1.5 三角形全等的判定(1)

合集下载

华东师大版:全等三角形的判定一

华东师大版:全等三角形的判定一

全等三角形的判定一1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.一、全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B=AB,''A C=AC,''B C=BC,则△ABC△△'''A B C.二、全等三角形判定2——“边角边”1.全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB =''A B,△A=△'A,AC =''A C,则△ABC△△'''A B C. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=AD,△B=△B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.教学目标学习内容知识梳理类型一、全等三角形的判定1——“边边边”例1、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:△BAD =△CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩△△ABD△△ACE (SSS )△△BAD =△CAE (全等三角形对应角相等).【变式】已知:如图,AD =BC ,AC =BD.试证明:△CAD =△DBC.证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 △△ACD△△BDC (SSS )△△CAD =△DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例2、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD =DE ,△ADB =△EDC ,BD =CD .△△ABD△△ECD .△AB =CE .△AC +CE >AE ,△AC +AB >AE =2AD .即AC +AB >2AD .例3、已知,如图:在△ABC 中,△B =2△C ,AD△BC ,求证:AB =CD -BD . 证明:在DC 上取一点E ,使BD =DE例题讲解△ AD△BC ,△△ADB =△ADE在△ABD 和△AED 中, BD =DE ,AD =AD .△△ABD△△AED (SAS ).△AB =AE ,△B =△AED .又△△B =2△C =△AED =△C +△EAC .△△C =△EAC .△AE =EC .△AB =AE =EC =CD—DE =CD—BD . 【变式】已知,如图,在四边形ABCD 中,AC 平分△BAD ,CE△AB 于E ,并且AE =21(AB +AD ),求证:△B +△D =180°.证明:在线段AE 上,截取EF =EB ,连接FC ,△CE△AB ,△△CEB =△CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩△△CBE△△CFE (SAS )△△B =△CFE△AE =21(AB +AD ),△2AE = AB +AD △AD =2AE -AB△AE =AF +EF ,△AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)△△AFC△△ADC (SAS )△△AFC =△D△△AFC +△CFE =180°,△B =△CFE.A E D CB△△AFC +△B =180°,△B +△D =180°.类型三、全等三角形判定的实际应用例4、如图,公园里有一条“Z 字形道路ABCD ,其中AB△CD ,在AB ,BC ,CD 三段路旁各有一个小石凳E ,M ,F ,且BE =CF ,M 在BC 的中点.试判断三个石凳E ,M ,F 是否恰好在一条直线上?为什么?证明:△AB 平行CD (已知)∴∠B =∠C (两直线平行,内错角相等)∵M 在BC 的中点(已知)∴BM =CM (中点定义)在△BME 和△CMF 中BE CF B C BM CM =⎧⎪∠=∠⎨⎪=⎩∴△BME ≌△CMF (SAS )∴∠EMB =∠FMC (全等三角形的对应角相等)∴∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°(等式的性质)∴E ,M ,F 在同一直线上 一、选择题 1. 如图,已知AB =AC ,D 为BC 的中点,结论:△AD△BC ;△AD 平分△BAC ;△△B =△C ;△△ABC 是等边三角形.其中正确的是( ).A.△△B. △△C. △△△D. △△2.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:△;△ 和的面积相等;△;△ △,其中正确的有( ).A.1个B.2个AD ABC ∆E F AD AD DE DF =BF CE CE BF =ABD ∆ACD ∆//BF CE BDF ∆CDE ∆综合题库C.3个D.4个3. AD为△ABC中BC边上的中线, 若AB=2, AC=4, 则AD的范围是( )A .AD<6 B. AD>2 C. 2<AD<6 D. 1<AD<34.如图,AB=DC,AD=BC,E、F是DB上两点,且BF=DE,若△AEB=120°,△ADB=30°,则△BCF =().A.150°B.40°C.80°D.90°5. 根据下列条件能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,△A=30°C.AB=5,AC=6,△A=45°D. △A=30°,△B=60°,△C=90°6. 如图,在△ABC中,△A=50°,△B=△C,点D,E,F分别在AB,BC,AC上,并且BD=CE,BE=CF,则△DEF等于()A.50°B.60°C. 65°D. 70°二、填空题7. 如图,AB=CD,AC=DB,△ABD=25°,△AOB=82°,则△DCB=_________.8. 如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.9. 如图,已知AE=AF,AB=AC,若用“SAS”证明△AEC△AFB,还需要条件.10. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.11. 如图所示,BE△AC于点D,且AD=CD,BD=ED,若△ABC=54°,则△E=°.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得12. 把两根钢条','AB=5厘米,则槽宽为厘米.三、解答题13. 如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,△ABC=△EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.14. 如图, ∠B =∠C, BD =CE, CD =BF 。

全等三角形判定经典

全等三角形判定经典

11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。

表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。

例1. 如图所示,AB =CD ,AC =DB 。

求证:△ABC ≌△DCB 。

A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。

证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。

“ASA ”。

表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。

例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。

ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。

事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。

证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。

全等三角形的性质与判定(经典讲义)

全等三角形的性质与判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形判定(ASA和AAS)

全等三角形判定(ASA和AAS)
A∠BB∥=D∠EE (ASA)
D
或∠A=∠D (AAS)
E
或 AC=DF (SAS)
知识梳理: 三角形全等判定方法3
有两角和它们夹边对应相等的两个三角形全
等(可以简写成“角边角”或“ASA”)。
用符号语言表达为:
在△ABC和△DEF中
A
D
∠A=∠D (已知 )
AB=DE(已知 )
∠B=∠E(已知 )
A_B_=_A__’__C_ ( 已知 )
∠_B__=_∠__C__ ( 已知 )
∴△A_B_E__≌△A_’__C_D( ASA)
B
ED C
考考你
1、如图:已知AB∥DE,AC∥DF, BE=CF。求证:△ABC≌△DEF。
AD B EC F
证明:∵ BE=CF(已知)
∴BC=EF(等式性质)
∵ AB∥DE AC∥DF (已知)
∵∠1= ∴∠1+ 即∠BAC=
∠DAE 在△ABC和△ADC 中
C=E(已知) BAC=DAE(已证


△ABC≌△ADE (AAS)
AB=AD(已知)
5、在△ABC中,AB=AC,
A
AD是边∠BBACC上的的角中平线分,线证。明: ∠求B证A:D=BD∠C=ACDD
B
DC
证明:∵AD是B∠CB边AC上的的角中平线分线(已知)
C
F
A
BD
E
例1 、如图 ,AB=AC,∠B=∠C,那么△ABE和 △ACD全等吗?为什么?
A 证明: 在△ABE与△ACD中
D
E
∠B=∠C (已知) AB=AC (已知)
∠A= ∠A (公共角)
B

初中数学公式之全等三角形的判定最新

初中数学公式之全等三角形的判定最新

初中数学公式之全等三角形的判定最新初中数学公式之全等三角形的判定最新全等三角形的判定公式1边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等2 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等3 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等4 边边边公理(SSS) 有三边对应相等的两个三角形全等5斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等6 定理1 在角的平分线上的点到这个角的两边的距离相等7 定理2 到一个角的两边的距离相同的点,在这个角的平分线上8角的平分线是到角的两边距离相等的所有点的集合初中数学几何公式大全之全等三角形的判定公式,看过的同学请认真记忆了。

接下来还有更多更全的初中数学知识讯息尽在。

初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

用两角夹边关系判定三角形全等 课件ppt(共23张PPT)导学案

用两角夹边关系判定三角形全等 课件ppt(共23张PPT)导学案

7.【中考·永州】如图,点D,E分别在线段AB,AC上,CD与BE相
交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定 △ABE≌△ACD( D )
A.∠B=∠C
B.AD=AE
C.BD=CE
D.BE=CD
课堂总结
本节课我们经历了对符合两角一边的条件的所有三角形进行画图验 证,探索出三角形全等的另一种方法,它是: 两个角及其夹边对应相等的两个三角形全等(ASA)
再加上前面学的(SSS、SAS),证明两个三角形全等共有三种方 法,我们要学会根据题目给出的条件选用合适的定理来证明两个三 角形全等。
板书设计
课题:1.5.3 用 两 角 夹 边 关 系 判 定 三 角 形 全 等
一、角边角 二、例4 三、例5
教师板演区
学生展示区
作业布置
课本 P33 练习题
课堂练习
3.如图,能直接运用“ASA”定理证明△AOB≌△DOC 的是(A ) A.AO=DO,∠A=∠D B.AO=DO,∠B=∠C C.AO=DO,BO=CO D.AO=DO,AB=CD
课堂练习
4.如图,E是BC上一点,AB⊥CB于点B,CD⊥CB于点C,AB= CB,∠A=∠CBD,AE与BD相交于点O,则下列结论中,正确 的有( D ) ①AE=BD;②AE⊥BD;③EB=CD; ④S△ABO=S四边形CDOE. A.1个 B.2个 C.3个 D.4个
中考链接
6.【中考·柳州】如图,AE和BD相交于点C,∠A=∠E,AC=EC. 求证:△ABC≌△EDC.
证明:因为∠ACB 与∠ECD 是对顶角, 所以∠ACB=∠ECD. ∠A=∠E, 在△ABC 和△EDC 中, AC=EC, ∠ACB=∠ECD, 所以△ABC≌△EDC(ASA).

1.5 全等三角形的判定(1)

1.5 全等三角形的判定(1)

例3 小明做了一个如图所示的风筝,他想 去验证∠BAC与∠DAC是否相等,手头只 有一把(足够长)尺子,线段)相等转化为证角 (或线段)所在的三角形全等
作业4. 如图,在四边形ABCD中,AB=AD,CB=CD.你能 通过添加辅助线,把它分成两个全等三角形吗?若能,画 出辅助线,并给出证明.
a=3cm,b=3.5cm,c=5.5cm.
全等三角形判定公理:
三边对应相等的两个三角形全等(简写成“边 边边”或“SSS”)
如果…那么…形式描述:
如果两个三角形有三边对应相等,那么这两个 三角形全等。
几何语言描述:
A
∵ AB = A' B'
CB = C' B' AC = A' C'
作业5. 已知:如图,AB=DE,BC=EF,AF=DC.求 证:BC∥EF.
由已知可得△ABC≌△DEF(SSS) ∴ ∠EFD=∠BCA(全等三角形的对应角相等), ∴ ∠EFC=∠BCA(等角的补角相等), ∴ EF∥BC(内错角相等,两直线平行).
课内练习 2. 如图,点B,E,C,F在同一条直线上,且 AB=DE,AC=DF ,BE=CF.将下面证明△ABC≌△DEF的过程补充完整.
B A'
C
∴△ABC≌△A'B' C' B'
C'
• 我们发现三角形的三边长度确定,这个三角形的 形状大小就完全确定,这个性质叫三角形的稳定 性。这是三角形特有的性质。
例1 已知:如图, 在四边形ABCD中,AB=CD, AD=CB,求证:∠B=∠D
A B D C A B D C
小结:非三角形全等问题要转化成三角形全等问题。

判断三角形全等小论文

判断三角形全等小论文

我也来探索判定三角形全等的条件一、问题的提出按照我们之前的想法,说明两个三角形全等,就是把它剪下来,拼一拼,比一比,看看它们是否会重合。

如果这两个三角形能重合,那么它们就是全等三角形。

可是,这个方法有一定的局限性。

如果老师让我们判断黑板上所画的两个三角形是否全等,难道我们要把它们割下来拼一拼吗?因此我对今天我们所学的《1.5三角形全等的判定》非常感兴趣。

在此基础上,我和几位同学也来谈谈如何探索判定三角形全等的条件。

二、思考与分析影响三角形的形状有两方面:内角的大小和边的长度。

因此我们认为肯定要从边和角这两方面去探索判定两个三角形全等的条件。

我们把所有的可能性归为三大类: ① 1个条件② 2个条件③ 3个条件接下来,我们就一个一个地探索以上哪类能判定三角形全等…… 三、问题的解决一、1个条件 ⑴ 只有一条边对应相等在一个三角形中,有三条边。

而这里只确定了一条边,那么另外两条边就有了很多种可能。

大家来看图①,在△ABC 和△DEF 中,已知BC=EF ,但是我们可以明显看出下面的两个三角形不全等的。

所以,只有一条边对应相等的两个三角形并不一定全等! ⑵ 只有一个角对应相等有买绘图套尺的同学都知道,一套尺子中,有两个三角板。

这两个三角形都只有1条边对应相等只有1个角对应相等只有2个角对应相等 只有2条边对应相等只有1条边和1个角对应相等只有1条边对应相等只有1个角对应相等图只有3条边对应相等只有3个角对应相等只有1条边和2个角对应相等只有2条边和1个角对应相等是直角三角形。

但是,我们会发现,它们两个根本不能完全重合在一起,那么说明这两个三角形虽然都有一个角等于90°,但是它们不是全等三角形。

例如图②,在△ABC 和△DEF 中,已知∠B=∠E=90°,但是,这两个三角形也不全等!所以,只有一个角相等的两个三角形不全等!总结上述,我们可以得出一个结论:只有一条边对应相等或只有一个角对应相等,那么两个三角形不一定全等!二、 2个条件⑴ 两条边对应相等如果两条边对应相等,第三条边也会有许多的可能。

1.5全等三角形判定方法①

1.5全等三角形判定方法①
第一章
三角形初步知识
1.5 全等三角形判定①
1、 什么叫全等三角形?
能够重合的两个三角形叫全等三角形。
2、 全等三角形有什么性质?
A D
B
C
E
F
①AB=DE ② BC=EF ③ CA=FD ④∠A=∠D ⑤∠B=∠E ⑥∠C=∠F
问题一:根据上面的结论,两个三角形全等,
它们的三个角、三条边分别对应相等,那么
组全等的三角形?它们全等的条件是什么? A 解:有三组。
在△ABH和△ACH中
∵AB=AC,BH=CH,AH=AH
∴△ABH≌△ACH(SSS); 在△ABH和△ACH中 ∵AB=AC,BD=CD,AD=AD ∴△ABD≌△ACD(SSS); 在△ABH和△ACH中 ∵BD=CD,BH=CH, DH=DH∴△DBH≌△DCH(SSS)
试一试:
已知: 如图,AC=AD ,BC=BD. 说明: ∠C=∠B. C 解: 连结AB
在△ACB 和 △ADB中 AC = AD (已知)
BC = BD (已知)
A
D
B
AB = AB (公共边) ∴△ACB≌△ADB (SSS)
你能否得出不用量角器画角的平分线的方法?
例题讲解
例2 已知∠BAC(如图),用直尺和圆规作 ∠BAC的平分线AD,并说出该作法正确的理由。
证明:连结AC, 在△ABC和△ ADC中, AB=CD(已知) BC=AD(已知) AC=AC(公用边) ∴ △ ABC≌ △ CDA(SSS)
A B A B
D
C D
C
∴ ∠B=∠D(全等三角形对应角相等)
问:1. 此题添加辅助线,若连结BD行吗? 2. 在原有条件下,还能推出什么结论? 小结:四边形问题转化为三角形问题解决。

全等三角形的判定(一)SAS

全等三角形的判定(一)SAS

图 19.2.4
巩 固 一 下
1: 如图,已知AB和CD相交与O,
OA=OB, OC=OD.说明 △ OAD与 △ OBC全等的理由 解:在△OAD 和△OBC中
B
C
2
O
OA = OB(已知)
∠1 =∠2(对顶角相等) OD = OC (已知)
1
A D
∴△OAD≌△OBC (S.A.S.)
练 一 练

我们这节课主要研究在两个三角形中, 如果有两对边和一对角分别相等,那么 着两个三角形是否会全等?
画一个三角形,使它的一个内角45°, 夹这个角的一条边为3厘米,另一条 边长为4厘米。
画图 步骤
1.画一线段AB,使它等于4cm ; 2.画∠ MAB= 45°; 3.在射线AM上截取AC=3cm ; △ ABC就是所求的三角形。 4.连结BC.
E
F
ED=FD(已知)
∠EDH=∠FDH(已知)
DH=DH(公共边) ∴△EDH≌△FDH (S.A.S.) ∴EH=FH(全等三角形对应边相等)
H
例3
正在修建的某高速公路要通过一座大山,现要从这座 山中挖一条隧道,为了预算修这条隧道的造价必须知道隧 道的长度,即这座山A,B两处的距离,你能想出一个办法, 测出AB的长度吗? 解 选择地点O,从O处可以看到 A处与B处.连结AO并延长至A′, 使OA′=AO;连结BO并延长至B′, A 使OB′=BO.连结A′B ′. 在△AOB和△ A′OB′中,因为 O B′ A′
B
AO= A′O ∠AOB= ∠A′OB ′ BO=B′O
所以
于是得
△AOB≌△ A′OB′ A′B′ = AB A 因此的A′B′长度就是这座大山 A处与B处的距离. B

全等三角形判定一(SSSSAS)(基础)知识讲解

全等三角形判定一(SSSSAS)(基础)知识讲解

全等三角形判定一(SSS ,SAS )(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等) ∴ OP平分∠AOB.。

1.5.1 全等三角形的判定:SSS和SAS(原卷版)

1.5.1 全等三角形的判定:SSS和SAS(原卷版)

1.5.1 全等三角形的判定:SSS和SAS考查题型一三角形的稳定性1.“停课不停学,学习不延期”、居家网课期问,元元将一平板保护套展开放置在水平桌面上,如图所示,平板能保持平稳,这是运用了()A.三角形内角和等于180°B.两点之间,线段最短C.三角形具有稳定性D.三角形的一个外角等于与它不相邻的两个内角之和2.如图,空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用了三角形的()A.全等性B.灵活性C.稳定性D.对称性考查题型二用“SSS”判定三角形全等3.如图,已知AB=DC,若用定理SSS证明△ABC≌△DCB,则需要添加的条件是()A.OA=OD B.AC=DB C.OB=OC D.BC=CB4.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.SAS5.如图,已知AB=CD,AD=BC,O为AC上任意一点,过O点作一条直线分别交BA,DC的延长线于点F,E.求证:∠E=∠F.6.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.考查题型三用“SAS”判定三角形全等7.如图,在3×3的方格图中,每个小方格的边长都为1,则∠ACB的度数为()A.89°B.90°C.91°D.92°8.如图,点B在CD上,OB=OD,AB=CD,∠OBA=∠D;(1)求证:△ABO≌△CDO;(2)当AO∥CD,∠BOD=30°,求∠A的度数.考查题型四线段垂直平分线的性质9.如图,△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=50°,∠ABD=26°,则∠ACF的度数为( )A.66°B.52°C.46°D.42°10.如图,在ΔABC中,AD⊥BC垂足为点D,EF垂直平分AC,交BC于点E,交AC于点F,连接AE,若BD= DE,ΔABC的周长为16,AF=3,则DC的长为()A.4B.5C.6D.711.如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=5,则△CMN的周长为______;(2)若∠MFN=70°,求∠MCN的度数.A.4B.3 14.如图,点E、F在BD上,且()A.BE=DF B.△AEB≌15.如图,已知AB=AC,ADA.50°B16.如图,在四边形ABCD17.如图,在△ABC中,AB>PB―PC(填“>”、“<”或“=18.如图,在△ABC中,一点G,使GC=AB,连结19.如图,在△ABC中,AB=AC ACE,∠AEC=110°,则∠BDC的度数为20.如图,在ΔABC连接BD交AC于点(1)求证:ΔBAD≌ΔCAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.21.如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE 并延长,分别交AC,AB于点F,G.(1)求证:△ABC≅△DCE;(2)若BD=12,AB=2CE,求BC的长度.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,点C在DE上.(1)求证:△ABD≌△ACE.(2)若∠BDA=35°,则∠BDE=______°.。

全等三角形的判定方法(一)教案

全等三角形的判定方法(一)教案

全等三角形的判定方法(一)
一、学习目标:
1、掌握“边角边”判定定理
2、能运用“边角边”证明简单的三角形全等
二、自学自测:
1、自学指导:
(1)认真阅读教材P72~74;
(2)自己动手依据探究的条件画出两个三角形,剪下来判断它们是否重合;
(3)边角边定理的内容是什么?简写成字母的形式是怎么样的?
(4)证明全等的书写格式是怎么样的?
2、自测:
(1)
如图(1)已知AD ∥BC ,AD=BC ,那么⊿ADC 和⊿CBA 是全等三角形吗?为什么?
(2)如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:∠C=∠F
F E (图2)D
C B
A
四、当堂达标:
1、如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

2、 如图(4):
AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:
(1)∠B=∠C ,(2)BD=CE
E (图4)D C B A
F E (图3)D C B A。

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。

如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。

专题1.5 全等三角形的判定【八大题型】(举一反三)(浙教版)(原卷版)

专题1.5 全等三角形的判定【八大题型】(举一反三)(浙教版)(原卷版)

专题1.5 全等三角形的判定【八大题型】【浙教版】【题型1 全等三角形的判定条件】 (1)【题型2 证明两个三角形全等】 (2)【题型3 全等三角形的判定与性质(证两次全等)】 (3)【题型4 全等三角形的判定与性质(证垂直)】 (4)【题型5 全等三角形的判定与性质(多结论)】 (5)【题型6 全等三角形的判定与性质(探究角度之间的关系)】 (6)【题型7 全等三角形的判定与性质(探究线段之间的关系)】 (8)【题型8 全等三角形的应用】 (9)【题型1 全等三角形的判定条件】【例1】(2022春•顺德区期末)如图,∠A=∠D=90°,给出下列条件:①AB=DC,②OB=OC,③∠ABC=∠DCB,④∠ABO=∠DCO,从中添加一个条件后,能证明△ABC≌△DCB的是()A.①②③B.②③④C.①②④D.①③④【变式1-1】(2021秋•庐阳区期末)如图,点B、E在线段CD上,若∠A=∠DEF,则添加下列条件,不一定能使△ABC≌△EFD的是()A.∠C=∠D,AC=DE B.BC=DF,AC=DEC.∠ABC=∠DFE,AC=DE D.AC=DE,AB=EF【变式1-2】(2021秋•源汇区校级期末)如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.1个B.2个C.3个D.4个【变式1-3】(2022秋•佳木斯期末)在△ABC和△DEF中,其中∠C=∠F,则下列条件:①AC=DF,∠A=∠D;②AC=DF,BC=EF;③∠A=∠D,∠B=∠E;④AB=DE,∠B=∠E;⑤AC=DF,AB=DE.其中能够判定这两个三角形全等的是()A.①②④B.①②⑤C.②③④D.③④⑤【题型2 证明两个三角形全等】【例2】(2022春•鼓楼区校级期末)如图,点A,E,F,B在同一直线上,CE⊥AB,DF⊥AB,垂足分别为E,F,AE=BF,∠A=∠B.求证:△ADF≌△BCE.【变式2-1】(2021秋•肥西县期末)已知,如图,AB=AE,AB∥DE,∠ECB=65°,∠D=115°,求证:△ABC≌△EAD.【变式2-2】(2021秋•信州区校级期中)如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE ⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:△BDE≌△CDF.【变式2-3】(2022•河源模拟)如图,在四边形ABCD中,AD∥BC,点M为对角线AC上一点,连接BM,若AC=BC,∠AMB=∠BCD,求证:△ADC≌△CMB.【题型3 全等三角形的判定与性质(证两次全等)】【例3】(2022春•徐汇区校级期末)如图,已知AE∥DF,OE=OF,∠B=∠C,求证:AB=CD.【变式3-1】(2021春•横山区期中)如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,连接BD,求证:Rt△ADE≌Rt△CDF.【变式3-2】(2021秋•石阡县期末)如图,AB=AC,E、D分别是AB、AC的中点,AF⊥BD,垂足为点F,AG⊥CE,垂足为点G,试判断AF与AG的数量关系,并说明理由.【变式3-3】(2021秋•沂源县期末)如图,AD=AC,AB=AE,∠DAB=∠CAE.(1)△ADE与△ACB全等吗?说明理由;(2)判断线段DF与CF的数量关系,并说明理由.【题型4 全等三角形的判定与性质(证垂直)】【例4】(2022秋•孟津县期末)如图,BM,CN分别是钝角△ABC的高,点Q是射线CN上的点,点P在线段BM上,且BP=AC,CQ=AB,请问AP与AQ有什么样的关系?请说明理由.【变式4-1】(2022春•金牛区校级期中)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE 上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.(1)求证:∠ABE=∠ACG;(2)试判:AG与AD的关系?并说明理由.【变式4-2】(2021春•亭湖区校级期末)如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB =CF,BE=AC.(1)求证:AE=AF;(2)AE与AF有何位置关系.请说明理由.【变式4-3】(2021春•泰兴市期末)如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BD=AD,点F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM.(1)求证:BE=AC;(2)试判断线段AC与线段MC的关系,并证明你的结论.【题型5 全等三角形的判定与性质(多结论)】【例5】(2022春•九龙坡区校级期末)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,过点A作AF ∥BC且AF=AD,点E是AC上一点且AE=AB,连接EF,DE.连接FD交BE于点G.下列结论中正确的有()个.①∠F AE=∠DAB;②BD=EF;③FD平分∠AFE;④S四边形ABDE=S四边形ADEF;⑤BG=GE.A.2B.3C.4D.5【变式5-1】(2021秋•垦利区期末)如图,在△ABC中,BD、CE分别是∠ABC和∠ACB的平分线,AM ⊥CE于P,交BC于M,AN⊥BD于Q,交BC于N,∠BAC=110°,AB=6,AC=5,MN=2,结论:①AP=MP;②BC=9;③∠MAN=30°;④AM=AN.其中正确的有()A.4个B.3个C.2个D.1个【变式5-2】(2021春•锦州期末)如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB =∠COD=α,直线AC,BD交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB=α,④OM平分∠BOC,其中正确结论的个数是()A.4B.3C.2D.1【变式5-3】(2021春•江北区校级期末)如图,已知AB=AC,点D、E分别在AC、AB上且AE=AD,连接EC,BD,EC交BD于点M,连接AM,过点A分别作AF⊥CE,AG⊥BD,垂足分别为F、G,下列结论:①△EBM≌△DCM;②∠EMB=∠F AG;③MA平分∠EMD;④若点E是AB的中点,则BM+AC >EM+BD;⑤如果S△BEM=S△ADM,则E是AB的中点;其中正确结论的个数为()A.2个B.3个C.4个D.5个【题型6 全等三角形的判定与性质(探究角度之间的关系)】【例6】(2022春•杏花岭区校级期中)已知AB=AC,AD=AE,∠BAC=∠DAE.(1)如图1,当点D在BC上时,求证:BD=CE;(2)如图2,当点D、E、C在同一直线上,且∠BAC=α,∠BAE=β时,求∠DBC的度数(用含α和β的式子表示).【变式6-1】(2022•南京模拟)在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).【变式6-2】(2022秋•江夏区期末)已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=;(2)如图2,若∠DAB=90°,则∠AFG=;(3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.【变式6-3】(2021秋•肥西县期末)在△ABC中,AB=AC,D是直线BC上一点,连接AD,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=26°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【题型7 全等三角形的判定与性质(探究线段之间的关系)】【例7】(2022春•沙坪坝区校级期中)如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD 交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.【变式7-1】(2022•黄州区校级模拟)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.【变式7-2】(2021秋•两江新区期末)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【变式7-3】(2022春•济南期中)把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)【题型8 全等三角形的应用】【例8】(2022春•二七区期末)为了测量一池塘的两端A,B之间的距离,同学们想出了如下的两种方案:方案①如图1,先在平地上取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至点D,BC至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长;方案②如图2,过点B作AB的垂线BF,在BF上取C,D两点,使BC=CD,接着过D作BD的垂线DE,在垂线上选一点E,使A、C、E三点在一条直线上,则测出DE的长即是AB的距离.问:(1)方案①是否可行?请说明理由;(2)方案②是否可行?请说明理由;(3)小明说在方案②中,并不一定需要BF⊥AB,DE⊥BF,只需要就可以了,请把小明所说的条件补上.【变式8-1】(2021春•普宁市期末)学校为开展数学实践活动,成立了以小明为首的户外测量小组,测量小组带有测量工具:绳子、拉尺、小红旗、测角器(可测量两个点分别到测量者连线之间的夹角大小).小明小组的任务是测量某池塘不能直接到达的两个端点A、B之间的距离.(1)小明小组提出了测量方案:在池塘南面的空地上(如图),取一个可直接到达A、B的点C,用绳子连接AC和BC,并利用绳子分别延长AC至D、BC至E,使用拉尺丈量CD=CA、CE=CB,确定D、E两个点后,最后用拉尺直接量出线段DE的长,则端点A、B之间的距离就是DE的长.你认为小明小组测量方案正确吗?请说明理由.(2)你还有不同于小明小组的其他测量方法吗?请写出其中一个完整的测量方案(在备用图1中画出简图,但不必说明理由).(3)假设池塘南面(即点D、E附近区域)没有足够空地(或空地有障碍物或不可直达等不可测量情况),而点B的右侧区域有足够空地并可用于测量,请你设计一个可行的测量方案(在备用图2中画出图形),并说明理由.【变式8-2】(2022春•金乡县期中)如图,小明和小华住在同一个小区不同单元楼,他们想要测量小明家所在单元楼AB的高度,首先他们在两栋单元楼之间选定一点E,然后小华在自己家阳台C处测得E处的俯角为∠1,小明站在E处测得眼睛F到AB楼端点A的仰角为∠2,发现∠1与∠2互余,已知EF=1米,BE=CD=20米,BD=58米,试求单元楼AB的高.【变式8-3】(2022春•郑州期末)阅读并完成相应的任务.如图,小明站在堤岸凉亭A点处,正对他的B点(AB与堤岸垂直)停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图(不完整)测量步骤①小明沿堤岸走到电线杆C旁(直线AC与堤岸平行);②再往前走相同的距离,到达D点;③他到达D点后向左转90度直行,当自己,电线杆与游艇在一条直线上时停下来,此时小明位于点E处.测量数据AC=20米,CD=20米,DE=8米(1)任务一:根据题意将测量方案示意图补充完整.(2)任务二:①凉亭与游艇之间的距离是米.②请你说明小明方案正确的理由.。

最新1.5《三角形全等的判定(1)》教学课件

最新1.5《三角形全等的判定(1)》教学课件

的作法理:由.
A

C
1、以点A为圆心,适当的长为半径, 与角的两边分别交于E、F两点. 2两、条分圆别弧以交E于、∠F为BA圆C心内,一大点于D.12 EF长为半径作圆弧,
3、过点A、D作射线AD.
射线AD为所求的平分线.
请同学们说说理由
学以致用
1.如图,有一个三角形钢架,AB =AC ,AD 是连接 点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .
1.5 三角形全等的判定 〔第1课时〕
探究新知
△ABC ≌△ A′B′ C′,找出其中相等的边与
角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′ ∠C =∠C′
思考 满足这六个条件可以保证△ABC≌△A′B′C′吗?
分类辨析
思考 如果只满足这些条件中的一局部,那么能保 证△ABC ≌△A′B′C′吗?
追问1 当满足一个条件时, △ABC 与△A′B′C′ 全等吗?
思考 如果只满足这些条件中的一局部,那么能保 证△ABC ≌△A′B′C′吗?
追问2 当满足两个条件时, △ABC 与△A′B′C′ 全等吗?
两个条件
① 两边 ② 一边一角 ③ 两角
思考 如果只满足这些条件中的一局部,那么能保 证△ABC ≌△A′B′C′吗?
追问3 当满足三个条件时, △ABC 与△A′B′C′ 全等吗?满足三个条件时,又分为几种情况呢?
三个条件
① 三边 ② 三角 ③ 两边一角 ④ 两角一边
动手操作
先任意画出一个△ABC,再画出一个△A′B′C′, 使A′B′= AB,B′C′= BC,A′C′= AC.把画好的 △A′B′C′剪下,放到△ABC 上,它们全等吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档