北京市各区2017年中考数学二模试卷分类汇编---几何压轴题

合集下载

北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398

北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398

应用题(2017昌平二模)22. 2016年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2016年底,“ofo 共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”,“ofo 共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计使用一辆“ofo 共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2016年“摩拜单车”的投放数量约为多少万台?(2017房山二模)21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.(2017通州二模)23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发32小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.(2017西城二模)20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.(2017东城二模)22.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m 2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2017丰台二模)25.2016年底以来,京城路边排满了各种颜色的共享单车,本着低碳出行与强身健体的理念,赵老师决定改骑共享单车上下班.通过一段时间的体验,赵老师发现每天上班所用时间只比自驾车多52小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑共享单车每小时行驶多少千米.(2017石景山二模)21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?。

北京市通州区2017年中考数学二模试卷(含解析)

北京市通州区2017年中考数学二模试卷(含解析)

2017年北京市通州区中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A.1.07×104B.10.7×103C.1.07×105D.0.107×1052.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=∠2=36°,则∠3的度数为()A.60° B.90° C.108°D.150°5.如图多边形ABCDE的内角和是()A.360°B.540°C.720°D.900°6.下列图形中,正方体展开后得到的图形不可能是()A.B.C.D.7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2 D.S1≥S28.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车离开A城的距离s与时刻t的对应关系如图所示.那么8:00时,距A城最远的汽车是()A.甲车 B.乙车 C.丙车 D.甲车和乙车9.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)10.甲,乙,丙三种作物,分别在山脚,山腰和山顶三个试验田进行试验,每个试验田播种二十粒种子,农业专家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断:①甲种作物受环境影响最小;②乙种作物平均成活率最高;③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高.其中合理的是()A.①③ B.①④ C.②③ D.②④二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣4a= .12.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k= .13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)累计实验次数100 200 300 400 500顶尖朝上次数55 109 161 211 269顶尖朝上频率0.550 0.545 0.536 0.528 0.538根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为.15.如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为.16.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣2+(π+)0﹣|2﹣|+3tan30°.18.已知3a2+2a+1=0,求代数式2a(1﹣3a)+(3a+1)(3a﹣1)的值.19.解方程组:.20.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.21.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.22.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.(1)求证:CD=BE;(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.24.如图,AB是⊙O的直径,PC切⊙O于点C,AB的延长线与PC交于点P,PC的延长线与AD交于点D,AC平分∠DAB.(1)求证:AD⊥PC;(2)连接BC,如果∠ABC=60°,BC=2,求线段PC的长.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012﹣2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如图所示,请你补全扇形统计图,并估计7﹣17岁年龄段有亿网民通过互联网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).26.有这样一个问题:探究函数y=﹣x的图象与性质.小东根据学习函数的经验,对函数y=﹣x的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=﹣x的自变量x的取值范围是;(2)下表是y与x的几组对应值,求m的值;x …﹣4 ﹣3 ﹣2﹣﹣1﹣ 1 2 3 4 …y …﹣﹣m …(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2,),结合函数的图象,写出该函数的其它性质(一条即可).(5)根据函数图象估算方程﹣x=2的根为.(精确到0.1)27.已知:二次函数y=2x2+4x+m﹣1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点;①当m=1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n<8时,结合函数的图象,求m的取值范围.28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB 上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.29.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度;B(﹣,)的距离跨度;C(﹣3,﹣2)的距离跨度;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围.2017年北京市通州区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A.1.07×104B.10.7×103C.1.07×105D.0.107×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10700用科学记数法表示为:1.07×104.故选:A.2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d【考点】2A:实数大小比较;29:实数与数轴.【分析】哪个数在数轴上的对应点离原点越近,则哪个数的绝对值越小,据此判断出这四个数中,绝对值最小的是哪个即可.【解答】解:∵数b表示的点离原点最近,∴这四个数中,绝对值最小的是b.故选:B.3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=∠2=36°,则∠3的度数为()A.60° B.90° C.108°D.150°【考点】JA:平行线的性质.【分析】根据平行线的性质和三角形的内角和即可得到结论.【解答】解:∵直线l4∥l1,∴∠4=∠1=36°,∵∠2=36°,∴∠3=180°﹣∠4﹣∠2=108°,故选C.5.如图多边形ABCDE的内角和是()A.360°B.540°C.720°D.900°【考点】L3:多边形内角与外角.【分析】根据多边形的内角和,可得答案.【解答】解:多边形ABCDE的内角和是(5﹣2)×180°=540°,故选:B.6.下列图形中,正方体展开后得到的图形不可能是()A.B.C.D.【考点】I6:几何体的展开图.【分析】根据正方体的特征,或者熟记正方体的11种展开图求解.【解答】解:根据分析可得:A、B、C这三个图属于正方体展开图,能够折成一个正方体;而D图不是正方体展开图.故选:D.7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2 D.S1≥S2【考点】VD:折线统计图;W7:方差.【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【解答】解:根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中,小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S1<S2故选:A.8.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车离开A城的距离s与时刻t的对应关系如图所示.那么8:00时,距A城最远的汽车是()A.甲车 B.乙车 C.丙车 D.甲车和乙车【考点】E6:函数的图象.【分析】根据图象解答即可.【解答】解:8:00时,距A城最远的汽车是乙车,故选B9.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)【考点】Q3:坐标与图形变化﹣平移.【分析】根据题意画出图形,利用平移的特征结合图形即可求解.【解答】解:如图,由题意,可得O1M=O1N=1.∵将点O1平移2个单位长度到点O2,∴O1O2=2,O1P=O2P=2,∴PM=3,∴点A的坐标是(3,﹣1).故选A.10.甲,乙,丙三种作物,分别在山脚,山腰和山顶三个试验田进行试验,每个试验田播种二十粒种子,农业专家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断:①甲种作物受环境影响最小;②乙种作物平均成活率最高;③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高.其中合理的是()A.①③ B.①④ C.②③ D.②④【考点】VC:条形统计图.【分析】根据条形统计图中提供的数据进行计算,即可得到农作物的成活数量以及三种作物平均成活率,根据农作物的成活数量判断播种的位置即可.【解答】解:由图可得,乙种作物受环境影响最小,故①错误;甲种作物平均成活率为15,乙种作物平均成活率为16,丙种作物平均成活率约为15.67,故乙种作物平均成活率最高,故②正确;丙种作物最适合播种在山脚,故③错误;如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高,故④正确.故选:D.二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣4a= a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)12.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣7 .【考点】AE:配方法的应用.【分析】根据配方法的步骤先把x2﹣4x﹣5的形式,求出m,k的值,再代入进行计算即可.【解答】解:x2﹣4x﹣5=(x﹣2)2﹣9,所以m=2,k=﹣9,所以m+k=2﹣9=﹣7.故答案是:﹣7.13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为c2﹣2ab .【考点】KR:勾股定理的证明.【分析】小正方形的面积=大正方形的面积﹣4个直角三角形的面积.【解答】解:依题意得:小正方形的面积=c2﹣4×ab=c2﹣2ab.故答案是:c2﹣2ab.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)累计实验次数100 200 300 400 500顶尖朝上次数55 109 161 211 269顶尖朝上频率0.550 0.545 0.536 0.528 0.538根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为0.530 .【考点】X8:利用频率估计概率.【分析】根据用频率估计概率解答即可.【解答】解:观察发现,随着实验次数的增多,顶尖朝上的频率逐渐稳定到常数0.530,故掷一枚这样的图钉落地后顶尖朝上的概率为0.530.故答案为:0.530.15.如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为 1.5 .【考点】KA:全等三角形的性质;LB:矩形的性质.【分析】先根据条件判定四边形ABCD是矩形,再根据矩形的性质可得OD=BD=AC=1.5,【解答】解:如图,连接AD,∵Rt△ABC≌Rt△DCB,∴∠ABC=∠BCD=90°,且AB=CD,∴AB∥CD,∴四边形ABCD是矩形,∴OD=BD=AC=1.5,故答案为:1.516.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是圆的半径相等.【考点】N2:作图—基本作图.【分析】利用圆的半径相等可判断CD=AB.【解答】解:小亮的作图依据为圆的半径相等.故答案为圆的半径相等.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣2+(π+)0﹣|2﹣|+3tan30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=4+1﹣2++=3+2.18.已知3a2+2a+1=0,求代数式2a(1﹣3a)+(3a+1)(3a﹣1)的值.【考点】4J:整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵3a2+2a+1=0,∴原式=2a﹣6a2+9a2﹣1=3a2+2a﹣1=﹣1﹣1=﹣2.19.解方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=﹣3,则方程组的解为.20.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.【考点】J9:平行线的判定.【分析】先根据等边对等角,得出∠B=∠CEB,再根据等量代换,即可得出∠A=∠CEB,进而判定CE∥AD.【解答】证明:∵CB=CE,∴∠B=∠CEB,又∵∠A=∠B,∴∠A=∠CEB,∴CE∥AD.21.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据点A的纵坐标利用一次函数图象上点的坐标特征,可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出双曲线的表达式;(2)依照题意画出函数图象,根据两函数图象的上下位置关系,即可找出n的取值范围.【解答】解:(1)当y=2x+1=﹣3时,x=﹣2,∴点A的坐标为(﹣2,﹣3),将点A(﹣2,﹣3)代入y=中,﹣3=,解得:k=6,∴双曲线的表达式为y=.(2)依照题意,画出图形,如图所示.观察函数图象,可知:当﹣2<x<0时,直线y=2x+1在双曲线y=的上方,∴当点B位于点C上方时,n的取值范围为﹣2<x<0.22.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.(1)求证:CD=BE;(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.【考点】L8:菱形的性质.【分析】(1)连接BD.只要证明四边形CDBE是平行四边形即可解决问题;(2)求出菱形的对角线即可解决问题;【解答】(1)证明:连接BD.∵四边形ABCD是菱形,∴BD⊥AC,CD∥AB,∵CE⊥AC,∴CE∥BD,∴四边形BECE为平行四边形,∴CD=BE.(2)求菱形ABCD面积的思路:只要求出对角线AC、BD即可.BD可以利用四边形CDBE是平行四边形求得,AC 在Rt△ACE中,AC=EC求得.S=•AC•BD.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.【考点】B7:分式方程的应用.【分析】设自行车的速度为x千米/小时,则汽车的速度为3x千米/小时,根据时间=路程÷速度结合骑车和乘骑车两种交通方式所需时间之间的关系,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设自行车的速度为x千米/小时,则汽车的速度为3x千米/小时,根据题意得:﹣=,解得:x=15,经检验,x=15是原分式方程的解.答:自行车的速度是15千米/小时.24.如图,AB是⊙O的直径,PC切⊙O于点C,AB的延长线与PC交于点P,PC的延长线与AD交于点D,AC平分∠DAB.(1)求证:AD⊥PC;(2)连接BC,如果∠ABC=60°,BC=2,求线段PC的长.【考点】MC:切线的性质.【分析】(1)连接OC,根据角平分线的定义得到∠DAC=∠BAC,根据等腰三角形的性质得到∠OAC=∠ACO,推出AD∥OC,于是得到结论;(2)根据已知条件得到△BOC是等边三角形,解直角三角形即可得到结论.【解答】解:(1)连接OC,∵AC平分∠DAB,∴∠DAC=∠BAC,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵PC切⊙O于点C,∴OC⊥PC,∴AD⊥PC;(2)∵∠ABC=60°,OC=OB,∴△BOC是等边三角形,∴OC=2,∴∠COP=60°,∵PC切⊙O于点C,∴∠OCP=90°,∴PC=2.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012﹣2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是1610 亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如图所示,请你补全扇形统计图,并估计7﹣17岁年龄段有 1.6 亿网民通过互联网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形统计图和折线统计图可以求得2015年互联网教育市场规模,然后即可把条形统计图补充完整;(2)根据扇形统计图可以求得7﹣17岁年龄段所占的比例,从而可以将扇形统计图补充完整,根据5亿网民使用互联网进行学习,可以求得7﹣17岁年龄段的人数;(3)根据要求说的只要合理即可.【解答】解:(1)由题意可得,2015年互联网教育市场规模是:1220×(1+32%)=1610.4≈1610亿,故答案为:1610,补全的条形统计图如下图1所示,(2)由扇形统计图可得,7﹣17岁年龄段使用互联网学习所占的比例为:1﹣56%﹣3%﹣9%=32%,补全的扇形统计图如下图2所示,7﹣17岁年龄段使用互联网学习人数为:5×32%=1.6亿,故答案为:1.6;(3)互联网与我们的生活学习越来越密切,我们运用互联网可以获得很多有用的信息,在今后的生活学习中我们要更好的运用互联网,使我们的生活更加丰富多彩.26.有这样一个问题:探究函数y=﹣x的图象与性质.小东根据学习函数的经验,对函数y=﹣x的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=﹣x的自变量x的取值范围是x≠0 ;(2)下表是y与x的几组对应值,求m的值;x …﹣4 ﹣3 ﹣2﹣﹣1﹣ 1 2 3 4 …y …﹣﹣m …(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2,),结合函数的图象,写出该函数的其它性质(一条即可)当x>0时,y随x的增大而减小.(5)根据函数图象估算方程﹣x=2的根为x1=﹣3.8,x2=﹣1.8 .(精确到0.1)【考点】HB:图象法求一元二次方程的近似根;G4:反比例函数的性质;H2:二次函数的图象;H3:二次函数的性质.【分析】(1)根据分母不为零分式有意义,可得答案;(2)根据自变量与函数值得对应关系,可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)函数y=﹣x的自变量x的取值范围是:x≠0,故答案为:x≠0;(2)把x=4代入y=﹣x得,y=﹣×4=﹣,∴m=﹣,(3)如图所示,(4)当x>0时,y随x的增大而减小;故答案为当x>0时,y随x的增大而减小;(5)由图象,得x1=﹣3.8,x2=﹣1.8.故答案为:x1=﹣3.8,x2=﹣1.8.27.已知:二次函数y=2x2+4x+m﹣1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点;①当m=1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n<8时,结合函数的图象,求m的取值范围.【考点】HA:抛物线与x轴的交点;H5:二次函数图象上点的坐标特征.【分析】(1)当A、B重合时,抛物线与x轴只有一个交点,此时△=0,从可求出m的值.(2)①m=1代入抛物线解析式,然后求出该抛物线与x轴的两个交点的坐标,从而可求出线段AB上的整点;②根据二次函数表达式可以用带m表达出两根之差,根据1<两根之差<8,即可解题.【解答】解:(1)∵A与B重合,∴二次函数y=2x2+4x+m﹣1的图象与x轴只有一个公共点,∴方程2x2+4x+m﹣1=0有两个相等的实数根,∴△=42﹣4×2(m﹣1)=24﹣8m=0,解得:m=3.∴如果A与B重合,m的值为3.(2)①当m=1时,原二次函数为y=2x2+4x+m﹣1=2x2+4x,令y=2x2+4x=0,则x1=0,x2=﹣2,∴线段AB上的整点有(﹣2,0)、(﹣1,0)和(0,0).故当m=1时,线段AB上整点的个数有3个.②由点A,B之间的部分与线段AB所围成的区域内(包括边界)可用以下不等式表示(3)如图,y=2x2+4x+m﹣1=0时,二次函数求根公式可得x;∴两个根之差为==;∵整点的个数为n,当1<n<8时,1<<8;解得:﹣29<m.28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB 上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.【考点】KY:三角形综合题.【分析】(1)根据等腰直角三角形的性质得到∠ABP=45°,根据勾股定理得到AB==,推出四边形ABEP是矩形,得到四边形ABEP是正方形,于是得到结论;(2)根据等腰直角三角形的性质得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°过P作PM⊥AB于点M,过P作PN⊥BC于点N,于是得到PM=PN,∠BPN=45°根据全等三角形的性质即可得到结论;(3)根据等腰直角三角形的性质得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,得到四边形BMPN是矩形,推出四边形BMPN是正方形,得到PM=PN,根据全等三角形的性质即可得到结论.【解答】解:(1)∵AD=DB=1,∠ADB=90°,∴∠ABP=45°,AB==,∵PE⊥AP,AB⊥BC,∴PA∥EC,∴PA⊥AB,∴四边形ABEP是矩形,∵∠ABP=45°,∴PA=AB,∴四边形ABEP是正方形,∴PE=AB=(2)∵△ABC和△ADB是等腰直角三角形,∴∠ADB=90°,∠DAB=∠DBA=45°,∴∠PBN=45°∴PE⊥AP,∠DAP=∠BPE=90°﹣∠DPA,∵∠PAM=45°﹣∠DAP,∠PEN=45°﹣∠BPE,∴∠PAM=∠PEN,过P作PM⊥AB于点M,过P作PN⊥BC于点N,则PM=PN,∠BPN=45°,在△APM和△EPN中,,∴△APM≌△EPN,∴PA=PE;(3)∵△ABC和△ADB是等腰直角三角形,∴∠ABD=45°,∴∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,则四边形BMPN是矩形,∵∠NBP=45°,∴四边形BMPN是正方形,∴PM=PN,∵AB⊥BC,∴∠BAN=∠APN,∵AP⊥PE,∴∠APN=∠E,∴∠BAP=∠E,在△AMP与△ENP中,,∴△AMP≌△ENP,∴AP=PE.29.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度 2 ;B(﹣,)的距离跨度 2 ;C(﹣3,﹣2)的距离跨度 4 ;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是圆.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围﹣1≤x E≤2 .。

北京市各区2017年中考数学二模试卷分类汇编---几何压轴题

北京市各区2017年中考数学二模试卷分类汇编---几何压轴题

几何压轴题1昌平28. 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE 绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE备用图ABCD2朝阳28.在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1) 如图1,若∠ABC=30°,则∠CAD的度数为.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD长的几种想法:想法1:延长CB,在CB延长线上截取BE=AC,连接DE.要求CD的长,需证明△ACD≌△BED,△CDE为等腰直角三角形.想法2:过点D作DH⊥BC于点H,DG⊥CA,交CA的延长线于点G,要求CD 的长,需证明△BDH≌△ADG,△CHD为等腰直角三角形.……请参考上面的想法,帮助小聪求出CD的长(一种方法即可).(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).图2图128. 取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图1,先把正方形ABCD对折,折痕为MN;第二步:点G在线段MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.(1)判断△PBC的形状,并说明理由;(2)作点C关于直线AP的对称点C′,连PC′,D C′,①在图2中补全图形,并求出∠APC′的度数;②猜想∠PC′D的度数,并加以证明.(温馨提示:当你遇到困难时,不妨连接A C′,C C′,研究图形中特殊的三角形)图2图1ME FNFEMACP PCBA28. 在Rt △ABC 中,∠ACB=90°,AC=BC=2,点P 为BC 边上的一个动点(不与B 、C 重合). 点P 关于直线AC 、AB 的对称点分别为M 、N ,连结MN 交AB 于点F ,交AC 于点E .(1)当点P 为BC 的中点时,求∠M 的正切值;(2)当点P 在线段BC 上运动(不与B 、C 重合)时,连接AM 、AN ,求证: ① △AMN 为等腰直角三角形;②△AEF ∽△BAM .5丰台28.已知正方形ABCD ,点E ,F 分别在射线AB ,射线BC 上,AE =BF ,DE 与AF 交于点O .(1)如图1,当点E ,F 分别在线段AB ,BC 上时,则线段DE 与AF 的数量关系是 ,位置关系是 .(2)如图2,当点E 在线段AB 延长线上时,将线段AE 沿AF 进行平移至FG ,连接DG .①依题意将图2补全;②小亮通过观察、实验提出猜想:在点E 运动的过程中,始终有22222AE AD DG +=.小亮把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:连接EG ,要证明22222AE AD DG +=,只需证四边形FAEG 是平行四边形及△DGE 是等腰直角三角形.想法2:延长AD ,GF 交于点H ,要证明22222AE AD DG +=,只需证△DGH 是直角三角形.图1 图2请你参考上面的想法,帮助小亮证明22222AE AD DG +=.(一种方法即可)O F EDC BAAFCDO6海淀28.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N点,射线EN ,AB 交于P 点. ①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD .小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD . 想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB DC A7怀柔28.在△ABN 中,∠B =90°,点M 是AB 上的动点(不与A,B 两点重合),点C是BN 延长线上的动点(不与点N 重合),且AM=BC ,CN=BM ,连接CM 与AN 交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M ,N 运动的过程中,始终有∠APM=45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路: 要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°. 他们的一种作法是:过点M 在AB 下方作MD ⊥AB 于点M,并且使MD=CN.通过证明△AMD ≅△CBM,得到AD=CM,再连接DN ,证明四边形CMDN 是平行四边形,得到DN=CM ,进而证明△ADN 是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN 是平行四边形,推得∠APM=45°.使问题得以解决. 请你参考上面同学的思路,用另一种方法证明∠APM=45°.图1 AB N 备用图A BN8石景山28.已知在Rt BAC △中,90BAC ∠=°,AB AC =,点D 为射线BC 上一点(与点B不重合),过点C 作CE ⊥BC 于点C ,且CE BD =(点E 与点A 在射线BC 同侧),连接AD ,ED .(1)如图,当点D 在线段BC 上时,请直接写出ADE ∠的度数.(2)当点D 在线段BC 的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由. (3)在(1)的条件下,ED 与AC 相交于点P ,若2AB =,直接写出CP 的最大值.图1图2 备用图9顺义28.在△ABC中,AB=AC,D为线段BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠B=30°,AC=√3,请补全图形并求DE的长;(2)如图2,若BE=2CD,连接CE并延长,交AB于点F,小明通过观察、实验提出猜想:CE=2EF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过A作AM∥BC交CF的延长线于点M,先证出△ABE≌△CAD,再证出△AEM是等腰三角形即可;想法2:过D作DN∥AB交CE于点N,先证出△ABE≌△CAD,再证点N为线段CE的中点即可.请你参考上面的想法,帮助小明证明CE=2EF.(一种方法即可)10通州28.在△ABC中,AB=BC,∠ABC=90°. 以AB为斜边作等腰直角三角形ADB. 点P是直线DB上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.图1 图2图311西城28.△ABC是等边三角形,以点C为旋转中心,将线段CA顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1,①求证:AC垂直平分BD;②点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2.求证:NA = MC.2017二模28题汇编答案(几何压轴)1昌平 28.(1)依题意补全图形如图1:………………………………………… 2分(2)判断: BD ⊥EG . ………………… 3分 证明:如图2,BD ,EG 交于M ,∵正方形ABCD ,∴AB =BC ,∠DAE=∠DCB =90° 由旋转可得△ADE ≌△CDF ,DE =DF ,AE =CF∴∠DCF = ∠DAE =∠DCB =90° ∴点B ,C ,F 在一条直线上. ∵点G 与点F 关于CD 的对称 ∴△DCG ≌△DCF ,DG =DF ,CG =CF ∴DE=DG ,AE=CG∴BE=BG ………………………………………………… 4分∴BD ⊥EG 于M . …………………………………………………… 5分 (3)∠EDG 的正切值为43.………………………………………………… 7分2朝阳28.解:(1)105°.(2)①补全图形,如图所示. ②想法1:如图,∵∠ACB =∠ADB =90°,∴∠CAD +∠CBD ==180°. ∵∠DBE +∠CBD ==180°,图1G BCD图2ABC DEM∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE =90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=2.想法2:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DAG+∠CAD==180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴CD=2.(3)2+=.AC BC CD3东城28.(1)△PBC是等边三角形.证明:在正方形ABCD中,BC=CD,Array又CD=CP,∴BC=CP,∵P在MN上,∴PB=PC.∴PB=BC=PC.∴△PBC是等边三角形.…………2分(2)①补全图形如图所示.由BA=BP,∠CBP=60°,可求得∠APB=75°,又∠BPC=60°,可得∠APC=135°.根据对称性,∠APC=∠APC’=135°.②证法一:连AC’,CC’.由①可得∠CPC’=90°.由对称性可知PC=PC’,从而可求得AC=AC’=CC’=2AB.从而△ACC’为等边三角形;由AC’=CC’,DA=DC,C’D=C’D,可证△AC’D≌△CC’D,可得∠AC’D=∠CC’D=30°.根据对称性∠AC’C=∠ACC’,∠PC’C=∠PCC’,从而∠AC’P=∠ACP,由△ABC为等腰直角三角形,可得∠ACB=45°,由△PBC为等边三角形,可得∠BCP=60°,从而∠ACP=∠AC’P=15°.所以∠PC’D=∠AC’D﹣∠AC’P=15°. …………8分证法二:连AC’,CC’.由BA=BP,∠CBP=60°,可求得∠APB=75°,又∠BAC=45°,可得∠CAP=30°.根据对称性,∠CAP=∠C’AP=30°,从而∠CA C’=60°;由对称性可知AC=AC’,从而△ACC’为等边三角形;以下同证法一.ABCPM E FN45321PCANFE M4房山28. 解:(1)连接NB , ……………………1分∵在Rt △ABC 中,∠ACB=90°,AC=BC∴∠CAB =∠CBA =45°=∠PBA∵点P 关于直线AB 的对称点为N ,关于直线AC 的对称点为M , ∴∠NBA=∠PBA =45°,NB=PB ,MC=PC ……………………2分 ∴∠MBN =∠PBN =90° ∵点P 为BC 的中点,BC=2∴MC=CP=PB=NB=1,MB=3 ∴tan ∠M=13NBMB……………………3分(2) ①连接AP∵点P 关于直线AC 、AB 的对称点分别为M 、N ,∴AP =AM =AN ,∠1=∠2,∠3=∠4 ……………………4分∵∠CAB =∠2+∠3 =45° ∴∠MAN=90°∴△AMN 为等腰直角三角形 ……………………5分②∵△AMN 为等腰直角三角形 ∴∠5 =45°∴∠AEF =∠5+∠1 =45°+∠1 ∵∠EAF=∠CAB =45°∴∠BAM =∠EAF +∠1 =45°+∠1∴∠AEF =∠BAM ……………………6分又∵∠CBA=∠EAF=45°∴△AEF ∽△BAM ……………………7分5丰台28.解:(1)相等,垂直.. ……………………………………………………………………………2分(2)①依题意补全图形..……………………………………………………………………3分4321GAEFCDO②法1: 证明:连接GE .由平移可得AE =FG ,AE ∥FG ,∴四边形AEGF 是平行四边形. ……………………4分∴AF =EG ,AF ∥EG , ∴∠1=∠2.∵四边形ABCD 是正方形, ∴AD = AB ,∠DAE =∠ABC= 90°. ∵AE =BF , ∴△AED ≌△BFA . ∴∠3=∠4,AF = DE . ∴EG =DE . …………………………………………………………………………………5分∵∠2+∠4=90°, ∴∠1+∠3=90°,∴∠DEG =90°. ………………………………………………………6分∴22222DE EG DE DG =+=. 又 ∵222AE AD DE +=, ∴22222AE AD DG +=.………………………………………………………………7分法2:证明:延长AD ,GF 交于点H ,由平移可得AE =FG ,AE ∥FG ,∴∠H +∠DAB= 180°∵四边形ABCD 是正方形,∴∠DAB= 90°,AD =DC . ∴∠H =90°. …………………………………………………………………………4分∴222DH GH DG +=. ∵∠HDC=∠DCF= 90°, ∴四边形HDCF 是矩形. ∴HF =DC . ∴HF =AD . ∵HG =FG +HF, ∴HG =AE +HF=AE+AD . ………………………………………………………………5分∵易证BF=AH 且BF=AE , ∴HD =AE–AD . ………………………………………………………………………6分 ∴()()2222222AE AD AD AE AD AE DG +=-++=. …………………………7分6海淀GH A F C D O28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. -------------------------------- 1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ------------------------------------ 2分(2)①画出一种即可. ------------------------------------------------------------------- 3分②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB , ∴∠1=∠APE . ------------------- 4分∵∠ADC =90°,E 为AC 中点,∴12AE DE CE AC ===. 同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分MPN ECDB AFEB D CAM PN ECDB A∴∠1=2∠MAD. --------------------------------- 6分∴∠APE =2∠MAD . ---------------------------------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点,∴12AE NE AC ==.∴∠ANE =∠NAC =∠MAD +∠DAC =α+β. ------------------- 4分∴∠NEC =∠ANE +∠NAC =2α+2β. ---------- 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.∴∠APE =∠PEC -∠BAC =2α. -------------------- 6分∴∠APE =2∠MAD . -------------------------------7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2. ∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2, 即∠3=∠4. --------------------------------- 4分∴∠3+∠NAQ =∠4+∠NAQ , 即∠PAQ =∠EAN . ∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==.∴∠ANE =∠EAN . --------------------------- 5分 ∴∠PAQ =∠ANE . ∵∠AQP =∠AQP ,E DC B APMN 4321QN MPAB CDE∴△PAQ ∽ △ANQ . --------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD . ------------------- 7分7怀柔28(1)在图1中依题意补全图形,如图1所示:…………………………1分 (2)证明:如图2,过点A 作AD ⊥AB 于点A,并且使AD=CN.连接DM,DC. …………………………2分 ∵AM=BC ,∠DAM=∠MBC =90°,∴△DAM ≅△MBC. …………………………3分∴DM=CM, ∠AMD=∠BCM. …………………………4分 ∵∠DAM=90°.∴∠AMD+∠BMC =90°. ∴∠DMC =90°.∴∠MCD =45°. …………………………5分 ∵AD ∥CN,AD=CD,∴四边形ADCN 是平行四边形. …………………………6分 ∴AN ∥DC.∵∠MCD =45°.∴∠APM=45°. …………………………7分 (其它方法相应给分)8石景山28.解:(1)45°. ………… 1分 (2)补全图形,如图1所示.…………… 2分结论成立.证明: 连接AE ,如图2.∵在Rt BAC △中,90BAC ∠=°,AB AC =, ∴ 145B.AB CDPMN图2 EEAB图1G F E CD B A ∵CE BC , ∴90BCE °. ∴245. ∴2B. ……… 3分 又∵ABAC BD CE ,, ∴ABD ACE ≌. …………… 4分 ∴AD AE BAD CAE ,.∴90DAE BAC °. ……… 5分 ∴DAE △是等腰直角三角形.345. ……………… 6分(3). ……… 7分9顺义28.(1)解:∵DA=DB ,∠ABC=30°,∴∠BAD = ∠ABC =30°.∵AB=AC ,∴∠C =∠ABC =30°.∴∠BAC =120°.∴∠CAD=90°. (2)分∴AD=AC ×tan30°=1,AE=CD=2AD=2,∴DE=AE -AD=1.……………………………………………………3分(2)证明:如图,过A 作AG ∥BC ,交BF 延长线与点G ,∵DB=DA ,AB=AC ,∴∠BAD=∠ABC ,∠ABC=∠ACB .∴∠BAD=∠ACB .∵AE=CD ,∴△ABE ≌△CAD .……………………4分∴BE=AD .∵BE=2CD ,∴AD=2CD=2AE .∴AE=DE .图2 A B D E C∵AG∥BC,∴∠G=∠DCE,∠GAE=∠CDE.∴△AGE≌△DCE.………………………………………5分∴EG=CE,AG=CD=AE.∴△AGE为等腰三角形.∴∠GAF=∠ABC=∠BAD.∴F为GE的中点.………………………………………6分∴CE=EG=2EF.…………………………………………7分10通州28.解:(1)2……………………..(1分)(2)法①过P作PM⊥BD,交AB于M法②过P作PM⊥BC于点M, 过P作PN⊥AB于点N法③延长AB,在AB的延长线上截取PM=PA法④过点B作BM⊥BD,截取BM=BP,连接CM.法⑤连接AE,取AE中点M,连接BM,PM,四点共圆. …………..(5分)(3)图正确,成立……………………..(7分)11西城28.证明:∵△ABC是等边三角形,∴AB=BC =CA,∠ABC=∠ACB =∠CAB =60°.(1)①以点C为旋转中心将线段CA顺时针方向旋转60°得到线段CD.∴CD= CA= CB,∠ACD=∠ACB =60°.∴ BO =DO,CO⊥BD.∴AC垂直平分BD.··············2分②△MND是等边三角形.如图1,由①AC垂直平分BD,∴NB =ND,∠CBD =12∠ABC=30°.∴∠1=∠2.∴∠BND=180°-2∠2.∵ND=NM,∴NB=NM.∴∠3=∠4.∠BNM=180°-2∠4.∴∠DNB=360°-180°+2∠2-180°+2∠4=2(∠2+∠4) =60°.∴△MND是等边三角形.·············5分(2)连接AD, BN.如图2,由题意可知,△ACD是等边三角形,∠1=∠2,∠3=∠NBM,∠BND=180°-2∠2,∠BNM =180°-2∠NBM.∴∠MND=∠BND-∠BNM∠MND===2(∠NBM -∠2)=60°.∴△MDN是等边三角形.∴DN=DM,∠NDM=60°.∠ADC=∠NDM°.∴∠NDA=∠MDC,∠NAD=∠MCD=60°.∴△AND≌△CMD.-∴AN=MC.···················7分(注:可编辑下载,若有不当之处,请指正,谢谢!)。

2017年北京市西城区中考数学二模试卷(有答案)

2017年北京市西城区中考数学二模试卷(有答案)

2017年北京市西城区中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.据报道,到2020年北京地铁规划线网将由19条线路组成,总长度将达到561500米,将561500用科学记数法表示为()A.0.5615×106B.5.615×105C.56.15×104D.561.5×1032.下列运算中,正确的是()A.a3+a3=2a6B.a5﹣a3=a2C.a2•a2=2a4D.(a5)2=a103.将不等式x﹣1>0的解集表示在数轴上,下列表示正确的是()A.B.C.D.4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A.B.C.D.5.介于下列哪两个整数之间()A.0与1 B.1与2 C.2与3 D.3与46.如图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为()A.55° B.45° C.35° D.25°7.对于反比例函数y=,当1<x<2时,y的取值范围是()A.1<y<3 B.2<y<3 C.1<y<6 D.3<y<68.如图,AB为半圆O的直径,C为的中点,若AB=2,则图中阴影部分的面积是()A.B. +C.D. +9.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1 B.点O2 C.点O3 D.点O410.某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A.①② B.①④ C.②④ D.③④二、填空题11.如图,长方体中所有与棱AB平行的棱是.12.关于x的方程x2﹣4x+k=0有两个相等的实数根,则实数k的值为.13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BED的度数是度.14.在平面直角坐标系xOy中,⊙O的半径是5,点A为⊙O上一点,AB⊥x轴于点B,AC⊥y轴于点C,若四边形ABOC的面积为12,写出一个符合条件的点A的坐标.15.如图是由三个直角三角形组成的梯形,根据图形,写出一个正确的等式.16.《数学九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3﹣4x2﹣35x+8的值”,按照秦九韶算法,可先将多项式3x3﹣4x2﹣35x+8进行改写:3x3﹣4x2﹣35x+8=x(3x2﹣4x﹣35)+8=x[x(3x﹣4)﹣35]+8按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当x=8时,多项式3x3﹣4x2﹣35x+8的值1008.请参考上述方法,将多项式x3+2x2+x﹣1改写为:,当x=8时,这个多项式的值为.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:﹣2﹣1+(﹣π)0﹣4sin45°.18.(5分)解方程组.19.(5分)已知x2﹣3x﹣4=0,求代数式(x+1)(x﹣1)﹣(x+3)2+2x2的值.20.(5分)列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?21.(5分)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.22.(5分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.23.(5分)直线y=﹣2x+4与x轴交于点A,与y轴交于点B,直线y=kx+b(k,b是常数,k≠0)经过点A,与y轴交于点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴的上方,点P在直线y=﹣2x+4上,若PC=PB,求点P的坐标.24.(5分)阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额,在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售总额7702.8亿元,比上一年增长11.6%,2013年,全年实现社会消费品零售总额8375.1亿元,比上一年增长8.7%,2014年,全年实现社会消费品零售总额9098.1亿元,比上一年增长8.6%,2015年,全年实现社会消费品零售总额10338亿元,比上一年增长7.3%.2016年,北京市实现市场总消费19926.2亿元,比上一年增长了8.1%,其中实现服务性消费8921.1亿元,增长10.1%;实现社会消费品零售总额11005.1亿元,比上一年增长了6.5%.根据以上材料解答下列问题:(1)补全统计表:2012﹣2016年北京市社会消费品零售总额统计表明相应数据;(3)根据以上信息,估计2017年北京市社会消费品零售总额比上一年的增长率约为 ,你的预估理由是 .25.(5分)如图,AB 是⊙O 的直径,C 是⊙O 是一点,过点B 作⊙O 的切线,与AC 延长线交于点D ,连接BC ,OE ∥BC 交⊙O 于点E ,连接BE 交AC 于点H . (1)求证:BE 平分∠ABC ;(2)连接OD ,若BH=BD=2,求OD 的长.26.(5分)学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.以下是小东探究过程,请补充完整:(1)在四边形ABCD 中,对角线AC 与BD 相交于点O ,若AB ∥CD ,补充下列条件中能判定四边形ABCD 是平行四边形的是 (写出一个你认为正确选项的序号即可); (A )BC=AD (B )∠BAD=∠BCD (3)AO=CO (2)将(1)中的命题用文字语言表述为: ①命题1 ;②画出图形,并写出命题1的证明过程; (3)小东进一步探究发现:若一个四边形ABCD的三个顶点A ,B ,C 的位置如图所示,且这个四边形满足CD=AB ,∠D=∠B ,但四边形ABCD 不是平行四边形,画出符合题意的四边形ABCD ,进而小东发现:命题2“一组对边相等,一组对角相等的四边形是平行四边形”是一个假命题.27.(7分)在平面直角坐标系xOy 中,抛物线y=ax 2+2ax ﹣3a (a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求抛物线的对称轴及线段AB 的长;(2)抛物线的顶点为P ,若∠APB=120°,求顶点P 的坐标及a 的值;(3)若在抛物线上存在一点N,使得∠ANB=90°,结合图象,求a的取值范围.28.(7分)△ABC是等边三角形,以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1.①求证:AC垂直平分BD;①点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2,求证:NA=MC.29.(8分)在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1,y1),B(x2,y2),C(x3,y3),对于△ABC的横长、纵长、纵横比给出如下定义:将|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,称为△ABC的横长,记作D x;将|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,称为△ABC的纵长,记作D y;将叫做△ABC的纵横比,记作λ=.例如:如图1,△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(﹣1,﹣2),则D x=|2﹣(﹣1)|=3,D y=|3﹣(﹣2)|=5,所以λ==.(1)如图2,点A(1,0),①点B(2,1),E(﹣1,2),则△AOB的纵横比λ1=△AOE的纵横比λ2= ;②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标;③点M是双曲线y=上一个动点,若△AOM的纵横比为1,求点M的坐标;(2)如图3,点A(1,0),⊙P以P(0,)为圆心,1为半径,点N是⊙P上一个动点,直接写出△AON 的纵横比λ的取值范围.2017年北京市西城区中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.据报道,到2020年北京地铁规划线网将由19条线路组成,总长度将达到561500米,将561500用科学记数法表示为()A.0.5615×106B.5.615×105C.56.15×104D.561.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将561500用科学记数法表示为:5.615×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列运算中,正确的是()A.a3+a3=2a6B.a5﹣a3=a2C.a2•a2=2a4D.(a5)2=a10【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据幂的乘方、同类项合并、同底数幂的乘法的运算法则解答即可.【解答】解:A、a3+a3=2a3,错误;B、不是同类项,不能合并,错误;C、a2•a2=a4,错误;D、(a5)2=a10,正确;故选D【点评】此题考查幂的乘方、同类项合并、同底数幂的乘法问题,关键是根据幂的乘方、同类项合并、同底数幂的乘法法则计算.3.将不等式x﹣1>0的解集表示在数轴上,下列表示正确的是()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】先解不等式得到x>1,然后利用数轴表示不等式的方法对各选项进行判断.【解答】解:x﹣1>0,所以x>1,用数轴表示为:.故选A.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A.B.C.D.【考点】X4:概率公式.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.介于下列哪两个整数之间()A.0与1 B.1与2 C.2与3 D.3与4【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大求解即可.【解答】解:∵4<5<9,∴2<<3.故选:C.【点评】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.6.如图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为()A.55° B.45° C.35° D.25°【考点】L3:多边形内角与外角;J2:对顶角、邻补角;JA:平行线的性质.【分析】根据多边形的外角和等于360°,即可得到∠5的度数,进而得出∠AED的度数,再根据平行线的性质进行解答即可.【解答】解:如图,由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,又∵∠1+∠2+∠3+∠4=225°,∴∠5=135°,∴∠AED=45°,又∵ED∥AB,∴∠1=∠AED=45°,故选:B.【点评】本题考查的是多边形的内角和外角以及平行线的性质,掌握多边形的外角和等于360°是解题的关键.7.对于反比例函数y=,当1<x<2时,y的取值范围是()A.1<y<3 B.2<y<3 C.1<y<6 D.3<y<6【考点】G4:反比例函数的性质.【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=2时,y=3,∴当1<x<2时,3<y<6.故选D.【点评】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.8.如图,AB为半圆O的直径,C为的中点,若AB=2,则图中阴影部分的面积是()A.B. +C.D. +【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵AB为直径,∴∠ACB=90°,∵C为的中点,∴=,∴AC=BC,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=,∴S阴影部分=S扇形AOC==.故选C.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.9.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1 B.点O2 C.点O3 D.点O4【考点】D3:坐标确定位置.【分析】根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),进而得出观测点位置.【解答】解:如图所示:观测点的位置应在点O1.故选:A.【点评】此题主要考查了坐标确定位置,正确利用已知点得出观测点是解题关键.10.某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A.①② B.①④ C.②④ D.③④【考点】W5:众数;V3:总体、个体、样本、样本容量;V5:用样本估计总体;V7:频数(率)分布表;W4:中位数.【分析】根据中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;用男女生身高的样本中160cm至170cm所占比例乘以男女生总人数可判断④.【解答】解:由直方图可知,男生身高人数最多的为D组,即众数在D组,故①正确;由A与B的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C组,故②错误;∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵女生身高在160cm至170cm(不含170cm)的学生有40×(30%+15%)=18人,∴身高在160cm至170cm(不含170cm)的学生有(420+400)×=400(人),故④正确;故选:B.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二、填空题11.如图,长方体中所有与棱AB平行的棱是DC,EF,HM .【考点】JA:平行线的性质;I1:认识立体图形.【分析】根据平行线的性质以及正方体的特征进行判断即可.【解答】解:由图可得,长方体中所有与棱AB平行的棱有3条:DC,EF,HM,故答案为:DC,EF,HM.【点评】本题主要考查了平行线的性质以及正方体的特征,解题时注意:在平面内不相交的两条直线平行.12.关于x的方程x2﹣4x+k=0有两个相等的实数根,则实数k的值为 4 .【考点】AA:根的判别式.【分析】若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于k的方程,求出k的取值.【解答】解:∵方程x2﹣4x+k=0有两个相等的实数根,∴△=(﹣4)2﹣4k=0,即﹣4k=﹣16,k=4故本题答案为:4.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BED的度数是135 度.【考点】LE:正方形的性质.【分析】根据正方形的性质可知:AB=BC,因为AE=BC,所以AB=AE,即三角形ABE是等腰三角形,因为∠BAE 是45°,所以可求出∠BEA,同理可求出∠AED的度数,进而求出∠BED的度数.【解答】解:∵四边形ABCD是正方形,AC是对角线,∴AB=BC,∠BAE=45°,∵AE=BC,∴∠ABE=∠AED==67.5°,同理可求得:∠AED=67.5°,∴∠BED=2×67.5°=135°.故答案为135.【点评】本题考查了正方形的性质:四边相等、对角线平分对角以及等腰三角形的判定和性质和三角形内角和定理的运用.14.在平面直角坐标系xOy中,⊙O的半径是5,点A为⊙O上一点,AB⊥x轴于点B,AC⊥y轴于点C,若四边形ABOC的面积为12,写出一个符合条件的点A的坐标(3,4).【考点】D5:坐标与图形性质.【分析】设点A坐标为(x,y),由圆的半径为5可得x2+y2=25,根据矩形的面积为xy=12或xy=﹣12,分情况分别解和可得点A的坐标.【解答】解:设点A坐标为(x,y),则AO2=x2+y2=25,由xy=12或xy=﹣12,当xy=12时,可得(x+y)2﹣2xy=25,即(x+y)2﹣24=25,∴x+y=7或x+y=﹣7,①若x+y=7,即y=7﹣x,代入xy=12得x2﹣7x+12=0,解得:x=3或x=4,当x=3时,y=4;当x=4时,y=3;即点A(3,4)或(4,3);②若x+y=﹣7,则y=﹣7﹣x,代入xy=12得:x2+7x+12=0,解得:x=﹣3或x=﹣4,当x=﹣3时,y=﹣4;当x=﹣4时,y=﹣3;即点A(﹣3,﹣4)或(﹣4,﹣3);当xy=﹣12时,可得(x+y)2﹣2xy=25,即(x+y)2+24=25,∴x+y=1或x+y=﹣1,③若x+y=1,即y=1﹣x,代入xy=﹣12得x2﹣x﹣12=0,解得:x=﹣3或x=4,当x=﹣3时,y=4;当x=4时,y=﹣3;即点A(﹣3,4)或(4,﹣3);④若x+y=﹣1,则y=﹣1﹣x,代入xy=﹣12得:x2+x﹣12=0,解得:x=3或x=﹣4,当x=3时,y=﹣4;当x=﹣4时,y=3;即点A(3,﹣4)或(﹣4,3);故答案为:(3,4),(答案不唯一).【点评】本题主要考查坐标与图形的性质,熟练掌握两点的距离公式和解二元二次方程组是解题的关键.15.如图是由三个直角三角形组成的梯形,根据图形,写出一个正确的等式c2=a2+b2.【考点】KR:勾股定理的证明.【分析】该图形的面积与3个直角三角形组成一个直角梯形,根据三角形的面积公式、梯形的面积公式进行解答.【解答】解:依题意得: ab+c2+ab=(a+b)(a+b),整理,得c2=a2+b2.故答案是:c2=a2+b2.【点评】本题考查了勾股定理的证明,解题时,采用了分割法求图形的面积.16.《数学九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3﹣4x2﹣35x+8的值”,按照秦九韶算法,可先将多项式3x3﹣4x2﹣35x+8进行改写:3x3﹣4x2﹣35x+8=x(3x2﹣4x﹣35)+8=x[x(3x﹣4)﹣35]+8按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当x=8时,多项式3x3﹣4x2﹣35x+8的值1008.请参考上述方法,将多项式x3+2x2+x﹣1改写为:x[x(x+2)+1]﹣1 ,当x=8时,这个多项式的值为647 .【考点】4J:整式的混合运算—化简求值.【分析】仿照题中的方法将原式改写,把x的值代入计算即可求出值.【解答】解:x3+2x2+x﹣1=x[x(x+2)+1]﹣1,当x=8时,原式=647,故答案为:x[x(x+2)+1]﹣1;647【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的方法是解本题的关键.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:﹣2﹣1+(﹣π)0﹣4sin45°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣2﹣1+(﹣π)0﹣4sin45°=3﹣+1﹣4×=3+﹣2=+【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.解方程组.【考点】98:解二元一次方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x+2(x﹣1)=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.已知x2﹣3x﹣4=0,求代数式(x+1)(x﹣1)﹣(x+3)2+2x2的值.【考点】4J:整式的混合运算—化简求值.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=x2﹣1﹣x2﹣6x﹣9+2x2=2x2﹣6x﹣10=2(x2﹣3x﹣4)﹣2,当x2﹣3x﹣4=0时,原式=﹣2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?【考点】B7:分式方程的应用.【分析】设第一批衬衫每件进价为x元,则第二批每件进价为(x﹣10)元.根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.【解答】解:设第一批衬衫每件进价为x元,根据题意,得•=,解得x=150,经检验x=150是原方程的解,且满足题意,答:第一批衬衫每件进价为150元.【点评】本题考查分式方程的应用,解题的关键是学会设未知数、找等量关系、列出方程解决问题,注意分式方程必须检验,属于中考常考题型.21.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.【考点】KF:角平分线的性质;JA:平行线的性质.【分析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.【解答】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.22.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【考点】LD:矩形的判定与性质.【分析】(1)只要证明三个角是直角即可解决问题;(2)作OF⊥BC于F.求出EC、OF的长即可;【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点评】本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.23.直线y=﹣2x+4与x轴交于点A,与y轴交于点B,直线y=kx+b(k,b是常数,k≠0)经过点A,与y轴交于点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴的上方,点P在直线y=﹣2x+4上,若PC=PB,求点P的坐标.【考点】F8:一次函数图象上点的坐标特征.【分析】(1)令y=0,求得x的值,即可求得A的坐标为(2,0),由OC=OA得C(0,2)或(0,﹣2),然后根据待定系数法即可求得k的值;(2)由B、C的坐标,根据题意求得P的纵坐标,代入y=﹣2x+4即可求得横坐标.【解答】解:(1)由直线y=﹣2x+4与x轴交于点A,与y轴交于点B,令y=0,则﹣2x+4=0,解得x=2,∴A(2,0),∵OC=OA,∴C (0,2)或(0,﹣2),∵直线y=kx+b (k ,b 是常数,k ≠0)经过点A 和点C , ∴或,解得k=1或k=﹣1;(2)∵B (0,4),C (0,2),且PC=PB , ∴P 的纵坐标为3, ∵点P 在直线y=﹣2x+4上, 把y=3代入y=﹣2x+4解得x=, ∴P (,3).【点评】本题考查了一次函数图象上点点坐标特征,分类讨论思想运用是本题点关键.24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额,在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售总额7702.8亿元,比上一年增长11.6%,2013年,全年实现社会消费品零售总额8375.1亿元,比上一年增长8.7%,2014年,全年实现社会消费品零售总额9098.1亿元,比上一年增长8.6%,2015年,全年实现社会消费品零售总额10338亿元,比上一年增长7.3%.2016年,北京市实现市场总消费19926.2亿元,比上一年增长了8.1%,其中实现服务性消费8921.1亿元,增长10.1%;实现社会消费品零售总额11005.1亿元,比上一年增长了6.5%. 根据以上材料解答下列问题: (1)补全统计表:2012﹣2016年北京市社会消费品零售总额统计表明相应数据;(3)根据以上信息,估计2017年北京市社会消费品零售总额比上一年的增长率约为 5.45% ,你的预估理由是 从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05% . 【考点】VE :统计图的选择;V5:用样本估计总体;VA :统计表.【分析】(1)根据2012﹣2016年北京市社会消费品零售总额完成统计表即可;(2)根据2012﹣2016年北京市社会消费品零售总额比上一年的增长率,画出2012﹣2016年北京市社会消费品零售总额比上一年的增长率折线统计图即可;(3)根据从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%,即可得出2017年北京市社会消费品零售总额比上一年的增长率.【解答】解:(1)补全统计表如下:(2)2012﹣2016年北京市社会消费品零售总额比上一年的增长率统计图如下:(3)从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%,故2017年北京市社会消费品零售总额比上一年的增长率约为6.5%﹣1.05%=5.45%,故答案为:5.45%,从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%.【点评】本题主要考查了统计图、统计表的选择,解题时注意:折线统计图的特点:能清楚地反映事物的变化情况,显示数据变化趋势.25.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE∥BC 交⊙O于点E,连接BE交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.【考点】MC:切线的性质.【分析】(1)根据切线的性质得到∠ACB=90°,根据平行线的性质得到OE⊥AC,根据垂径定理即可得到结论;(2)根据切线的性质得到∠ABD=90°,根据等腰三角形的性质得到∠CBD=∠2,解直角三角形即可得到结论.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE∥BC,∴OE⊥AC,∴=,∴∠1=∠2,∴BE平分∠ABC;(2)解:∵BD是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2,OB=,∵OD2=OB2+BD2,∴OD=.【点评】本题考查了切线的性质,圆周角定理,垂径定理,角平分线的判定,勾股定理,正确的识别图形是解题的关键.26.学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.以下是小东探究过程,请补充完整:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,补充下列条件中能判定四边形ABCD是平行四边形的是B或C (写出一个你认为正确选项的序号即可);(A)BC=AD (B)∠BAD=∠BCD (3)AO=CO(2)将(1)中的命题用文字语言表述为:①命题1 一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;②画出图形,并写出命题1的证明过程;(3)小东进一步探究发现:。

2017年北京市中考二模数学试题分类汇编:四边形综合篇

2017年北京市中考二模数学试题分类汇编:四边形综合篇

2017年二模试题分类汇编四边形综合篇【2017朝阳二模23】如图,在□ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF 相交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的长.【2017西城二模22】如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°. 对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【2017海淀二模23】如图,在△ABC 中,90BAC ∠=︒,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF . (1)求证:四边形AECF 是菱形;(2)在AB =10,30ACB ∠=︒,求菱形AECF 的面积.【2017东城二模23】如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ;连接ED ,DG.(1)请判断四边形EBGD 的形状,并说明理由; (2)若30ABC ∠=︒,45C ∠=︒,ED =2,求GC 的长.DAFBC【2017丰台二模23】如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边三角形ACD 及等边三角形ABE .已知∠BAC = 30º,EF ⊥AB 于点 F ,连接 DF .(1)求证:AC =EF ;(2)求证:四边形 ADFE 是平行四边形.【2017房山二模21】如图,河的两岸l 1与l 2互相平行,A 、B 是l 1上的两点,C 、D 是l 2上 的两点.某同学在A 处测得∠CAB=90°,∠DAB=30°,再沿AB 方向走20米到达点E (即 AE =20),测得∠DEB=60°.求:C ,D 两点间的距离.F ABD CE1【2017顺义二模23】已知:如图,四边形ABCD中,∠ABC=∠ADC=90︒,AB=AD.(1)求证:BC= CD;(2)若∠A=60︒,将线段BC绕着点B逆时针旋转60︒,得到线段BE,连接DE,在图中补全图形,并证明四边形BCDE是菱形.【2017怀柔二模21】已知:如图,在四边形ABCD中,AB⊥BD,AD∥BC,∠ADB=45°,∠C=60°,AB.求四边形ABCD的周长.DCBADC BA【2017石景山二模21】如图,四边形ABCD 是矩形,点E 在AD 边上,点F 在AD 的延长线上,且BE CF =.(1)求证:四边形EBCF 是平行四边形.(2)若90BEC ∠=°,30ABE ∠=°,AB =ED 的长.【2017平谷二模23】如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边上的点,且AE=CF . (1)求证:四边形BFDE 是平行四边形; (2)若AB =12,AE =5,3cos 5BFE ∠=,求矩形ABCD 的周长.2017年一模试题分类汇编四边形综合篇【2017朝阳一模23】如图,在△ABC 中,AB=AC ,AD 是BC 边的中线,过点A 作BC 的平行线,过点B 作AD 的平行线,两线交于点E . (1)求证:四边形ADBE 是矩形;(2)连接DE ,交AB 于点O ,若BC =8,AO =52,求cos ∠AED 的值.【2017西城一模23】如图,在□ABCD 中,对角线BD 平分∠ABC ,过点A 作AE //BD ,交CD 的延长线于点E ,过点E 作EF ⊥BC ,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.ADC BFE【2017海淀一模23】如图,在□ABCD 中,AE ⊥BC 于点E 点,延长BC 至F 点使CF=BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若AB =6,DE =8,BF =10,求AE 的长.【2017通州一模23】如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB . (1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.B EC FA DF【2017东城一模23】如图,四边形ABCD 为平行四边形,BAD ∠的角平分线AF 交CD 于点E ,交BC 的延长线于点F . (1)求证:BF =CD ;(2)连接BE ,若BE AF ⊥,60BFA ∠=︒,BE =求平行四边形ABCD 的周长.【2017房山一模21】已知:在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点;过点A 作AF ∥BC 交BE 的延长线于F ,连接CF . (1)求证:四边形ADCF 是平行四边形; (2) 填空:①如果AB =AC ,四边形ADCF 是 形; ②如果∠BAC =90°,四边形ADCF 是 形;.BFEDCBA【2017丰台一模21】如图,在四边形ABCD 中,∠ABC =90°,DE ⊥AC 于点E ,且AE =CE ,DE =5,EB =12. (1)求AD 的长;(2)若∠CAB =30°,求四边形ABCD 的周长.【2017平谷一模21】如图,在△ABC 中,BD 平分∠ABC 交AC 于D ,EF 垂直平分BD , 分别交AB ,BC ,BD 于E ,F ,G ,连接DE ,DF . (1)求证:DE=DF ;(2)若∠ABC =30°,∠C =45°,DE =4,求CF 的长.CDE【2017顺义一模21】已知:如图,四边形ABCD 中,对角线AC ,BD 相交于点O , AB=AC=AD , ∠DAC =∠ABC .(1)求证:BD 平分∠ABC ;(2)若∠DAC =45︒,OA =1,求OC 的长.【2017石景山一模21】如图,在□ABCD 中,过点A 作AE ⊥BC 于点E ,AF ⊥DC 于点F ,AE AF =.(1)求证:四边形ABCD 是菱形;(2)若60EAF ∠=°,2CF =,求AF 的长.ODCBA2017——2018学年度北京初三各区一模四边形(东城区2017-2018学年度第一次模拟检测)21.如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE= AB,连接DE,AC. (1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O. 若AC=AB=3,,求线段CE的长.(朝阳区2017-2018学年度第一次模拟检测)21. 如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=,求DF的长.1cos3BFAB21. 如图,在中,,点分别是上的中点,连接并延长至点,使,连接.(1)证明:;(2)若,AC =2,连接BF ,求BF 的长(丰台区2017-2018学年度第一次模拟检测)21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABC ∆90ACB ∠=o,D E ,BC AB DE F 2EF DE =,CE AF AF CE =30B ∠=oABCEDF第21题图21.如图,□的对角线相交于点,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是_______________时,四边形的面积取得最大值是_________________.(怀柔区2017-2018学年度第一次模拟检测)21.直角三角形ABC 中,∠BAC=90°,D 是斜边BC 上一点,且AB=AD ,过点C 作CE ⊥AD ,交AD 的延长线于点E ,交AB 延长线于点F. (1)求证:∠ACB=∠DCE ;(2)若∠BAD=45°,过点B 作BG ⊥FC 于点G ,连接DG .依题意补全图形,并求四边形ABGD 的面积.(平谷区2017-2018学年度第一次模拟检测)22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.ABCD ,AC BD O AOBE 2+2AF C BEOADO DF(石景山区2017-2018学年度第一次模拟检测)21.如图,在四边形ABCD中,90A BCD∠=∠=°,BC CD==CE AD⊥于点E.(1)求证:AE CE=;(2)若tan3D=,求AB的长.(延庆区2017-2018学年度第一次模拟检测)21.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.(顺义区2017-2018学年度第一次模拟检测)21.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.FEAB CDF EDCB A(通州区2017-2018学年度第一次模拟检测)(大兴区2017-2018学年度第一次模拟检测)21. 如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE=O C ,CE=O D . (1)求证:四边形OCED 是菱形;(2)若∠BAC =30°,AC =4,求菱形OCED 的面积.(门头沟2017-2018学年度第一次模拟检测)21.在矩形ABCD 中,连接AC ,AC 的垂直平分线交AC 于点O ,分别交AD 、BC 于点E 、F ,连接CE 和AF .(1)求证:四边形AECF 为菱形;(2)若AB =4,BC =8,求菱形AECF 的周长.2018昌平二模21.如图,已知△ACB 中,∠ACB =90°,CE 是△ACB 的中线,分别过点A 、点C 作CE 和AB 的平行线,交于点D .(1)求证:四边形ADCE 是菱形;(2)若CE=4,且∠DAE =60°,求△ACB 的面积.2018朝阳二模22. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE =CD ,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若∠ABC =60°,且AD =DE =4,求OE 的长.D ECBA2018东城二模21.如图,在菱形ABCD中,BADα∠=,点E在对角线BD上. 将线段CE绕点C顺时针旋转α,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC,求证:AC CF⊥.2018房山二模21.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.ACBE2018丰台二模21.如图,BD 是△ABC 的角平分线,过点D 作DE ∥BC 交AB 于点E ,DF ∥AB 交BC于点F .(1)求证:四边形BEDF 为菱形;(2)如果∠A = 90°,∠C = 30°,BD = 12,求菱形BEDF 的面积.2018海淀二模21.如图,在四边形ABCD 中,AB CD P , BD 交AC 于G ,E 是BD 的中点,连接AE 并延长,交CD 于点F ,F 恰好是CD 的中点. (1)求BGGD的值; (2)若CE EB ,求证:四边形ABCF 是矩形.F DEB A EGFABCD2018平谷二模22.如图,已知□ABCD ,延长AB 到E 使BE =AB ,连接BD ,ED ,EC ,若ED =AD . (1)求证:四边形BECD 是矩形;(2)连接AC ,若AD=4,CD= 2,求AC 的长.2018石景山二模21.如图,在四边形ABCD 中,45A ∠=︒,CD BC =,DE 是AB 边的垂直平分线,连接CE .(1)求证:DEC BEC ∠=∠;(2)若8AB =,BC =CE 的长.EA2018西城二模21.如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.2018怀柔二模20.如图,四边形ABCD 是边长为2的菱形,E ,F 分别是AB ,AD 的中点,连接EF ,EC ,将△FAE 绕点F 旋转180°得到△FDM . (1)补全图形并证明:EF ⊥AC ; (2)若∠B =60°,求△EMC 的面积.北京市各区二模考试试题分类——四边形(房山)21.如图,菱形ABCD 的对角线交于点O ,DF ∥AC ,CF ∥BD .(1)求证:四边形OCFD 是矩形;(2)若AD =5,BD =8,计算tan ∠DCF 的值.(昌平)21.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,过点A 作AE ⊥BC 于点E ,延长BC 至F ,使CF =BE ,连接DF . (1)求证:四边形AEFD 是矩形; (2)若BF =8,DF =4,求CD 的长.B O A BC DE F(石景山)21.如图,AB平分∠CAD,∠ACB+∠ADB(1)求证:BC=BD;(2)若BD=10,cos∠ADB=25,求AD-AC的值.(西城)21. 如图,在四边形ABCD中,AB=DC,AD=BC,AD⊥CD. 点E在对角线CA的延长线上,连接BD,BE.(1)求证:AC=BD;(2)若BC=2,BE=tan∠ABE=23,求EC的长.A(门头沟)21.如图,在□ABCD中,点E是BC边的一点,将边AD延长至点F,使得AFC DEC∠=∠,连接CF,DE.(1)求证:四边形DECF是平行四边形;(2)如果AB=13,DF=14,12tan5DCB∠=,求CF的长.(东城)21.如图,在△ABC中,AB=AC,D为BC中点,AE//BD,且AE=BD.(1)求证:四边形AEBD是矩形.(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.(平谷)21.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若4cos5BAE=∠,AB=5,求OE的长.FEDCBAPFE D CB A(海淀)21.如图,在□ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,23DE ,求□ABCD的面积.(朝阳)21.如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是矩形;(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.(怀柔)21.如图,在四边形ABCD中,AD∥BC , AE平分∠BAD,交BC于点E,作EF∥AB,交AD于点F,AE与BF交于点P,连接CF, CF=EF.(1)求证:四边形ABEF是菱形;(2)若BF=45,tan∠FBC=12,求EC的长.FDCEAB(顺义)21.已知:如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于E.(1)求证:BE=AD ;(2)若∠DCE=15°,AB=2,求在四边形ABCD的面积.(丰台)21. 如图,在△ABC中,D,F分别是BC,AC边的中点,连接DA,DF,且AD=2DF.过点B作AD的平行线交FD的延长线于点E.(1)求证:四边形ABED为菱形;(2)若BD=6,∠E=60°,求四边形ABEF的面积.2019年北京市各区一模数学试题分类汇编——四边形(房山)2.如图,矩形ABCD 中,对角线AC,BD交于点O,以AD,OD为邻边作平行四边形ADOE,连接BE.(1) 求证:四边形AOBE是菱形;(2) 若∠EAO+∠DCO=180°,DC=2,求四边形ADOE的面积.EODAB CDE(门头沟)21.如图,在△ABD 中,∠ABD = ∠ADB ,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,连接BC ,DC 和AC ,AC 与BD 交于点O . (1)用尺规补全图形,并证明四边形ABCD 为菱形;(2)如果AB = 5,,求BD 的长.(密云)20.如图,菱形ABCD 中,AC 与BD 交于点O .DE //AC ,12DE AC =. (1)求证:四边形OCED 是矩形;(2)连结AE ,交OD 于点F ,连结CF .若CF =CE =1,求AE 长.3cos 5ABD ∠=DBAOEDCBA(平谷)22.如图,在△ABC 中,AB=AC ,点D 是BC 边的中点,连接AD ,分别过点A ,C 作AE ∥BC ,CE ∥AD 交于点E ,连接DE ,交AC 于点O . (1)求证:四边形ADCE 是矩形; (2)若AB =10,sin ∠COE =45,求CE 的长.(石景山)21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形;(2)若30A ∠=︒,4BC =,6CF =,求CD 的长.(通州)21. 如图,在△ABC 中,∠ACB =90°,D 是BC 边上的一点,分别过点A 、B 作BD 、AD 的平行线交于点E ,且 AB 平分∠EAD . (1)求证:四边形EADB 是菱形;(2)连接EC ,当∠BAC =60°,BC=△ECB 的面积.CFDG EBA(延庆)20.如图,平行四边形ABCD 中,对角线AC ,BD 交于点O ,且AC ⊥BC ,点E是BC 延长线上一点,12AD BE ,连接DE . (1)求证:四边形ACED 为矩形;(2)连接OE ,如果BD=10,求OE 的长.(燕山)21.如图,ABCD X 中,E ,F 分别是边BC ,AD 的中点,∠BAC =90°.(1) 求证:四边形AECF 是菱形;(2) 若BC =4,∠B =60°,求四边形AECF 的面积.(西城)如图,在△ABC 中,AC =BC ,点D ,E ,F 分别时AB ,AC ,BC 的中点,连接DE ,DF .(1)求证:四边形DFCE 是菱形;(2)若∠A =75°,AC =4,求菱形DFCE 的面积.E ODCBA FE AB CD(顺义)21.已知:如图,四边形ABCD 是矩形,∠=∠ECD DBA ,90∠=︒CED ,⊥AF BD 于点F .(1)求证:四边形BCEF 是平行四边形; (2)若=4AB ,=3AD ,求EC 的长.(丰台)21.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点O 关于直线CD 的对称点为E ,连接DE ,CE .(1)求证:四边形ODEC 为菱形; (2)连接OE ,若BC =22,求OE 的长.(东城)21.如图,在△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC ,DC ,BC 于点E ,F ,G ,连接DE ,DG . (1)求证:四边形DGCE 是菱形;(2)若∠ACB =30°,∠B =45°,ED =6,求BG 的长.EFDABC(海淀)21.如图,在四边形ABCD 中,AB ∥CD ,AB=BC=2CD ,E 为对角线AC 的中点,F 为边BC 的中点,连接DE ,EF .(1)求证:四边形CDEF 为菱形;(2)连接DF 交EC 于G ,若2DF =,53CD =,求AD 的长.(怀柔)21.在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ∥DB 交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若∠DAB=60°,且AB =4,求OE 的长.(朝阳)21.如图,在Rt △ABC 中,△ABC =90°,D ,E 分别是边BC ,AC 的中点,连接ED 并延长到点F ,使DF =ED ,连接BE ,BF ,CF ,AD . (1)求证:四边形BFCE 是菱形; (2)若BC =4,EF =2,求AD 的长.OEDCBAA。

2017各地中考及北京各区一、二模数学试题分类整理——几何基础知识部分

2017各地中考及北京各区一、二模数学试题分类整理——几何基础知识部分

2017各地中考及北京各区⼀、⼆模数学试题分类整理——⼏何基础知识部分⽬录类型1:三线⼋⾓、三⾓板、三⾓形内⾓和 (2)类型2:平⾯图形与⽴体图形 (5)(1)三视图 (5)(2)平⾯展开图 (7)类型3:轴对称与旋转对称 (9)类型4:其他⼏何基础 (13)(1)度量 (13)(2)其他 (13)类型1:三线⼋⾓、三⾓板、三⾓形内⾓和1、(西城⼀模3)如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为() A .25° B .35° C .45° D .55°2、(朝阳⼀模4)如图,直线1l ∥2l ,若∠1=70°,∠2=60°,则∠3的度数为()A .40°B .50°C .60°D .70°第1题图第2题图第3题图 3、(东城⼀模5)如图,AB ∥CD ,直线EF 分别交AB ,CD 于M ,N 两点,将⼀个含有45°⾓的直⾓三⾓尺按如图所⽰的⽅式摆放,若∠EMB =75°,则∠PNM 等于()A .15°B .25°C .30°D .45°4、(房⼭⼀模4)如图,直线a ∥b ,三⾓板的直⾓顶点放在直线b 上,两直⾓边与直线a 相交,如果∠1=55°,那么∠2等于()A .65°B.55°C.45°D . 35°5、(海淀⼀模6)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为()A .75°B .105°C .135°D .155°第4题图第5题图第6题图6、(门头沟⼀模5)⼀个三⾓板(含30°、60°⾓)和⼀把直尺摆放位置如图所⽰,直尺与三⾓板的⼀⾓相交于点A ,⼀边与三⾓板的两条直⾓边分别相交于点D 、点E ,且CD CE =,点F 在直尺的另⼀边上,那么∠BAF 的⼤⼩为()A .10°B .15°C .20°D .30°7、(⽯景⼭⼀模3)如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若1=65∠°,则2∠的度数为()A .25°B .35°C .65°D .115°DCABEPNMFE DCBACABCD8、(顺义⼀模3)如图,AB ∥CD ,E 是BC 延长线上⼀点,若∠B =50?,∠D =20?,则∠E 的度数为()A .20?B .30?C .40?D .50?9、(丰台⼆模4)如图,AB ∥CD ,∠B =56°,∠E =22°,则∠D 度数为()A .22°B .34°C .56°D .78°10、(通州⼆模4)如图,直线l 1,l 2,l 3交于⼀点,直线l 4// l 1,若∠1= ∠2=36°,则∠3的度数为()A .60°B .90°C .108°D .150°11、(东城⼆模7)将⼀副直⾓三⾓板如图放置,使含30°⾓的三⾓板的直⾓边和含45°⾓的三⾓板⼀条直⾓边在同⼀条直线上,则∠1的度数为()B .65°C .45°D .30°12、(⽯景⼭⼆模3)如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为()A .130°B .50°C .40°D .25° 13、(顺义⼆模5)如图,△ABC 中,∠A =60?,BD ,CD 分别是∠ABC ,∠ACB 的平分线,则∠BDC 的度数是()A .100?B .110?C .120?D .130?14、(上海中考16)⼀副三⾓尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在⼀条直线上).将三⾓尺DEF 绕着点F 按顺时针⽅向旋转n °后(0<n <180 ),如果EF ∥AB ,那么n 的值是.*15、(朝阳⼀模20)如图,四边形ABCD 中,AB ∥DC ,AE ,DF 分别是∠BAD ,∠ADC 的平分线,AE ,DF 交于点O .求证:AE ⊥DF .BABC DEECDBA l 2l 3l 1l 41 2330°1类型2:平⾯图形与⽴体图形(1)三视图1、(顺义⼀模7的轮廓图,其俯视图是()2、(燕⼭⼀模3)下列四个⼏何体中,主视图为圆的是()A.B.C.D.3、(海淀⼆模2)如图,在正⽅体的⼀⾓截去⼀个⼩正⽅体,所得⽴体图形的主视图是()A.B.C.D.4、(昌平⼆模3)在下⾯的四个⼏何体中,主视图是三⾓形的是()A.B.C.D.5、(怀柔⼆模7)如图所⽰的⼏何体为圆台,其俯视图正确的是()A.B.C.D.6、(平⾕⼆模3)下⾯所给⼏何体的俯视图是()A.B.C.D.7、(房⼭⼀模5)如图,A ,B ,C ,D 是四位同学画出的⼀个空⼼圆柱的主视图和俯视图,正确的⼀组是()A .B .C .D . 8、(东城⼀模6)下列哪个⼏何体,它的主视图、左视图、俯视图都相同()A .B .D . 9、(怀柔⼀模6)下⾯⼏何体中,主视图、左视图和俯视图形状都相同,⼤⼩均相等的是()A .圆柱B .圆锥C .三棱柱D .球10、(西城⼀模4)如图是某⼏何体的三视图,该⼏何体是() A .三棱柱 B .长⽅体 C .圆锥 D .圆柱 11、(朝阳⼀模3)如图是某个⼏何体的三视图,该⼏何体是()A.棱柱 B .圆锥 C .球 D .圆柱第10题图第11题图第12题图第13题图 12、(通州⼀模4)如图是某个⼏何体的三视图,该⼏何体是()A .圆锥B .四棱锥C .圆柱D .四棱柱13、(丰台⼆模3)如图是⼏何体的三视图,该⼏何体是()A.圆锥 B .圆柱 C .正三棱锥 D .正三棱柱14、(平⾕⼀模3、门头沟⼀模4)右图是某⼏何体从不同⾓度看到的图形,这个⼏何体是()A .圆锥B .圆柱C .正三棱柱D .三棱锥15、(⽯景⼭⼀模7)若某⼏何体的三视图如右图所⽰,则该⼏何体是()A .C .D .主视图俯视图俯视图左视图主视图主视图左视图俯视图16、(青岛中考14)已知某⼏何体的三视图如图所⽰,其中俯视图为正六边形,则该⼏何体的表⾯积为____。

2017西城区初三二模数学试卷及答案

2017西城区初三二模数学试卷及答案

北京市西城区 2017 年初三二模试卷数学2017. 6考生须知1 .本试卷共6 页,共五道大题,25 道小题,满分120 分。

考试时间120 分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

、选择题 (本题共32 分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的.1.3的倒数是1A.3 B.C.13D.2.列运算中正确的是B. a a2a23.若一个多边形的内角和是C.(ab)2 a2b2720°,则这个多边形的边数是D.2 3 5 (a ) a4.A.5 B .若x 3 y 2 0,则y x的值为A .8 B.6C.7C.55.列图形中,既是中心对称图形又是轴对称图形的是6.对于一组统计数据:3,3,6,3,5,A.中位数是6 B .众数是3列说法中错误.7.D.的是C.平均数是4如图,边长为3 的正方形ABCD 绕点EF 交AD于点H,则四边形DHFC 的面积为C 按顺时针方向旋转30D .方差是1.6°后得到正方形EFCG ,A .3B.33C.9D.638.如图,点A,B,C 是正方体三条相邻的棱的中点,沿着A,B,C三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是A B CA B C D二、填空题 (本题共16 分,每小题4分)39.函数y 3中,自变量x 的取值范围是x210.若把代数式x2 8x 17化为(x h)2 k的形式,其中 h,11.如k 为常数,则 h k =图,在△ ABC 中,∠ ACB= 52°,点D,E 分别是AB,AC 的中点.若点F 在线段DE 上,且∠ AFC= 90°,则∠FAE的度数为°.12.如图,在平面直角坐标系xOy 中,点A 在第一象限,点B 在x 轴的正半轴上,∠ OAB=90°.⊙ P1 是△ OAB 的内切圆,且P1 的坐标为(3,1).(1)OA 的长为,OB 的长为;(2)点C在OA 的延长线上,CD∥AB交x轴于点D.将⊙ P1沿水平方向向右平移2个单位得到⊙ P2,将⊙ P2沿水平方向向右平移2 个单位得到⊙ P3,按照同样的方法继续操作,依次得到⊙ P4,⋯⋯⊙P n.若⊙P1,⊙P2,⋯⋯⊙P n均在△ OCD的内部,且⊙ P n恰好与CD 相切,则此时OD 的长为.(用含n 的式子表示)三、解答题 (本题共30 分,每小题5分)1 1 013.计算:( ) 127 (5 )06tan 60 .414.如图,点C是线段AB 的中点,点D,E在直线AB 的同侧,∠ECA=∠DCB,∠D=∠E.求证:AD=BE.215.已知x 3x 1 0 ,求代数式(x 2)(x 3) (2x 1)(2x 1) 4x 的值.16.已知关于x的一元二次方程x2 7x 11 m 0 有实数根.(1)求m 的取值范围;(2)当m 为负整数时,求方程的两个根.A B C D 17.列方程(组)解应用题:水上公园的游船有两种类型,一种有4 个座位,另一种有6 个座位.这两种游船的收费标准是:一条4 座游船每小时的租金为60 元,一条6 座游船每小时的租金为100 元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1 小时共花费租金600 元,求该公司分别租用4 座游船和6 座游船的数量.18.为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查( 要求每位学生只能填写一种自己喜欢的课程) ,并将调查的结果绘制成如下两幅不完整的统计图:调查结果的条形统计图调查结果的扇形统计图请根据以上信息回答下列问题:(1) 参加问卷调查的学生共有人;(2) 在扇形统计图中,表示“ C”的扇形的圆心角为度;(3) 统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数= 1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为四、解答题 (本题共20 分,每小题5分)1 9.如图,在平面直角坐标系xOy 中,一次函数y kx b的图象与x 轴交于点A( 3,0),4与 y 轴交于点B ,且与正比例函数y 4x 的图象的交点为3(1) 求一次函数y kx b 的解析式;(2) 若点D 在第二象限,△ DAB 是以AB 为直角边的等腰直角三角形,直接写出点D 的坐标.20.如图,四边形ABCD中,∠ BAD= 135°,∠BCD= 90°,AB=BC= 2,tan∠ BDC= 6.3.(1) 求BD 的长;(2) 求AD 的长.21.如图,以△ ABC 的一边 AB 为直径作⊙ O , ⊙O 与 BC 边的交点 D 恰好为 BC 的中点, 过点 D 作⊙O 的切线交 AC 边于点 E .(1) 求证: DE ⊥ AC ;3 OF(2) 连结 OC 交 DE 于点 F ,若 sin ABC 3 ,求 OF的值. 4 FCxOy 中,点 P(x,y) 经过变换 得到点 P (x,y) ,该变换记作x ax by,(x,y) (x,y),其中 (a,b 为常数).例如,当a 1,且 b 1时, y ax by( 2,3) (1, 5) .(1) 当 a 1,且 b 2时, (0,1) = ; (2) 若 (1,2) (0, 2),则 a= , b = ;(3) 设点 P(x,y) 是直线 y 2x 上的任意一点, 点 P 经过变换 得到点 P (x , y ) .若点 P与点 P 重合,求 a 和 b 的值. 五、解答题 (本题共 22分,第 23题7分,第 24题7分,第 25题 8分)k1 23.在平面直角坐标系 xOy 中, A , B 两点在函数 C 1: y 1(x 0)的图象上,x其中 k 1 0.AC ⊥ y 轴于点 C ,BD ⊥ x 轴于点 D ,且 AC=1. (1) 若k 1=2,则 AO 的长为 ,△BOD 的面积为 ;(2) 如图 1,若点 B 的横坐标为 k 1,且 k 1 1,当 AO=AB 时,求 k 1的值; k2(3) 如图 2,OC=4,BE ⊥ y 轴于点 E ,函数 C 2:y 2(x 0)的图象分别与线段 BE ,xBD 交于点 M ,N ,其中 0 k 2 k 1.将△ OMN 的面积记为 S 1 ,△ BMN 的面积记为 S 2, 若 S S 1 S 2,求 S 与 k 2的函数关系式以及 S 的最大值.24.在△ ABC 中,AB=AC ,AD ,CE 分别平分∠ BAC 和∠ ACB ,且 AD 与 CE 交于点 M .点22 .在平面直角坐标系N 在射线AD 上,且NA=NC.过点N 作NF⊥ CE 于点G,且与AC 交于点F ,再过点F 作FH ∥CE,且与AB 交于点H .如图1,当∠ BAC=60°时,点M,N,G 重合.①请根据题目要求在图1 中补全图形;②连结EF,HM ,则EF 与HM 的数量关系是(1)(2) 如图2,当∠BAC =120 °时,求证:AF=EH ;(3) 当∠ BAC=36 时,我们称△ABC 为“黄金三角形” ,此时BCAC5 1.若EH=4,2 直接写出GM 的图1 图225.如图1,在平面直角坐标系xOy中,直线 l和抛物线W交于A,B两点,其中点A 是抛物线W 的顶点.当点A 在直线 l 上运动时,抛物线W 随点A 作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:如图2,在平面直角坐标系xOy 中,已知直线l1:y x 2.点A是直线l1上的一个动点,且点A 的横坐标为t .以A 为顶点的抛物2线C1 : y x bx c 与直线l1 的另一个交点为点B.(1) 当 t 0 时,求抛物线C1的解析式和AB 的长;(2) 当点B 到直线OA 的距离达到最大时,直接写出此时点A 的坐标;1(3)过点A 作垂直于 y 轴的直线交直线l2 : y x 于点C .以C 为顶点的抛物线22C2 : y x2 mx n与直线l2的另一个交点为点D.①当AC⊥ BD 时,求t 的值;②若以A,B,C,D 为顶点构成的图形是凸四边形,直接写出满足条件的t 的取值范围.图2 备用图北京市西城区 2017 年初三二模、选择题 (本题共 32 分,每小题 4分) 题号1 2 3 4 5 6 7 8 答案CCBABABD16 49101112x2 5 64 45 2n+3阅卷说明:第 12 题第一、第二个空各 1 分,第三个空 2分. 三、解答题 (本题共 30 分,每小题5分)13.解:原式 =4 3 3 1 6 3=5 3 3 .16.解: (1) ∵关于 x 的一元二次方程 x 27x 11 m 0 有实数根,2∴724(11 m) 0.数学试卷参考答案及评分标准2017.64分 5分14.证明:∵点 C 是线段 AB 的中点,∴ AC=BC. ⋯⋯⋯ 1分∵∠ ECA= ∠DCB ,∴∠ ECA+∠ ECD =∠ DCB +∠ECD , 即∠ ACD=∠ BCE. ⋯⋯⋯⋯在△ ACD 和△ BCE 中,D E, ACD BCE, AC BC,2分∴△ ACD ≌ △BCE. ∴AD=BE .15.解: (x 2)(x 3) (2x 1)(2x 1) 4x4 分 5分22x 2 5x 6 (4x 21) 4x 2分 23x 29x 7.3分 22∵ x 2 3x 1 0 , 即 x 2 3x 1 , 4分 ∴原式3(x 23x) 7 3 1 7 4.5分1⋯分⋯B依题意得4x 6y 38,60x 100y 600. x 5, 解得y 3.(2) 54;3 (3) 20.17. 解:5∴ m.4(2) ∵ m 为负整数,∴ m 1.此时方程为 x 2 7x 12 0. 解得 x 1= 3,x 2= 4.设租用 4 座游船 x 条,租用 6 座游船 y 条.2⋯分⋯ ⋯ 3 ⋯分 ⋯ 4 分 5分 ⋯ 1 分 18. 答: 解:该公司租用(1) 80; 4 座游船 5 条, 6 座游船 3 条 .5分 1分 四、 19. 20 分,每小题 5 分)4 解: (1)∵点 C( m ,4)在直线 y x 上, 3解答题 (本题共 4∴ 4 4m ,解得 m 3.3 ∵点 A( 3,0)与 C(3,4)在直线 y kx b(k 0) 上,1分4 y= 3xC y=kx+bB20. ∴0 3k b,4 3k b.2 k2, 解得 3 b 2.∴一次函数的解析式为 y 2x 2.3(2) 点 D 的坐标为 ( 2,5)或( 5,3).阅卷说明:两个点的坐标各 1 分 .解: (1)在 Rt △ BCD 中,∠ BCD= 90°, BC= 2,2分A-33分 5分∴2 6∴CD 3 .∴ CD= 6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ∴由勾股定理得 BD= BC 2+CD 2= 10 . ⋯⋯⋯ 2 分 (2)如图,过点 D 作 DE ⊥AB交 BA 延长线于点 E .1分tan ∠ BDC= 36,3分4分 3分 5分∵∠ BAD= 135 °,∴∠ EAD= ∠ ADE= 45°.∴AE=ED . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分设AE=ED= x ,则AD= 2x.2 2 2∵DE2+BE2=BD 2,∴ x2+(x+2)2=( 10)2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分解得x1= _3(舍),x2=1 .∴AD= 2x= 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分21.(1)证明:连接OD .∵DE 是⊙ O 的切线,∴DE⊥OD,即∠ ODE= 90° . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵AB是⊙O 的直径,∴O是AB的中点.又∵D 是BC 的中点,.∴ OD∥ AC .∴∠ DEC= ∠ODE= 90 ° .∴DE⊥AC . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)连接AD .∵OD∥AC,OF OD FC EC .∵AB 为⊙O 的直径,∴∠ ADB= ∠ADC =90° . 又∵D为BC的中点,∴AB=AC.∵ sin∠ ABC= AD=3,AB 4故设AD= 3x , 则AB=AC= 4x , OD= 2x . ∵DE⊥AC,∴∠ ADC= ∠AED= 90 °.∵∠ DAC= ∠ EAD,∴△ ADC ∽△ AED. ∴AD AC .AE AD .∴ AD2 AE AC.9∴AE x.4∴ EC 7x.43分4分22.五、23.OF OD 8 FC EC7.解:(1) (0,1) = ( 2,2) ;1(2)a= 1, b= ;2(3) ∵点P(x,y)经过变换得到的对应点∴(x,y) (x, y).∵点P(x,y) 在直线y 2x 上,∴ (x,2x) (x,2x) .x ax 2bx,2x ax 2bx.即(1 a 2b)x 0,(2 a 2b)x 0.∵ x 为任意的实数,1 a 2b 0,2 a 2b 0.a解得b3,215分1分3分P(x,y ) 与点 P重合,4分31∴ a ,b .24解答题 (本题共22 分,第23 题7 分,解:(1) AO 的长为5,△BOD 的面积为k124 题7 分,第25题8 分)1;(2) ∵ A,B两点在函数C1:y k1 (x 0) 的图象上,∴点A,B的坐标分别为(1,k1) ,(k1,1) .∵AO=AB,由勾股定理得AO2 1 k12,AB222(1 k1)2 (k1 1)2,5分2分3分222 ∴ 1 k12 (1 k1)2 (k1 1)2.解得 k1 2 3或 k1 2 3.∴k1 2 3(3) ∵ OC=4,∴点A 的坐标为(1,4) .∴ k1 4.设点 B 的坐标为 (m, 4) ,m∵BE ⊥ y 轴于点 E ,BD ⊥ x 轴于点 D , ∴四边形 ODBE 为矩形,且 S 四边形 ODBE =4,点 M 的纵坐标为 4 ,点 N 的横坐标为 m .m∵点 M ,N 在函数 C 2: y k2(x 0)的图象上,2x∴点 M 的坐标为 (mk2 , 4) ,点 N 的坐标为 (m,k2) .4 m m其中 0 k 2 4.∴当 k 2 2 时, S 的最大值为 1.(2)连接 MF (如图 2).∵AD , CE 分别平分∠ BAC 和∠ ACB , 且∠ BAC =120°, ∴∠ 1=∠2=60°,∠ 3=∠4.AB=AC , AD ⊥BC. NG ⊥EC ,∠ MDC =∠ NGM =90 °. ∠ 4+∠6=90°,∠ 5+∠6=90°.∠ 4= ∠ 5. ∠ 3=∠ 5.NA=NC ,∠ 2=60 °,△ ANC 是等边三角形 . AN=AC.∵ S1k 22k 242(k 2 2)21∴ S2= 1BM BN 1(m mk2)( 4 k2)2 2 4 m m2(4 k 2)8∴S=S 1 S 2 =(4 k 2 S 2 ) S 2 =4 k 2 2S 2.2∴ S 4k 2 2(4 k 2)214k 224k2, 6分24. 解: (1)补全图形见图 1,EF 与 HM 的数量关系是 EF=HM 7分1分图2在△ AFN 和△ AMC 中,5 3,AN AC,2 2,∴△ AFN≌△ AMC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴AF=AM.∴△ AMF 是等边三角形.∴AF=FM,∠ 7=60°.∴∠ 7=∠ 1.∴FM∥ AE.∵FH∥CE,∴四边形FHEM 是平行四边形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴EH=FM.∴ AF=EH. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(3) GM 的长为5 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分25.解:(1) ∵点A 在直线l1: y x 2上,且点A 的横坐标为0,∴点A 的坐标为(0, 2) .∴抛物线C1的解析式为y x2 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵点B 在直线l1 : y x 2 上,∴设点B 的坐标为(x,x 2).∵点B 在抛物线C1: y x2 2 上,2 ∴ x 2 x 2 2.解得 x 0 或 x 1.∵点A 与点B 不重合,∴点B 的坐标为( 1, 3). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴由勾股定理得AB= (0 1)2 ( 2 3)2 2 . ⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 点A 的坐标为(1, 1).(3) ①方法一:设AC,BD 交于点E,直线l1: y x 2分别与x轴、 y轴交于点P和Q(如图1).则点P 和点Q 的坐标分别为(2,0) ,(0, 2)∴OP=OQ=2.∴∠ OPQ =45°.∵AC⊥ y 轴,∴AC∥ x 轴.∴∠EAB =∠OPQ =45°.∵∠DEA =∠AEB=90°,AB = 2 ,4分y图1∴EA=EB =1.∵点A 在直线l1 : y x 2 上,且点A 的横坐标为t ,∴点A 的坐标为(t,t 2).∴点B 的坐标为(t 1,t 3) . ∵AC∥ x 轴,∴点C 的纵坐标为 t 2.1∵点C 在直线l2 : y x 上,22∴点C 的坐标为(2t 4,t 2) .∴抛物线C2的解析式为y [x (2t 4)]2 (t 2) .∵BD⊥AC,∴点D 的横坐标为 t 1.1∵点D在直线l2 : y x 上,2 t1∴点D 的坐标为(t 1, ) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2∵点D 在抛物线C2:y [x (2t 4)]2 (t 2) 上,t 1 2∴ [(t 1) (2t 4)]2 (t 2) .25解得t 或 t 3.2∵当 t 3时,点C 与点D 重合,5∴t . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2方法二:设直线l1:y x 2与x轴交于点P,过点A作 y轴的平行线,过点B 作x 轴的平行线,交于点N.(如图2) y则∠ ANB=90°,∠ ABN=∠ OPB.在△ABN 中,BN=ABcos∠ABN,AN=ABsin∠ABN. ∵在抛物线C1随顶点A 平移的过程中,AB 的长度不变,∠ ABN 的大小不变,∴ BN 和AN 的长度也不变,即点A 与点B 的横坐标的差以及纵坐标的差都保持不变.同理,点C 与点D 的横坐标的差以及纵坐标的差也保持不变由(1)知当点A 的坐标为(0, 2) 时,点B 的坐标为( 1, 3) ,∴当点A的坐标为(t,t 2)时,点B的坐标为(t 1,t 3) . ∵AC∥ x 轴,∴点C 的纵坐标为 t 2.1∵点C 在直线l2 : y x 上,2∴点C 的坐标为(2t 4,t 2) .令 t 2 ,则点C 的坐标为(0,0) . ∴抛物线C2的解析式为y x2 .1∵点D在直线l2 : y x 上,22x∴设点D 的坐标为(x, ).2∵点D 在抛物线C2:y x2上,x2∴x .21解得x 或 x 0.2∵点C 与点D 不重合,11∴点D 的坐标为( , ).2411 ∴当点C 的坐标为(0,0) 时,点D 的坐标为( , ) .24∴当点C 的坐标为(2t 4,t 2) 时,点D 的坐标为(2t 7,t 7) . ⋯⋯5分24 ∵BD⊥AC,7 ∴ t 1 2t .25∴t . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分215② t 的取值范围是t 或 t 5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分4说明:设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M 重合,。

北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)

北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)

生活实际问题(2017房山二模)12. 如图,公园内有一小湖,为了测量湖边B、C两点间的距离,小明设计如下方案,选取一个合适的A点,分别找到AB、AC的中点D、E,若测得DE的长为35米,则B、C两点间的距离为________米.(2017房山二模)13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是_________元.(2017朝阳二模)15.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短②骑自行车上学所需的时间比较容易预计③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车其中合理的是(填序号).(2017朝阳二模)22.调查作业:了解你所在学校学生本学期社会实践活动的情况.小明、小亮和小天三位同学在同一所学校上学.该学校共有三个年级,每个年级都有6个班,每个班的人数在30~40之间.为了了解该校学生本学期社会实践活动的情况,他们各自设计了如下的调查方案:小明:我给每个班学号分别为1、2、11、12、21、22的同学各发一份问卷,一两天就可以得到结果.小亮:我把要调查的问题放在某两个班的微信群里,这样群里的大部分人就可以完成调查的问题,并很快就可以反馈给我.小天:我给每个班发一份问卷,一两天也就可以得到结果了.根据以上材料回答问题:小明、小亮和小天三人中,哪一位同学的调查方案能较好地获得该校学生本学期社会实践活动的情况,并简要说明其他两位同学调查方案的不足之处.(2017怀柔二模)22.为倡导市民绿色出行,提高市民环保意识和健康意识,怀柔区建立了城市公共自行车系统,共建64个站点,投放2300辆自行车.并于2016年8月15日正式投入运营.办理借车卡和借车服务费标准如下:首次办理借车卡免收工本费,本地居民收取300元保证金及预充值消费50元、外地居民收取500元保证金及预充值消费50元.借车服务费用实行分段合计,还车刷卡时,从借车卡中结算扣取,每次借车1小时(含)为免费租用期;超过免费租用期1小时以内(含)的收取1元;超过免费租用期2小时到4小时以内(含)的,每小时收取2元;超过免费租用期4个小时以上的,每小时收取3元;一天20元封顶(不足一小时按1小时计).刘亮妈妈到点首次办了一张借车卡.第一次,她用了5小时20分钟后才还车.后来妈妈又借车出行了30次,卡中预充值的费用就全部用完了,妈妈说后来的这30次,每次从卡中扣除的服务费都是1元或3元.请你通过列方程或方程组的方法帮刘亮妈妈算一算她扣除1元和3元服务费各几次.(2017怀柔二模)26. 某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:(1)若设每件降价x (x 为整数)元,每星期售出商品的利润为y 元,请写出x 与y 之间的函数关系式,并求出自变量x 的取值范围;(2)请画出上述函数的大致图象.(3)当降价多少元时,每星期的利润最大?最大利润是多少?小丽解答过程如下:解:(1)根据题意,可列出表达式:y=(60-x)(300+20x)-40(300+20x),即y=-20x 2+100x+6000.∵降价要确保盈利,∴40<60-x ≤60.解得0≤x <20.(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:(3)∵a=-20<0, ∴当x=2b a-=2.5时,y 有最大值,y=244ac b a -=6125. 所以,当降价2.5元时,每星期的利润 最大,最大利润为6125.老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x 的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何压轴题1昌平28. 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE 绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE备用图ABCD2朝阳28.在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1) 如图1,若∠ABC=30°,则∠CAD的度数为.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD长的几种想法:想法1:延长CB,在CB延长线上截取BE=AC,连接DE.要求CD的长,需证明△ACD≌△BED,△CDE为等腰直角三角形.想法2:过点D作DH⊥BC于点H,DG⊥CA,交CA的延长线于点G,要求CD的长,需证明△BDH≌△ADG,△CHD为等腰直角三角形.……请参考上面的想法,帮助小聪求出CD的长(一种方法即可).(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).图2图128. 取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图1,先把正方形ABCD对折,折痕为MN;第二步:点G在线段MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.(1)判断△PBC的形状,并说明理由;(2)作点C关于直线AP的对称点C′,连PC′,D C′,①在图2中补全图形,并求出∠APC′的度数;②猜想∠PC′D的度数,并加以证明.(温馨提示:当你遇到困难时,不妨连接A C′,C C′,研究图形中特殊的三角形)图2图1ME FNFEMACP PCBA28. 在Rt △ABC 中,∠ACB=90°,AC=BC=2,点P 为BC 边上的一个动点(不与B 、C 重合). 点P 关于直线AC 、AB 的对称点分别为M 、N ,连结MN 交AB 于点F ,交AC 于点E .(1)当点P 为BC 的中点时,求∠M 的正切值;(2)当点P 在线段BC 上运动(不与B 、C 重合)时,连接AM 、AN ,求证: ① △AMN 为等腰直角三角形;②△AEF ∽△BAM .5丰台28.已知正方形ABCD ,点E ,F 分别在射线AB ,射线BC 上,AE =BF ,DE 与AF 交于点O .(1)如图1,当点E ,F 分别在线段AB ,BC 上时,则线段DE 与AF 的数量关系是 ,位置关系是 .(2)如图2,当点E 在线段AB 延长线上时,将线段AE 沿AF 进行平移至FG ,连接DG . ①依题意将图2补全;②小亮通过观察、实验提出猜想:在点E 运动的过程中,始终有22222AE AD DG +=.小亮把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:连接EG ,要证明22222AE AD DG +=,只需证四边形FAEG 是平行四边形及△DGE 是等腰直角三角形.想法2:延长AD ,GF 交于点H ,要证明22222AE AD DG +=,只需证△DGH 是直角三角形.图1 图2请你参考上面的想法,帮助小亮证明22222AE AD DG +=.(一种方法即可)6海淀O F EDC BAAFCDO28.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE 的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM 于N点,射线EN,AB交于P点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD.(一种方法即可)7怀柔E FB D CA28.在△ABN 中,∠B =90°,点M 是AB 上的动点(不与A,B 两点重合),点C是BN 延长线上的动点(不与点N 重合),且AM=BC ,CN=BM ,连接CM 与AN 交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M ,N 运动的过程中,始终有∠APM=45°.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路: 要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°. 他们的一种作法是:过点M 在AB 下方作MD ⊥AB 于点M,并且使MD=CN.通过证明△AMD ≅△CBM,得到AD=CM,再连接DN ,证明四边形CMDN 是平行四边形,得到DN=CM ,进而证明△ADN 是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN 是平行四边形,推得∠APM=45°.使问题得以解决. 请你参考上面同学的思路,用另一种方法证明∠APM=45°.8石景山图1 AB N 备用图A BN28.已知在Rt BAC△中,90BAC∠=°,AB AC=,点D为射线BC上一点(与点B 不重合),过点C作CE⊥BC于点C,且CE BD=(点E与点A在射线BC同侧),连接AD,ED.(1)如图,当点D在线段BC上时,请直接写出ADE∠的度数.(2)当点D在线段BC的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED与AC相交于点P,若2AB=,直接写出CP的最大值.9顺义图1图2 备用图28.在△ABC中,AB=AC,D为线段BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠B=30°,AC=√3,请补全图形并求DE的长;(2)如图2,若BE=2CD,连接CE并延长,交AB于点F,小明通过观察、实验提出猜想:CE=2EF.小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过A作AM∥BC交CF的延长线于点M,先证出△ABE≌△CAD,再证出△AEM是等腰三角形即可;想法2:过D作DN∥AB交CE于点N,先证出△ABE≌△CAD,再证点N 为线段CE的中点即可.请你参考上面的想法,帮助小明证明CE=2EF.(一种方法即可)10通州28.在△ABC中,AB=BC,∠ABC=90°. 以AB为斜边作等腰直角三角形ADB. 点P是直线DB上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E. (1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.图1图211西城28.△ABC是等边三角形,以点C为旋转中心,将线段CA顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1,①求证:AC垂直平分BD;②点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2.求证:NA = MC.2017二模28题汇编答案(几何压轴)1昌平 28.(1)依题意补全图形如图1:………………………………………… 2分(2)判断: BD ⊥EG . ………………… 3分 证明:如图2,BD ,EG 交于M ,∵正方形ABCD ,∴AB =BC ,∠DAE=∠DCB =90° 由旋转可得△ADE ≌△CDF ,DE =DF ,AE =CF∴∠DCF = ∠DAE =∠DCB =90° ∴点B ,C ,F 在一条直线上. ∵点G 与点F 关于CD 的对称 ∴△DCG ≌△DCF ,DG =DF ,CG =CF ∴DE=DG ,AE=CG∴BE=BG ………………………………………………… 4分∴BD ⊥EG 于M . …………………………………………………… 5分 (3)∠EDG 的正切值为43.………………………………………………… 7分2朝阳28.解:(1)105°.(2)①补全图形,如图所示. ②想法1:如图,∵∠ACB =∠ADB =90°,∴∠CAD +∠CBD ==180°. ∵∠DBE +∠CBD ==180°, ∴∠CAD =∠DBE .图1G BCD图2ABC DEM∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE =90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=22想法2:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DAG+∠CAD==180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴CD=22(3)2+=.AC BC CD3东城28.(1)△PBC是等边三角形.证明:在正方形ABCD中,BC=CD,Array又CD=CP,∴BC=CP,∵P在MN上,∴PB=PC.∴PB=BC=PC.∴△PBC是等边三角形.…………2分(2)①补全图形如图所示.由BA=BP,∠CBP=60°,可求得∠APB=75°,又∠BPC=60°,可得∠APC=135°.根据对称性,∠APC=∠APC’=135°.②证法一:连AC’,CC’.由①可得∠CPC’=90°.由对称性可知PC=PC’,从而可求得AC=AC’=CC’=2AB.从而△ACC’为等边三角形;由AC’=CC’,DA=DC,C’D=C’D,可证△AC’D≌△CC’D,可得∠AC’D=∠CC’D=30°.根据对称性∠AC’C=∠ACC’,∠PC’C=∠PCC’,从而∠AC’P=∠ACP,由△ABC为等腰直角三角形,可得∠ACB=45°,由△PBC为等边三角形,可得∠BCP=60°,从而∠ACP=∠AC’P=15°.所以∠PC’D=∠AC’D﹣∠AC’P=15°.…………8分证法二:连AC’,CC’.由BA=BP,∠CBP=60°,可求得∠APB=75°,又∠BAC=45°,可得∠CAP=30°.根据对称性,∠CAP=∠C’AP=30°,从而∠CA C’=60°;由对称性可知AC=AC’,从而△ACC’为等边三角形;以下同证法一.ABCPMEFN45321PCBANFE 4房山28. 解:(1)连接NB , ……………………1分∵在Rt △ABC 中,∠ACB=90°,AC=BC∴∠CAB =∠CBA =45°=∠PBA∵点P 关于直线AB 的对称点为N ,关于直线AC 的对称点为M , ∴∠NBA=∠PBA =45°,NB=PB ,MC=PC (2)分∴∠MBN =∠PBN =90° ∵点P 为BC 的中点,BC=2∴MC=CP=PB=NB=1,MB=3 ∴tan ∠M=13NB MB=……………………3分(2) ①连接AP ∵点P 关于直线AC 、AB 的对称点分别为M 、N ,∴AP =AM =AN ,∠1=∠2,∠3=∠4 ……………………4分∵∠CAB =∠2+∠3 =45° ∴∠MAN=90°∴△AMN 为等腰直角三角形 ……………………5分②∵△AMN 为等腰直角三角形 ∴∠5 =45°∴∠AEF =∠5+∠1 =45°+∠1 ∵∠EAF=∠CAB =45°∴∠BAM =∠EAF +∠1 =45°+∠1 ∴∠AEF =∠BAM ……………………6分又∵∠CBA=∠EAF=45° ∴△AEF ∽△BAM ……………………7分5丰台28.解:(1)相等,垂直.. ……………………………………………………………………………2分(2)①依题意补全图形..……………………………………………………………………3分4321GAEFCDO②法1: 证明:连接GE .由平移可得AE =FG ,AE ∥FG ,∴四边形AEGF 是平行四边形. ……………………4分∴AF =EG ,AF ∥EG , ∴∠1=∠2.∵四边形ABCD 是正方形, ∴AD = AB ,∠DAE =∠ABC= 90°. ∵AE =BF , ∴△AED ≌△BFA . ∴∠3=∠4,AF = DE . ∴EG =DE . …………………………………………………………………………………5分∵∠2+∠4=90°, ∴∠1+∠3=90°,∴∠DEG =90°. ………………………………………………………6分 ∴22222DE EG DE DG =+=. 又 ∵222AE AD DE +=, ∴22222AE AD DG +=.………………………………………………………………7分法2:证明:延长AD ,GF 交于点H ,由平移可得AE =FG ,AE ∥FG ,∴∠H +∠DAB= 180°∵四边形ABCD 是正方形,∴∠DAB= 90°,AD =DC . ∴∠H = 90°. …………………………………………………………………………4分∴222DH GH DG +=. ∵∠HDC=∠DCF= 90°, ∴四边形HDCF 是矩形. ∴HF =DC . ∴HF =AD . ∵HG =FG +HF, ∴HG =AE +HF=AE+AD . ………………………………………………………………5分∵易证BF=AH 且BF=AE , ∴HD =AE–AD . ………………………………………………………………………6分 ∴()()2222222AE AD AD AE AD AE DG +=-++=. …………………………7分6海淀GH A F C D O28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. -------------------------------- 1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ------------------------------------ 2分(2)①画出一种即可. ------------------------------------------------------------------- 3分②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE . ------------------- 4分∵∠ADC =90°,E 为AC 中点, ∴12AE DE CE AC ===. 同理可证12AE NE CE AC ===. ∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. ----- 5分∴∠1=2∠MAD . --------------------------------- 6分∴∠APE =2∠MAD . ---------------------------------- 7分想法2:设∠MAD =α,∠DAC =β,MPN ECDB AEDCB APMN FEB D CAM PN ECDB A∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.------------------- 4分∴∠NEC=∠ANE+∠NAC=2α+2β.---------- 5分∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC-∠BAC=2α.-------------------- 6分∴∠APE=2∠MAD.------------------------------- 7分想法3:在NE上取点Q,使∠NAQ=2∠MAD,连接AQ,∴∠1=∠2.∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∴∠BAD-∠1=∠CAD-∠2,即∠3=∠4.--------------------------------- 4分∴∠3+∠NAQ=∠4+∠NAQ,即∠PAQ=∠EAN.∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠EAN.--------------------------- 5分∴∠PAQ=∠ANE.∵∠AQP=∠AQP,∴△PAQ∽△ANQ.--------------------------- 6分∴∠APE=∠NAQ=2∠MAD.------------------- 7分7怀柔28(1)在图1中依题意补全图形,如图1所示:…………………………1分4 321QNM P ABCDE(2)证明:如图2,过点A 作AD ⊥AB 于点A,并且使AD=CN.连接DM,DC. …………………………2分 ∵AM=BC ,∠DAM=∠MBC =90°,∴△DAM ≅△MBC. …………………………3分∴DM=CM, ∠AMD=∠BCM. …………………………4分 ∵∠DAM=90°.∴∠AMD+∠BMC =90°. ∴∠DMC =90°.∴∠MCD =45°. …………………………5分 ∵AD ∥CN,AD=CD,∴四边形ADCN 是平行四边形. …………………………6分 ∴AN ∥DC.∵∠MCD =45°.∴∠APM=45°. …………………………7分 (其它方法相应给分)8石景山28.解:(1)45°. ………… 1分 (2)补全图形,如图1所示.…………… 2分结论成立.证明: 连接AE ,如图2.∵在Rt BAC △中,90BAC ∠=°,AB AC =, ∴ 145B ???. ∵CE BC ^, ∴90BCE°?.∴245??.∴2B ??. ……… 3分 又∵AB AC BD CE ,==,∴ABD ACE ≌V V . …………… 4分 ∴AD AE BAD CAE ,=??. ∴90DAEBAC°??. ……… 5分∴DAE △是等腰直角三角形.AB CDPMN图2 321EABEAB图1 图2G FECDBA345??. ……………… 6分 (3). ……… 7分9顺义28.(1)解:∵DA=DB ,∠ABC=30°,∴∠BAD = ∠ABC =30°. ∵AB=AC ,∴∠C =∠ABC =30°. ∴∠BAC =120°.∴∠CAD=90°.………………………………………………………2分 ∴AD=AC ×tan30°=1,AE=CD=2AD=2,∴DE=AE -AD=1.……………………………………………………3分(2)证明:如图,过A 作AG ∥BC ,交BF 延长线与点G ,∵DB=DA ,AB=AC ,∴∠BAD=∠ABC ,∠ABC=∠ACB . ∴∠BAD=∠ACB . ∵AE=CD ,∴△ABE ≌△CAD .……………………4分 ∴BE=AD . ∵BE=2CD , ∴AD=2CD=2AE . ∴AE=DE . ∵AG ∥BC ,∴∠G=∠DCE ,∠GAE=∠CDE .∴△AGE ≌△DCE .………………………………………5分 ∴EG=CE ,AG=CD=AE . ∴△AGE 为等腰三角形. ∴∠GAF=∠ABC=∠BAD .∴F 为GE 的中点. ………………………………………6分 ∴CE=EG=2EF .…………………………………………7分10通州ABDE C28.解:(1)2……………………..(1分)(2)法①过P作PM⊥BD,交AB于M法②过P作PM⊥BC于点M, 过P作PN⊥AB于点N法③延长AB,在AB的延长线上截取PM=PA法④过点B作BM⊥BD,截取BM=BP,连接CM.法⑤连接AE,取AE中点M,连接BM,PM,四点共圆. …………..(5分) (3)图正确,成立……………………..(7分)11西城28.证明:∵△ABC是等边三角形,∴AB=BC =CA,∠ABC=∠ACB =∠CAB =60°.(1)①以点C为旋转中心将线段CA顺时针方向旋转60°得到线段CD.∴CD= CA= CB,∠ACD=∠ACB =60°.∴ BO =DO,CO⊥BD.∴AC垂直平分BD.····························································2分②△MND是等边三角形.如图1,由①AC垂直平分BD,∴NB =ND,∠CBD =12∠ABC=30°.∴∠1=∠2.∴∠BND=180°-2∠2.∵ND=NM,∴NB=NM.∴∠3=∠4.∠BNM=180°-2∠4.∴∠DNB=360°-180°+2∠2-180°+2∠4=2(∠2+∠4) =60°.∴△MND是等边三角形. ····················································5分(2)连接AD,BN.如图2,由题意可知,△ACD是等边三角形,∠1=∠2,∠3=∠NBM,∠BND=180°-2∠2,∠BNM =180°-2∠NBM.∴∠MND=∠BND-∠BNM∠MND===2(∠NBM -∠2)=60°.∴△MDN是等边三角形.∴DN=DM,∠NDM=60°.∠ADC=∠NDM°.∴∠NDA=∠MDC,∠NAD=∠MCD=60°.∴△AND≌△CMD.-∴AN=MC. ·············································································7分。

相关文档
最新文档