七年级定义新运算教学内容
(完整版)定义新运算(最新整理)
例 1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9 的值?
练习:(1)对定义运算※为 a※b=(a+b)×2。 求 5※7 和 17※5 的结果?
(2)对于任意的两个数 a 和 b,规定 a b= 3a-b÷3。求 6 9 和 9 6 的值。
1
例题延伸:若 A * B 表示(A+3×B)×B,求 5 * 7 的值。
小结:在没有算式的新运算符号问题中,解决问题的关键在于要将题干中的文字语言转化为 数学语言,能够根据题意列出新符号代表的数学算式。
PQ
例 4:P、Q 表示两个数,P△Q=
,求 4△(6△9)的值是多少?
3
2
练习:(1)如果 a b= a b ,那么 1998 2000 的值是多少? 2
a 1
二、教学重难点:
1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法
四、教学过程:
(一)导入:
1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5、已知符号“#”表示 a#b=a+b,求:3#5、5#9、88#13 的值? (体现对应思想和解题的三
个步骤)
加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72 的值?
小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运 算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义 的算式含义,能够将新定义的运算方法转化为旧的运算规则。 一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与 定义算式中字母的对应;(3)将对应数字代入算式计算 (二)例题引导: 第一类:(直接运算型) 例题引导: ①表示求两个平均数的运算,则 a①b=(a+b)÷2,当 a=5,b=15 时,求 a①b?
第1讲:定义新运算讲义
定义新运算(★★)(迎春杯试题)规定n※b=3×n-b÷2。
例如:1※2=1×3-2÷2=2。
根据以上的规定,10※6=()(★★)两个不相等的自然数a、b(b≠0),较大的数除以较小的数商为a△b,余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=()。
⑴(★★★)(“从小爱数学”邀请赛)设a※b表示a的3倍减去b的2倍,即a※b=3a-2b,例如,当a=6,b=5时,6※5=3×6-2×5=8。
①计算:(8※7)※9;②已知:x※(4※1)=7,求:x。
⑵(★★★)规定a○b=(3a-2b),例如4○5=3×4-2×5=2,那么当x○5比5○x大5时,x等于几?⑴(★★)规定a⊗b=a×3+b÷2,其中a、b都是自然数。
①6⊗8的值;②8⊗6的值。
⑵(★★★)定义运算※为a ※b =a ×b -(a +b ),①求12※(3※4),(12※3)※4;②这个运算“※”有结合律吗?③如果3※(5※x )=3,求x 。
⑴(★★★)(“祖冲之杯”数学邀请赛)如图是一个运算器的示意图,A 、B 是输入的两个数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C 值是_____。
⑵(★★★★)(中环杯试题)已知A *B =A ×B +A +B则101*9*9*9**9*9 共次运算=__________。
(★★★★★)定义a *b 为a 与b 之间(包含a 、b )所有与a 奇偶性相同的自然数的平均数,例如:7*14=(7+9+11+13)÷4=10,18*10=(18+16+14+12+10)÷5=14。
在算式□*(19*99)=80的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
七年级上-探索规律与定义新运算
探索规律与定义新运算知识集结知识元数字规律知识讲解数字规律就是一列数按一定规律排列起来,常见的规律有:1、正整数规律:1、2、3、4、5、……可以表示为n(其中n为正整数)2、奇数规律:1、3、5、7、9、……可以表示为(其中n为正整数)3、偶数规律:2、4、6、8、10、……可以表示为2n(其中n为正整数)4、正、负交替规律变化:一组数,不看他们的绝对值,只看其性质,为正负交替(1)-、+、-、+、-、+、-、+可以表示为(2)+、-、+、-、+、-、+、-可以表示为5、平方数规律:1、4、9、16、……可以表示为(其中n为正整数),能看得出:上面的规律数+1、+2、-1、-2例题精讲数字规律例1.已知一组数:1,3,5,7,9,…按此规律,第n个数是.例2.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。
例3.观察下列算式:;;;,…(1)左边各项的底数与右边幂的底数之间的关系是什么?(2)猜想的规律是什么?(3)用第五个关系式进行验证。
算式规律知识讲解算式规律就是一些等式按一定的规律排列起来,这类规律寻找的方法一般是:应对的一般原则:①找出等式中的各个部分;②找出等式中的各个部分中不变的部分;③找出等式中的各个部分中变化的部分、并寻找他们的变化规律.例题精讲算式规律例1.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。
例2.观察下列各式:;;;;…,把发现的规律用含自然数的式子表示:_______________________。
数字循环的规律知识讲解循环排列规律是运动着的规律,就是一列数或图形按几个固定的数或图形循环重复出现,我们只要根据题目的已知部分分析出图案或数据每隔几个就会循环出现,看看最后所求的与循环的第几个一致即可,关键是找出“循环节数”。
定义新运算教案初中
定义新运算教案初中一、教学目标:1. 让学生理解异或运算的概念和性质;2. 培养学生运用异或运算解决实际问题的能力;3. 提高学生对数学符号和逻辑思维的认知水平。
二、教学内容:1. 异或运算的概念和符号;2. 异或运算的性质和规律;3. 异或运算在实际问题中的应用。
三、教学重点:1. 异或运算的概念和性质;2. 异或运算的规律和应用。
四、教学难点:1. 异或运算的性质和规律;2. 异或运算在实际问题中的应用。
五、教学过程:1. 导入:引导学生回顾之前学过的运算,如加法、减法、乘法、除法等,为新运算——异或做铺垫。
2. 讲解:(1)介绍异或运算的概念:两个数进行异或运算,结果为1,当且仅当这两个数不相等。
用符号表示为:a ^ b = 1(a ≠ b)。
(2)讲解异或运算的性质:① 交换律:a ^ b = b ^ a② 结合律:a ^ (b ^ c) = (a ^ b) ^ c③ 分配律:a ^ (b + c) = (a ^ b) + (a ^ c)④ 自反性:a ^ a = 0⑤ 单位元:0 ^ a = a⑥ 互补性:a ^ 0 = a,0 ^ a = 0(3)举例说明异或运算的应用:① 判断两个数是否相等:若a ^ b = 0,则a = b;若a ^ b = 1,则a ≠ b。
② 交换两个数的值:设a、b为两个变量,a ^= b;b ^= a;a ^= b。
此时a、b的值互换。
③ 判断一个数是否为偶数:若一个数的二进制表示中最低位为0,则该数为偶数。
利用异或运算可以实现:a & (a ^ 1) = 0。
3. 练习:让学生独立完成以下练习题,巩固所学知识。
(1)判断下列运算是否正确:a. 2 ^ 3 = 6b. 4 ^ 5 ^ 6 = 2c. 7 ^ 7 = 0(2)利用异或运算解决实际问题:已知一个数的二进制表示为1011,将其转化为十进制数。
4. 小结:对本节课的内容进行总结,强调异或运算的概念、性质和应用。
第一讲 定义新运算
随堂练习
1、设a*b=(a+b)×(a-b),请计算27*9。 27*9=(27+9)×(27-9) =36×18 =648
2、设a*b= a2 +2b ,求 10*6 和 5*(2*8)。
10*6= 102 +2×6 =100+12 = 11 2
2*8= 22 +2×8=20
5*20= 52 +2×20=65
2.定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算 符号,如:△、□、◇、*、!等,这与四则运算中的“+、-、×、÷” 不同。
3.新定义运算中有括号的要先算括号里面的。
例题1 已知新式运算a*b=(a+b)+(a-b),求13*5的结果 13*5=(13+5)+(13-5)
= 18+8 = 26 你会求13*(5*4)吗? 5*4 =(5+4)+(5-4)=10 13*10=(13+10)+(13-10)=26
第一讲
定义新运算
专题解析
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。 比如:a&b=a×b-a+b 新定义的运算和符号=运算表达式(运算方法) 1.要正确理解新式运算的含义,将数值代入,转化为常规的四则运算。
例如:2#3=2×3-(2+3) 符号“#”的含义是:两个数的积减去两个数的和
2
=16-2+2
=16 x&16=4x-2×16+ 1 ·x ·16 =34
2
=4x-32+8x =34
12x-32=34
12x=34+32
x=66÷12
第一讲 定义新运算
五年级春季第一讲定义新运算对于+、-、×、÷四则运算,我们已经熟知它们的运算规则和计算方法,还学会了四则混合运算,以及速算与巧算。
这一讲我们要学习一种新的运算,简称为定义新运算。
所谓定义新运算就是用一种新的符号来自主定义或规定一种运算规则,然后按照这一规则进行计算。
典例精讲例1 设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3。
②这个运算“△”有交换律吗?③求(17△6)△2, 17△(6△2)。
④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b。
【思路点拨】解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面数的2倍。
【详细解答】例2 对于任意两个整数a、b,定义两种运算“☆”“☉”:a☆b=a+b-1,a☉b=a×b-1,计算4☉[(6☆8)☆(3☆5)]的值。
【思路点拨】这题是两种新运算的混合运算,首先要弄清楚每一种运算的运算规则,再确定运算顺序;在新运算中,也是按照先算括号内再算括号外的运算顺序进行计算,先将定义的新运算符号前后运算好后再进行新运算,计算时可以分步进行。
【详细解答】例3 定义x☉y=a×x+2×y,并且已知5☉6=6☉5,求a是几?【思路点拨】先根据对新运算的定义,把等式5☉6=6☉5转化成含有未知数的等式,然后,再求出未知数a的值。
【详细解答】例4 有一个数学运算符号“◎”使下列算式成立:2◎4=8,5◎3=13,3◎5=11,9◎7=25,求7◎3=?【思路点拨】题目没有明确告知对新运算进行定义,该如何进行运算呢?我们可以通过对题目提供的算式进行观察、分析,找出规律,从而确定新运算的运算规则。
可以看出“◎”表示前面的数的2倍加上后一个数。
【详细解答】达标练习1.定义一种新的运算“△”,规定:a△b=a×b+a+b。
5△8是多少?2.定义新运算“□”为x□y等于2xy-(x+y)。
定义新运算教案
定义新运算教案教案:定义新运算一、教学目标:1. 理解运算的概念和基本属性;2. 通过引入新运算,培养学生的逻辑思维和运算能力;3. 掌握使用新运算进行简单计算的方法。
二、教学重点:1. 掌握新运算的定义和特征;2. 能够运用新运算进行简单的数值计算。
三、教学内容:1. 运算的基本概念回顾:a. 运算是数学中的一种基本操作,包括加法、减法、乘法和除法;b. 运算具有封闭性、结合律、交换律和分配律等基本属性。
2. 引入新运算:a. 介绍新运算的概念:新运算是指在数学运算中引入全新的运算符号和规则;b. 引入新运算的目的:通过新运算的引入,培养学生的逻辑思维和运算能力。
3. 新运算的定义和特征:a. 定义:新运算是指将两个数相加并加上它们的乘积的运算,用符号“@”表示;b. 特征:新运算满足封闭性和结合律。
4. 使用新运算进行计算:a. 通过示例演示如何使用新运算进行简单计算;b. 培养学生使用新运算进行计算的能力。
四、教学方法:1. 教师讲解法:通过示例演示和讲解,引导学生理解新运算的定义和特征;2. 练习与讨论法:设计一些实际问题,供学生在课堂上进行练习和讨论。
五、教学过程:1. 导入新课:a. 引入了运算的概念和基本属性;b. 介绍了新运算的概念和目的。
2. 新运算的定义和特征:a. 定义:新运算是将两个数相加并加上它们的乘积的运算,用符号“@”表示;b. 特征:新运算满足封闭性和结合律。
3. 示例演示:a. 讲解新运算的使用方法;b. 设计一些简单的示例,演示如何使用新运算进行计算。
4. 练习与讨论:a. 分发练习题,要求学生用新运算计算;b. 学生自主完成练习题,并与同桌讨论解题思路和答案。
六、巩固与拓展:1. 巩固:a. 整理新运算的定义和特征,并与学生讲解;b. 师生共同总结使用新运算进行计算的方法和技巧,并进行归纳。
2. 拓展:a. 引导学生思考和讨论:是否存在其他类似的新运算?b. 引导学生运用已学知识,尝试定义其他新运算,并进行计算。
定义新运算 教案(详)公开课
定义新运算教案(详)公开课第一章:引言1.1 课程目标让学生了解并掌握新运算的基本概念,通过实例理解新运算的运算规则,培养学生的逻辑思维能力和创新意识。
1.2 教学内容新运算的定义、新运算的运算规则、新运算的应用。
1.3 教学方法采用讲授法、案例分析法、小组讨论法,引导学生主动探究,培养学生的创新能力和团队合作精神。
第二章:新运算的定义2.1 课程目标让学生了解新运算的定义,理解新运算的基本概念。
2.2 教学内容新运算的定义、新运算的基本概念。
2.3 教学方法采用讲授法,通过讲解新运算的定义,使学生掌握新运算的基本概念。
第三章:新运算的运算规则3.1 课程目标让学生掌握新运算的运算规则,能够运用新运算进行简单的计算。
3.2 教学内容新运算的运算规则、新运算的计算方法。
采用案例分析法,通过分析新运算的运算规则,使学生掌握新运算的计算方法。
第四章:新运算的应用4.1 课程目标让学生能够运用新运算解决实际问题,培养学生的应用能力。
4.2 教学内容新运算在实际问题中的应用、新运算的计算技巧。
4.3 教学方法采用小组讨论法,让学生通过合作解决实际问题,培养学生的团队合作精神。
第五章:总结与展望5.1 课程目标使学生对新运算有一个全面的认识,激发学生对新运算的兴趣和进一步学习的动力。
5.2 教学内容本章对新运算的学习进行总结,对新运算的未来发展进行展望。
5.3 教学方法采用讲授法,通过总结和展望,使学生对新运算有一个全面的认识。
第六章:新运算的数学原理6.1 课程目标让学生理解新运算背后的数学原理,培养学生的理性思维和问题解决能力。
6.2 教学内容新运算与传统运算的差异、新运算的数学基础、新运算的运算逻辑。
采用讲解法,通过分析新运算与传统运算的差异,引导学生理解新运算的数学原理。
第七章:新运算的编程实现7.1 课程目标让学生能够通过编程实现新运算,提高学生的编程能力和创新实践能力。
7.2 教学内容新运算的编程方法、新运算的算法实现、新运算的编程实践。
奥第3讲——定义新运算教案
课题:四奥第四讲定义新运算教学目标:1、使学生认识什么是定义新运算;2、使学生理解新运算的规则并能够按新运算的要求进行计算;3、培养学生分析问题、解决问题的能力;重难点:重点:理解新运算的定义并能够按新运算的要求进行计算;难点:对于题目没有直接告诉我们符号的运算规则时,可以通过观察条件,找到符号的运算规则;教具与学具:本周通知事项:教学过程:一、引入:同学们,告诉你们一个好消息,Ali也来到了巨人课堂,但是他遇到了困难希望同学们能够帮帮他,老师相信乐于助人的你们一定很想快点帮Ali解决困难,好吧,那我们就一起来看看Ali遇到的是什么困难吧。
二、新课教授:例1:设a,b都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b。
试计算5△6,6△5。
【老师】哦,原来是题目中出现了一个奇怪的三角形,Ali不知道是怎么回事,那聪明的你们知道怎么办吗【学生甲】“△”和我们所学的符号不一样【老师】说的很对,我们以前是没有见过,那我们可不可以根据他所给的来寻找规律,解决下面的题目呢【学生乙】老师,我知道,根据已知的条件可以知道“△”表示的是△前面一个数乘以4减去后一个数乘以3的差。
【老师】好!同学们掌声鼓励下,这位同学观察得非常仔细,只要我们找到了这个规律,那我们解决下面的问题还难吗!我们一起来看看。
请同学们上黑板做,然后再一起规范过程解:因为a△b=4×a-3×b5△6= 4×5-3×6 6△5= 4×6-3×5=20-18 =24-15=2 =9同学们确实很聪明,Ali看到这个都不知道该怎么办,但是我们能够很快的解决,不得不承认大家都是聪明的,但是同学们,你们有没有发现,“△”前后的数字交换后,结果就不一样了,所以呢,今天Ali的困难也就是我们今天要学习的新内容“定义新运算”,它不同于我们所学的+、-、×、÷,赋予我们一种新的定义,在这一讲中,我们会学习利用一些特殊的符号,比如○、△、#、※、◎……,并利用+、-、×、÷定义一些新的运算规则。
定义新运算讲义
定义新运算定义1、定义新运算是指:用一个符号把字母连接在一起,表示一种新的运算。
注意:(1)做题的关键是要正确理解式子含义,按照式子的计算顺序,将数值代入式子中,转化为一般的四则运算,然后进行计算。
(2)它通常使用特殊的运算符号,如:*、▢、★、◎、 、Δ、▤、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
例1、对于任意数a,b有a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32练习一1,设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
例2、假设a ★ b = ( a + b )÷ b 。
求 8 ★ 5 。
分析与解:该题的运算顺序为: a ★ b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★ 5 = (8 + 5)÷ 5 = 2.6练习二对于两个数a与b,规定:a⊕b=a×b-(a+b)。
计算3⊕5。
例3、如果a▢b=a×b-(a+b)。
求6▢(9▢2)。
分析与解:根据定义,要先算括号里面的。
括号里的部分已经构成了新运算,其运算结果又与括号外的部分构成新运算。
本题要运用新运算的关系,计算两次。
6▢(9▢2)=6▢[9×2-(9+2)]=6▢7=6×7-(6+7)=42-13=29练习三1、规定a▣b=a×b-(a+b)。
求(10▣5)+(28▣5)的值例4、已知1◎4=1+2+3+4,4◎5=4+5+6+7+8,按此规定,2001◎5=?分析与解:通过观察可以发现,“◎”这个特殊的符号在这道题中所规定的定义是求几个连续的自然数的和。
1◎4表示从1开始连续4个自然数的和,4◎5表示从4开始5个连续自然数的和,2001◎5是表示从2001开始连续5个自然数的和。
定义新运算教案
知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题精析例题1 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
解析:这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=2例题2 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
解析:根据定义先算4△6。
在这里“△”是新的运算符号。
3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65例题3 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
解析:经过观察,可以发现本题的新运算“*”被定义为。
因此7*4=7+77+777+7777=8638210*2=210+210210=210420例题4 规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?解析:这题的新运算被定义为:@ = (a-1)×a×(a+1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)-1/(6×7×8),这里的分母都比较大,不易直接求出结果。
初一专题3新定义运算 -教师版
当 a b c 0 时, a b c 1 (a b c a b c) b c ,此时最大值为 b c 11 ;
2 3
11 6 ,
所有计算的结果中的最大值是 11,
故答案为:11.
【总结】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
【例 8】
对于有理数 a , b ,定义一种新运算“ ”,规定 a b | a | | b | | a b | . (1)计算 2 3 的值; (2)当 a , b 在数轴上位置如图所示时,化简 a b
【分析】(1)原式利用题中的新定义计算即可求出值; (2)原式利用题中的新定义化简,根据绝对值的代数意义得到结果即可.
故答案为:8.
【总结】本题考查的是整数的奇偶性新定义,通过若干次运算得出循环规律是解题的关键.
5
【例 7】
观察下列两个等式: 2 1 2 1 1 , 5 2 5 2 1 ,给出定义如下
33
33
我们称使等式 a b ab 1 成立的一对有理数“ a , b ”为共生有理数对”,记为 (a,b)
当 PN 2MN 时, NP 18 ,点 P 对应的数为 2 18 16 ,因此 t 9 秒; 第四种情况, M 为【 P , N 】的美好点,点 P 在 M 左侧,如图 4,
当 MP 2MN 时, NP 27 ,点 P 对应的数为 2 27 25 ,因此 t 13.5 秒;
2
作为 a , b , c 的值,进行“ a b c “运算,求在所有计算的结果中的最大值是__________.
【分析】由 a-b-c≥0 和 a-b-c<0 分别求解可得
1第一讲 定义新运算
第一讲定义新运算一、知识梳理定义新运算是用某些特殊的符号表示特定的意义,从而解答某些特殊算式的运算。
在定义新运算中的※,〇,△……与+、-、×、÷是有严格区别的。
解答定义新运算问题,必须先理解定义的含义,遵循新定义的关系式把问题转化为一般的+、-、×、÷运算问题。
基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
二、方法归纳基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
三、课堂精讲【规律方法】理解新运算符号的含义是解答问题的关键。
【搭配课堂训练题】【难度分级】 A1.规定a*b=(b+a)×b,求(2*3)*5 ?2.定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b。
例如:4△6=(4,6)+[4,6]=2+12=14。
根据上面定义的运算,18△12等于几?例2.如果3*2=3+33=36 ;2*3=2+22+222=246 ;1*4=1+11+111+1111=1234,则4*5的值为多少?【规律方法】观察规律,得出运算的规则。
【搭配课堂训练题】【难度分级】 B3.如果1#5=5,2#4=4+44,3#3=3+33+333,……计算4#3的值.4.已知: 23=2×3×4,45=4×5×6×7×8,……求(44)÷(33)的值。
例3.x、y是自然数,规定x▽y=4x—3y,如果5▽a=8,那么a是几?【规律方法】根据新运算列出方程,解方程。
【搭配课堂训练题】【难度分级】 B5.如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,那么当( a△2)△3=12时, a等于几?6.规定a⊕3=a+(a+1)+(a+2),若x⊕5=45,求x的值。
新人教版-七年级(初一)数学上册-整式的加减章节-代数式和整式-找规律及定义新运算讲义教案
内容 基本要求略高要求较高要求找规律 学会基本的找规律方法 能做常见的找规律题型,能根据题意找出相应的对应关系 能做综合试题 定义新运算熟悉基本题型能根据题意进行运算板块一、找规律模块一、代数中的找规律【例1】 ⑴点1A 、2A 、3A 、…、 n A (n 为正整数)都在数轴上.点1A 在原点O 的左边,且11AO =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;……,依照上述规律,点2008A 、2009A 所表示的数分别为( ).A .2008、2009-B .2008-、2009C .1004、1005-D .1004、1004-⑵如图,点A 、B 对应的数是a 、b ,点A 在3-、2-对应的两点(包括这两点)之间移动,点B 在1-、0对应的两点(包括这两点)之间移动,则以下四式的值,可能比2008大的是( ). 0b-1-2a-3A .b a -B .1b a - C .11a b- D .2()a b -【巩固】 ⑴(2008北京中考)一组按规律排列的式子:2-b a ,52b a ,83-b a ,114b a,…(0≠ab ),其中第7个式子 是 ,第n 个式子是 (n 为正整数).⑵(2008年陕西中考)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.① ② ③【例2】 ⑴(2010年北京中考)右图为手的示意图,在各个手指间标记字母A B C D ,,,。
请你按图中箭头所指方向(即...A B C D C B A B C →→→→→→→→→的方式)从A 开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示)。
五同 第7讲 定义新运算
第七讲定义新运算教学课题:定义新运算教学课时:两课时教学目标:根据已学的加减乘除四则运算,它们的意义、运算方法都被同学们所掌握,而新的运算符号包含有多种基本(混合)运算,必须严格运算规则,认真观察、分析,明确“新运算”的定义,再根据运算定义,找准要计算的习题中的数据与定义中的字母的对应关系,严格遵照定义规定代入数值,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律计算。
教学重点:正确理解定义的运算符号的意义。
教学难点:正确理解定义的运算符号的意义。
教学方法:教学准备:教学过程:一、导入:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
我们要解决定义新运算,关键是要正确理解新定义的算式含义,严格按照新定义的计算程序,将数值代入转化为常规的四则运算算式进行计算。
二、新课讲解例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
师:观察题意本题的“*”代表的含义?生:“*”表示前后两个数的乘积分别减去这两个数,或者直接a用12代入,b用4代入,即可算出结果12*4=12×4-12-4=32例2、设a、b都表示数,规定a△b=3×a—2×b,求(1) 3△2 , 2△3 (2)(17△6)△2 , 17△(6△2)师: 本题又出现了和上一题不一样的运算符号,观察题意“△”代表的含义?生:“△”表示前面数的3倍减去后面数的2倍。
定义新运算中的运算顺序与常规计算相同,有括号必须先算括号里面的,而且是括号里面算出具体的值以后再代入计算。
(1)3△2=3×3—2×2=52△3=3×2—2×3=0(2)17△6=3×17—2×6=39(17△6)△2=39△2=3×39—2×2=1136△2=3×6—2×2=1417△(6△2)= 17△14=3×17—2×14=23例3、如果a◎b=a×b-(a+b)。
第1讲 新定义运算
第1讲新定义运算【知识概述】定义新运算是用某些特殊的符号表示特定的意义,从而解答某些特殊算式的运算。
在定义新运算中的※,〇,△……与+、-、×、÷是有严格区别的。
解答定义新运算问题,必须先理解定义的含义,遵循新定义的关系式把问题转化为一般的+、-、×、÷运算问题。
基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
【典型例题】例1 如果规定a△b=a+b,其中a、b是自然数,那么5△6=?【思路点拨】根据a△b=a+b,知道用a+b的方法可以算出a△b的结果。
解:依题意有5△6=5+6=11所以5△6=5+6=11。
例2 如果3*2=3+33=36 ;2*3=2+22+222=246 ;1*4=1+11+111+1111=1234,则4*5的值为多少?【思路点拨】认真观察这题的前三个例子,寻找规律,根据这个规律,找出新运算“*”的定义,“*”前面的数表示相加时所用的数字,“*”后面的数是几就表示相加的数从一位数到几位数。
解:依题意有4*5=4+44+444+4444+44444=49380。
例3 羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊,羊△狼=狼,狼△羊=狼,狼△狼=狼,以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了。
小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示:羊☆羊=羊,羊☆狼=羊,狼☆羊=羊,狼☆狼=狼,这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,当狼与羊在一起时,它便被羊赶走了而只剩下羊了,对羊或狼,可以用上面规定的运算混合运算,混合运算的法则是从左到右,括号内先算。
新定义运算 教案 初中
新定义运算教案初中一、教学目标1. 让学生理解并掌握新定义的运算方法,能够运用该运算解决实际问题。
2. 培养学生的逻辑思维能力,提高学生解决数学问题的创新能力。
3. 通过对新定义运算的学习,培养学生对数学的兴趣,激发学生的学习积极性。
二、教学内容1. 新定义运算的引入:通过生活实例或数学故事,引导学生了解新定义运算的背景和意义。
2. 新定义运算的定义:讲解新定义运算的基本概念和规则,让学生掌握运算的方法。
3. 新定义运算的性质:探讨新定义运算的性质,如交换律、结合律等,帮助学生深入理解运算。
4. 新定义运算的应用:通过例题和练习题,引导学生运用新定义运算解决实际问题,提高学生的应用能力。
三、教学过程1. 导入:通过生活实例或数学故事,引导学生了解新定义运算的背景和意义。
例如,可以讲述一位科学家在解决某个问题时,提出了一个新的运算方法,从而解决了长期困扰人们的问题。
2. 新课导入:讲解新定义运算的基本概念和规则,让学生掌握运算的方法。
在此过程中,可以结合具体的例题,让学生通过观察、分析、归纳等方法,自主发现运算的规律。
3. 性质探讨:探讨新定义运算的性质,如交换律、结合律等。
可以通过引导学生进行小组讨论、交流,培养学生的合作意识和团队精神。
4. 应用练习:通过例题和练习题,引导学生运用新定义运算解决实际问题。
在此过程中,要注意引导学生运用所学知识解决实际问题,提高学生的应用能力。
5. 总结与反思:对本节课的学习内容进行总结和反思,让学生巩固所学知识,提高学生的归纳总结能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、思维活跃度等,评价学生的学习效果。
2. 练习题解答:通过学生解答练习题的情况,评价学生对新定义运算的掌握程度。
3. 课后反馈:收集学生的课后反馈,了解学生对课堂教学的意见和建议,以便对教学进行改进。
五、教学资源1. 教材:选用符合新课程标准要求的教材,为学生提供丰富的学习资源。
4-第18讲 定义新运算
2 要严格按照定义代入数据;
3 要分步按照定义代入数据。
(3※2) ※1= [ (3+2) ÷ (3-2) ] ※1 =[ 5 ] ※1 =(5+1) ÷(5-1) 第1步 =(6) ÷(4) =(6) ÷(4) 第2步 =1余 2 =1.5
3
请继续看第3个例题 这是一题先要找定义关系的例题
解: 先要找规律, 找到大星号的运算规律. (4×2)+(4+2)=14 4×4-2=14 4※2=14 (5×3)+(5+3)=23 5※3=22 如何得到 5×5-3=22 结果的? 3×3-5=4 3※5=4 7×7-18=31 7※18=31
1 要抓住定义不放松; 2 要严格按照定义代入数据; 3 要分步按照定义代入数据。
1
请看第1个例题
1 要抓住定义不放松; 2 要严格按照定义代入数据;
解:
A※B=4 A+3 B 2※4=4 ×2+3 ×4 =8+12 =20 5※7=4 ×5+3 ×7 =20+21 =41
3 要分步按照定义代入数据。
这是一题方程类的题目。
解: a⊕ b =a x b +a+b 3⊕4
当:
=3x4+3+4 =19
a= ? a⊕ 2 =35 原式左边= a⊕ 2 =a x 2 +a+2 =3a +2 原式右边= 35 3 a +2 =35 等式两边同减2,等式成立 3 a +2 - 2 =35-2 3 a =33 a=11
2⊕1 =2x1+2+1 =5
11⊕ 2
=11x2+11+2 =22+13 =35
(完整版)定义新运算
第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。
2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。
3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。
一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。