数学分析课件 傅里叶级数共40页

合集下载

十五章傅里叶级数

十五章傅里叶级数

2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的

高等数学-第七版-课件-12-7 傅里叶级数

高等数学-第七版-课件-12-7 傅里叶级数

在 例3 将函数
上的傅里叶展开式
u
展开成傅里叶级数, 其中E 是正的常数 . O t
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
傅里叶级数
一、三角级数 二、函数展开成傅里叶级数
三、正弦级数和余弦级数
周期为2 的奇、偶函数的傅里叶级数 对周期为 2 的奇函数 f (x) , 其傅里叶系数为
a0 f ( x) an cos nx bn sin nx 2 n 1

② 定义 由公式 ② 确定的 称为函数f(x)
的傅里叶系数 ; 以f (x)的傅里叶系数为系数的三角级数 a0 an cos nx bn sin nx 称为f(x)的傅里叶级数 . 2 n 1
x
分别展开成正弦级数和余弦级数.
将定义在[0,]上的函数展开成正弦级数与余弦级数 展开思路 在
奇延拓 (偶延拓) 傅里叶展开 在
上有定义 上, 上为奇函数(偶函数)
定义在 在
(0, π] 上 F ( x ) f ( x ) 的正弦级数 (余弦函数) 展开式
y
例6 将函数
O 分别展开成正弦级数和余弦级数.
2) 在一个周期内至多只有有限个极值点, 则 f (x) 的傅里叶级数收敛 , 并且 当x 为f (x)的连续点时,级数收敛于 f ( x );
当x 为f (x)的间断点时,级数收敛于
1 [ f ( x ) f ( x )]. 2
例1 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
引言
简单的周期运动 ( A:振幅 :角频率

复杂的周期运动
:初相 )

第11章第6节傅里叶级数2015-03-2405311.2MB

第11章第6节傅里叶级数2015-03-2405311.2MB

例2.设函数
数展式为
2
3
(93 考研)
解:
的傅里叶级 则其中系数
利用“偶倍奇零”
例1. 设 f (x) 是周期为 2 的周期函数 ,它在
上的表达式为
f (x)
1
,



x0

f
(x)
展成傅里叶级数.
1, 0 x
y
解: 先求傅里叶系数
1
o
x
1
它的傅里叶级数在 x 处收敛于 (n 1, 2, 3,...)
f1n(2fx1()0(n1010)4ss2ci([inocns,ffsion在nn((nsx0xnxdx0x)x)xd213nxsf1210in(n20[11310处1x,)s收0ixn(n1敛10nn0141xc0于)c2ond,2os]0ks1xn1nxx0d1,00sx0in2(nn.2n1,k
第十一章
11.6 傅里叶级数
一、函数展开成傅里叶级数 二、正弦级数和余弦级数
一、函数展开成傅里叶级数
设 f (x) 是周期为 2 的周期函数, 若 f (x) 并满足狄利克雷 ( Dirichlet ) 条件:
1) 在一个周期内连续 或只有有限个第一类间断点;
2) 在一个周期内只有有限个极值点,
则 f (x) 的傅里叶级数 收敛,且
a0 2

n1
(an
cos nx
bn
sin nx)

f (x) 的傅里叶系数
f (x) ,
f (x) 2
x 为连续点
f ( x ) , x 为间断点
例1. 设周期函数 在一个周期内 的表达式为

高数第9章傅里叶级数

高数第9章傅里叶级数
2

0

2
x
中央财经大学
数学分析
1 a0 f ( x )dx
1 0 1 ( x )dx 0 xdx ,
1 an f ( x ) cos nxdx
1 0 1 ( x ) cos nxdx 0 x cos nxdx
中央财经大学
数学分析
三、函数展开成傅里叶级数
问题: 1.若能展开, ai , bi 是什么? 2.展开的条件是什么? 1.傅里叶系数
a0 若有 f ( x ) (ak cos kx bk sin kx) 2 k 1
且等式右边级数一致收敛。
(1) 求a0 .

a0 f ( x )dx dx [ (ak cos kx bk sin kx)]dx 2 k 1
中央财经大学
数学分析
较为复杂的周期运动,则常是几个简谐振动
yk Ak sin k x k
的叠加
n n
k 1, 2,
,n
y yk Ak sin k x k
k 1 k 1
(2)
中央财经大学
数学分析
如:非正弦周期函数:矩形波
1, 当 t 0 u( t ) 当0 t 1, u
m
u
E

o
Em

t
将其展开为傅立叶级数.
解 所给函数满足狄利克雷充分条件.
在点t k( k 0, 1, 2,)处不连续.
Em Em E m ( E m ) 0, 收敛于 2 2
中央财经大学
数学分析

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数
前页 后页 返回
证 由定理条件, 函数 f 在 [ , ] 上连续且可积. 对 (9)式逐项积分得

π
π
f ( x )dx
π π a0 π dx (an cos nxdx bn sin nxdx ). π π 2 π n 1
由关系式(6)知, 上式右边括号内的积分都等于零. 所以
f ( x t ) f ( x 0) lim f ( x 0), t 0 t f ( x t ) f ( x 0) lim f ( x 0), t 0 t
(13)
前页 后页 返回
(iii) 在补充定义 f 在[a , b]上那些至多有限个不存在 导数的点上的值后 ( 仍记为 f ), f 在[a, b]上可积.
n 1

从第十三章§1 习题4知道, 由级数(9)一致收敛,可 得级数(11)也一致收敛. 于是对级数(11)逐项求积, 有
前页 后页 返回

π
π
f ( x )cos kxdx π a0 π cos kxdx (an cos nx cos kxdx π 2 π n 1 bn sin nx cos kxdx ).
π
π
cos nxdx sin nxdx 0,
π
π
(6)
cos mx cos nx d x 0 ( m n ), ππ (7) ππ sin mx sin nxdx 0 (m n), π cos mx sin nxdx 0 . 而(5)中任何一个函数的平方在 [-π, π] 上的积分都
所以
A0 An sin( nx n )
n 1
A0 ( An sin n cos nx An cos n sin nx ).

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数

03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。

《傅里叶级数》课件

《傅里叶级数》课件
FFT基于分治策略,将大问题分解为小问题,从而显著提高了计算效率。
FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。

《傅里叶级数》课件

《傅里叶级数》课件

傅里叶系数: a_n和b_n,可 以通过积分计算 得到
傅里叶级数的收 敛性:对于满足 一定条件的函数, 傅里叶级数收敛 于该函数
傅里叶级数的计算步骤
傅里叶级数的计算实例
实例:计算正弦函数的傅里 叶级数
计算步骤:确定周期、确定 频率、确定振幅、确定相位
傅里叶级数的定义:将周期函 数分解为无穷多个正弦和余弦 函数的和
傅里叶级数未来的研究方向与挑战
傅里叶级数的快速算法研究 傅里叶级数的应用领域拓展 傅里叶级数的理论研究与证明 傅里叶级数的计算复杂性与优化
感谢您的观看
汇报人:PPT
实例:计算余弦函数的傅里 叶级数
实例:计算三角函数的傅里 叶级数
实例:计算复杂函数的傅里 叶级数
傅里叶级数的应 用实例
信号处理中的应用
滤波器设计:傅里叶级数可以用于设计各种滤波器,如低通滤波器、高通滤波器等。 信号分析:傅里叶级数可以用于分析信号的频率成分,如分析信号的频谱、功率谱 等。
信号处理:傅里叶级数可以用于处理信号,如信号的压缩、增强、去噪等。
傅里叶级数的周期性
傅里叶级数是一种周期函数 周期性是傅里叶级数的基本性质之一 周期性是指函数在一定区间内重复出现 周期性是傅里叶级数在信号处理、图像处理等领域里叶级数的展开式
傅里叶级数的定 义:将周期函数 分解为无穷多个 正弦函数和余弦 函数的线性组合
傅里叶级数的展 开式:f(x) = a_0 + Σ[a_n * cos(nωx) + b_n * sin(nωx)]
数值分析中的应用
傅里叶级数在信号处理中的应用 傅里叶级数在图像处理中的应用 傅里叶级数在音频处理中的应用 傅里叶级数在金融数据分析中的应用
其他应用领域

傅里叶级数

傅里叶级数


a0 dx an cos nxdx bn sin nxdx 2 n 1 n 1

a0 2 a0 2
1 a0 f ( x )dx
傅里叶级数
§9.4 傅里叶级数
(2) 求ak .



a0 f ( x )cos kxdx 2

cos kxdx




[an cos nx cos kxdx bn sin nx cos kxdx ]
n 1

ak cos 2 kxdx ak ,


ak
f ( x )cos kxdx

1

( k 1, 2, 3,)
傅里叶级数
傅里叶级数
§9.4 傅里叶级数
傅里叶级数:以傅里叶系数为系数的三角级数.
a0 (a n cos nx bn sin nx ) 2 n1
问题:
a0 f ( x ) 条件 ? (a n cos nx bn sin nx ) 2 n1
傅里叶级数
§9.4 傅里叶级数
3、收敛条件 定理:若 f ( x ) 是以 2 为周期的周期函数,且在一个 周期内连续或只有有限个第一类间断点,则 f ( x ) 的傅 里叶级数收敛,并且
(1) 当 x 是 f ( x ) 的连续点时,级数收敛于 f ( x ) .
f ( x 0) f ( x 0) (2)当 x是 f ( x ) 的间断点时,收敛于 . 2
f ( 0) f ( 0) (3) 当 x为端点 x 时,收敛于 . 2
傅里叶级数

傅立叶(Fourier)级数的展开方法PPT幻灯片课件

傅立叶(Fourier)级数的展开方法PPT幻灯片课件

k
ck
1 2l
l l
i kx
f ( x)e l dx
例5 把锯齿波f(x)在(0,T)这个周期上可表示
为f(x)=Hx/T,试把它展为复数形式的傅立叶 级数。
f (x)
解 函数曲线如图 x
T
27
周期为 2l T , l T
2
ck
1 2l
l l
i 2kx
f ( x)e T dx
1
T
H
i
xe
方法
将函数 f(x)解析延拓到[-l,l]区间,再将[-l,l] 区间的函数再延拓到[-∞∞]区间上,构成周期函数 g(x),其周期为2l
例4 定义在(0,l)上的函数f(x)=a(1-x/l),将
该函数展开为傅立叶级数。
解 函数曲线如图
f (x)
a x
l
21
延拓到(- l,l)后再周期延拓,如图做偶延拓:
16
三、定义在有限区间上的函数的傅里叶展开
工程以及物理上用到的函数一般是定义在有限区间上的. 1、定义在 [-l, l] 上的函数 f(x)展开;
方法 将函数 f(x)解析延拓到[-∞,∞]区间, 构成的周期函数g(x),其周期为2l
f (x)
l
l
f (x)
l
l
x x
17
f (x)
l
l
x
f (x)
x
l
l
仅在 [-l,l]上,g(x)≡f(x).
例3 在(-1,1)上定义了函数f(x)为:
x
f
(
x)
1
1
(1,0)
(0, 1 ) 2
( 1 ,1) 2

傅里叶级数数学

傅里叶级数数学

f
(x)
4
[sin
x
1 3
sin
3x
1 sin(2k 2k 1
1)x
]
.
(<x<;x 0, , 2, ).
第7页/共22页
例2 设周期为2的函数f(x)在[)上的表达式为
f (x)0x
x0 0 x
将f(x)展开成傅里叶级数.
解 所给函数满足收敛定理的条件由收敛定理知道f(x)的傅里叶级数收敛. 当x(2k1)时傅里叶级数收敛于
>>>
第1页/共22页
二、函数展开成傅里叶级数
❖傅里叶系数
设f(x)是周期为2的周期函数 且能展开成三角级数:
f
(x)
a0 2
(ak
k 1
cosk
xbk
sin
k
x)
且假定三角级数可逐项积分 则
a0
1
f (x)dx
an
1
f
(x)cosnxdx
(n
12)
提示:
f
f(x()xc)soisnnnxfx(xa2)a020ca0sao002i0nsnnxxk1k(ka1k1[(caok0ksckoxa0snkbxkcs0soinisnnkxx)bk
a0
2
an
2
n2
0
n1, 3, 5, n2, 4, 6,
bn
(1)n1 n
(n
12)
所以当x(2k1)时f(x)的傅里叶级数展开式为
f
(x)
4
(2
cosxsin
x)
1 2
sin
2x ( 322
cos3x
1 sin 3

课件:傅里叶(Fourier)级数

课件:傅里叶(Fourier)级数

nx
dx
0
9
但是在三角函数系中两个相同的函数的乘积在
上的积分不等于 0 . 且有
1
1d
x
2
cos2
n xdx
sin
2
nx
dx
cos2 nx 1 cos 2nx , sin 2 nx 1 cos 2nx
2
2
10
6.4.2 函数展开为傅里叶级数
定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且
5x
( x , x (2k 1) , k 0, 1 , 2 , )
说明:

x
(2k
1)
时,
级数收敛于
0
(
2
)
2
22
定义在[– ,]上的函数 f (x)的傅氏级数展开法
周期延拓
f (x) ,
x [ , )
F(x)
f (x 2k ) , 其它
傅里叶展开
上的傅里叶级数
23
例3. 将函数
2
,
n 2k 1 n 2k
( k 1, 2 , )
bn
1
f (x)sin nx d
2 cos x
x
1
0
x sin nxdx
sin x 1 sin 2x (
n
(1)n1 n
1, 2, )
4
2
2
32
cos3x 1 sin 3x 1 sin 4x
3
4
522
cos 5 x
1 5
sin
f
(x)
a0 2
(an
n1
cos nx
bn
sin

数学分析第十四章课件傅里叶级数

数学分析第十四章课件傅里叶级数
P128:f (x) 在[a,b]逐段可微: 2. f (xi 0) 存在
逐段光华 3.广义左右微商存在,即
lim f (xi t) f (xi 0) ,lim f (xi t) f (xi 0) 存在
t 0
t
t 0
t
综合:得:
定理14.5 P128 若
f (x),T 2 在 [ , ] 逐段可微,则f (x) 的 Fourier级数
第十四章 Fourier级数
两类重要的函数项级数

幂级数 un x n0
三角级数
a0 2

n1
an
cos nx
bn
sin
nx
问题
三角级数 给定函数
收敛? 表示的函数 能否用三角级数表示
研究函数
(i) f x 满足什么条件,可以展开成三角级数
(ii) 若可以展开,展开式是什么形式?
f (x)

2
n1
(1)n1 sin nx n

f (x), 0,
x x

看P131图
例3
f (x) x2, x . 求其 Fourier 展开式。
解: 1).画图
2).求 Fourier 系数。f (x) 为偶函数,
bn

0, a0


2


x cos nxdx
2
0
n

sin nxdx
0
看P118图


4
n2
,
n 为奇数
0, n 为偶数
f (x) 4 cos(2n 1)x 4 (cos x cos 3x cos 5x ...)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
数学分析课件 傅里叶级 数
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
END
相关文档
最新文档