,宽是5cm,求它的对角线的长度。
2018年春九年级数学人教版下册教学设计:27.2
2018年春九年级数学人教版下册教学设计:27.2教学目标•理解平的定义并能够应用到相关问题中•掌握平的判定条件并能够正确使用•能够解决与平有关的实际问题•培养学生的观察、推理和解决问题的能力教学内容•平的定义及相关概念•判断平的条件•解决与平有关的实际问题教学重点•平的定义及相关概念的理解和应用•平的判定条件的掌握和运用教学难点•解决与平有关的实际问题•培养学生的观察、推理和解决问题的能力教学方法•讲授与练习相结合的方法•提问互动的方法•实践探究的方法教学准备•教师准备教学课件•教师准备习题、实例及相关练习材料教学过程Step 1:导入•给学生展示一些与平相关的实际场景,引发学生对平的认识和思考•引导学生回忆平的定义及相关概念,复习之前学过的知识Step 2:概念讲解•结合课件,讲解平的定义及相关概念,帮助学生对平的概念有一个清晰的认识•引导学生分析平的特征和性质Step 3:条件判定•介绍判断平的条件,并讲解其推导过程•对比不同条件的差异和联系,帮助学生理解条件判定的原理和方法Step 4:练习应用•给学生提供一些练习题,巩固平的定义和条件判定的运用•引导学生分析解决问题的步骤和方法Step 5:实际问题解决•给学生提供一些与平相关的实际问题,引导学生运用所学知识解决问题•培养学生的观察、推理和解决问题的能力Step 6:总结与反思•对学生进行知识总结,强调平的定义和条件判定的重要性•引导学生反思学习过程,提出问题和困惑,并进行讨论和解答教学评价•教师观察学生的学习状态,对学生的课堂表现进行点评•批改学生的练习和作业,给予及时的反馈•设计小组活动或讨论,评价学生的合作和交流能力总结通过本节课的教学设计,学生将能够全面理解平的定义及相关概念,并掌握判断平的条件,能够正确应用到实际问题中解决。
通过实践探究的教学方法,培养学生的观察、推理和解决问题的能力,提高学生的综合素质。
同时,教师应注重学生的思维方式和思考能力的培养,引导学生积极思考、合作讨论,激发学生的学习兴趣和主动性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为满足广大教师的教学要求,根据最新的2018年九年级数学下册教学大纲,同步更新全册教案;本册教学案完全匹配2018年最新部编版人教版九年级数学下册教材;内容充实、详简分明、重点突出、教学环节齐备、精简试用,全文WORD文档,支持修改,可以直接用A4纸打印,避免您为寻找资料而费时费力;由于编写整理水平有限,文中势必存在各类不足,各位朋友在下载前请慎重考虑。
《人教版九年级下册全套教案》第二十六章二次函数26.1二次函数(1)教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10) (1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2) (2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.四、课堂练习1.(口答)下列函数中,哪些是二次函数?(1)y=5x+1 (2)y=4x2-1(3)y=2x3-3x2(4)y=5x4-3x+12.P3练习第1,2题。
五、小结1.请叙述二次函数的定义.2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略26.1二次函数(2)教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学过程:一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象) 3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
两个函数图象的共同点以及它们的区别,可分组讨论。
交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。
对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0).四、归纳、概括函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题;(1)X A、X B大小关系如何?是否都小于0?(2)y A、y B大小关系如何?(3)X C、X D大小关系如何?是否都大于0?(4)y C、y D大小关系如何?(X A<X B,且X A<0,X B<0;y A>y B;X C<X D,且X C>0,X D>0,y C<y D)其次,让学生填空。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______以上结论就是当a>0时,函数y=ax2的性质。
思考以下问题:观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a<O时,抛物线y=ax2有些什么特点?它反映了当a<O时,函数y=ax2具有哪些性质?让学生讨论、交流,达成共识,当a<O时,抛物线y=ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。
图象的这些特点,反映了当a<O时,函数y=ax2的性质;当x<0时,函数值y随x的增大而增大;与x>O时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。
五、课堂练习:P6练习1、2、3、4。
六、作业:1.如何画出函数y=ax2的图象?2.函数y=ax2具有哪些性质?3.谈谈你对本节课学习的体会。
26.1 二次函数(3)教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
重点难点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。
教学过程:一、提出问题1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y =ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?(画出函数y=2x2和函数y=2x2的图象,并加以比较)问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?教学要点1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。
2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.3.教师写出解题过程,同学生所画图象进行比较。
(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。