拉伸法测金属丝杨氏模量实验数据及数据处理范例
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
杨氏模量实验报告数据
竭诚为您提供优质文档/双击可除杨氏模量实验报告数据篇一:杨氏模量实验报告杨氏模量的测量【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1图2图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/s)。
应变:是指在外力作用下的相对形变(相对伸长?L/L)它反映了物体形变的大小。
FL4FL?用公式表达为:Y??(1)s?L?d2?L2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量?L是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。
伸长法测金属杨氏模量(范文4篇)
伸长法测金属杨氏模量(范文4篇)以下是网友分享的关于伸长法测金属杨氏模量的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
《伸长法测金属杨氏模量范文一》拉伸法测金属杨氏模量实验目的: ①调节光系统,使之处于正常工作状态②测出钢丝随负载的变化率③将有关参量代入公式求出杨氏模量实验原理:根据胡克定律有ζ截面积为S =14=E ε, 其中E 为比例系数,若金属原长为L ,直径为d, 2πd ∆L因为∆F ,L,d 。
比较容易测量,但是∆L 十分微小,不易测量,因此可以在拉力∆F 作用下,长度伸长∆L ,因此E =πd ,4∆FL2。
利用光杠杆系统来测量。
光杠杆系统主要有平面镜,T 刑支架以及前后支脚,设钢丝为伸长时标尺的读数为n 1,钢丝伸长∆L 时标尺的读数为钢丝夹下降∆L , 平面镜法线偏转θ上E =8LBg⨯∆m ∆n角综n 2刻度为n =n 2-n 1,πd b2。
实验仪器:光杠杆、带小平台的立柱、带钢丝夹的砝码的被测钢丝、游标卡尺、千分尺、望远镜及标尺实验步骤:㈠选择测量工具其中l 和B 用卷尺,d 用千分尺,b 用游标卡尺测量,△m 用标准砝码,△n 用尺读望远镜测量,前四个量是直接测量的,后两个是双变量测量,目的是要m 对n 的变化率,根据上述内容绘制数据表。
㈡根据几何光学的原理来调节望远镜,光杠杆和标尺之间的位置。
1 望远镜、平面镜、标尺的位置要自习调节,使标尺在平面镜的像处在望远镜的视场中,以变能在望远镜中看到标尺的像。
2 望远镜的光轴与平面镜的法线平行,标尺要竖直。
㈢对望远的调节1调节目镜,看清划板。
2调节物镜,是目标成像在分划板上,这里的“目标”是指钢丝再砝码盘上加载,测出m 与n 的对应关系数据处理:实验装置常数测量表根据以上的数据可以绘制如下的图像:直线的方程为m =5. 1158n -23. 2994,因此∆m ∆n=5. 1158∆n =∆n 1+∆n 2+∆n 3+∆n 4+∆n 55=0. 9654cm∆m =5kg__22__22_2S (∆n ) =(∆n 1-∆n) +(∆n 2-∆n ) +(∆n 3-∆n ) +(∆n 4-∆n ) +(∆n 5-∆n )5⨯(5-1)=0. 026-UA=S (∆n ) =0. 026u B =ins3=0. 0577u-∆n=U A +U B =0. 06322E =8lBg ∆mπd b ∆n11=3. 649052278⨯10根据E 的不确定度传递公式可得:-c(E )-=((-nE∆n)2=0. 07-U--=2UC -(E )=0. 14E E因此扩展不确定度为U E=0. 51⨯101111综上结果表达式是 E =(3. 65±0. 51)⨯10Nm2不确定度为1位有效数字-0.5分注意事项:Ⅰ加砝码,测出n 随m 的变化,然后减砝码,测出-m 与n 的关系,n 与你n 有可能不同,去二者的平均值即可,采用反正向测量取平均值的办法是为了消除弹性形变的滞后效应带来的系统误差,测量之前,砝码盘上需要加适量的砝码将钢丝拉直Ⅱ加减砝码时轻拿轻放,钢丝的晃动容易使光杠杆的位置变化。
用拉伸法测金属丝的杨氏模量参考报告
用拉伸法测金属丝的杨氏模量参考报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大法测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习数据处理和误差分析的方法。
二、实验原理1、杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根粗细均匀的金属丝,在其长度方向上施加拉力 F,金属丝会发生伸长,设其伸长量为ΔL,金属丝的原长为 L,横截面积为 S,则根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,其比例系数即为杨氏模量 E,表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\2、光杠杆放大原理光杠杆是一个带有三个尖足的平面镜支架,前两尖足放在平台的横槽内,后尖足置于待测金属丝的测量端。
当金属丝受力伸长时,光杠杆的后尖足随之下降,镜面将发生偏转。
设镜面偏转角度为θ,光杠杆常数(前脚到后脚的垂直距离)为 b,从望远镜中看到的标尺刻度变化为Δn,则有:\\tan\theta \approx \theta =\frac{\Delta n}{D} \\\Delta L =\frac{b}{2D} \Delta n \其中 D 为光杠杆镜面到标尺的距离。
三、实验仪器1、杨氏模量测定仪包括支架、待测金属丝、砝码托盘等。
2、光杠杆及望远镜尺组由光杠杆、望远镜和标尺组成。
3、游标卡尺用于测量金属丝的直径。
4、螺旋测微器用于更精确地测量金属丝的直径。
5、砝码若干个,用于对金属丝施加拉力。
四、实验步骤1、仪器调整(1)将杨氏模量测定仪放置在水平桌面上,调整底座螺丝使立柱铅直。
(2)调整光杠杆,使其前脚位于平台的沟槽内,后脚置于金属丝的测量端,镜面与平台垂直。
(3)调节望远镜,使其与光杠杆镜面等高,且望远镜光轴与镜面中心等高,目镜调焦看清十字叉丝,物镜调焦看清标尺刻度。
2、测量金属丝长度 L用米尺测量金属丝的原长 L,测量多次取平均值。
拉伸法测金属丝杨氏模量实验数据及数据处理范例
拉伸法测金属丝杨氏模量实验数据及数据处理范例实验目的:
通过拉伸法测定金属丝的应变-应力关系,计算出其杨氏模量。
实验装置:
1.拉伸装置
2.千分尺
3.计时器
4.电子秤
5.砝码
实验步骤:
1.将金属丝从盒子中取出,用色布擦拭干净。
2.测量金属丝的直径,取5组数据。
3.挂上金属丝,调整砝码,使其自由悬挂。
5.将千分尺固定在金属丝上,并与拉伸装置连接。
6.千分尺的刻度盘上调整到零点,并记录下来。
7.每增加1kg的砝码,记录下金属丝的长度,直到金属丝拉断。
8.重复以上步骤,取5组数据。
数据处理:
1.计算平均直径d和平均长度l。
2.根据公式计算出金属丝的应变ε和应力σ。
3.画出应变-应力曲线,并计算出杨氏模量E。
范例:
1.直径:
2.长度:
平均直径:d=(0.254+0.251+0.253+0.252+0.250)÷5=0.252mm
平均长度:l=(119.2+118.9+119.4+119.1+119.0)÷5=119.12mm
应变ε=(L-L0)÷L0=(119.2-119.1)÷119.1=0.000840336
应力σ=mg÷A=1×9.8÷(π/4×0.252^2)=103.12MPa
结论:
通过本实验可以得出金属丝的杨氏模量为122658.1MPa,来评估金属丝的性能和用途,具有很高的实用价值。
用拉伸法测金属丝的杨氏模量实验报告
用拉伸法测金属丝的杨氏模量实验报告用拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是材料力学性质的重要指标之一,它描述了材料在拉伸过程中的刚度和变形能力。
本实验通过拉伸金属丝的方法来测量杨氏模量,旨在了解金属丝的力学性质,并探讨拉伸过程中的变形行为。
实验装置和步骤:实验装置主要包括拉伸机、金属丝样品、刻度尺、电子天平和计算机。
具体的实验步骤如下:1. 将金属丝样品固定在拉伸机的夹具上,并调整夹具使其与拉伸机的拉伸轴心对齐。
2. 通过调整拉伸机的拉伸速度和加载范围,使实验能够在合适的条件下进行。
3. 使用刻度尺测量金属丝的初始长度,并记录下来。
4. 启动拉伸机,开始对金属丝进行拉伸。
5. 在拉伸过程中,使用电子天平测量金属丝的质量,并记录下来。
6. 当金属丝断裂时,停止拉伸机的运行,并记录下金属丝的最终长度。
实验数据处理:根据实验步骤所得到的数据,可以计算出金属丝的应力和应变。
应力定义为单位面积上的力,可以通过施加在金属丝上的拉力除以金属丝的横截面积得到。
应变定义为单位长度上的变形量,可以通过金属丝的伸长量除以初始长度得到。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:应力 = 弹性模量× 应变其中,弹性模量即为杨氏模量。
通过绘制应力-应变曲线,可以得到金属丝的杨氏模量。
在实验中,我们可以根据拉伸过程中的应力和应变数据,绘制出应力-应变曲线,并通过线性拟合得到斜率,即金属丝的杨氏模量。
实验结果和讨论:根据实验数据处理得到的应力-应变曲线,我们可以得到金属丝的杨氏模量。
实验结果显示,金属丝的杨氏模量为XXX GPa(Giga Pascal)。
这个结果与文献中的数值相符合,证明了实验方法的可靠性。
在拉伸过程中,金属丝会发生塑性变形,即超过了材料的弹性限度。
这是因为金属丝在受到拉力的作用下,晶体结构发生了位错滑移,导致金属丝的形状发生变化。
当拉力超过金属丝的极限强度时,金属丝会发生断裂。
用拉伸法测量金属丝的杨氏弹性模量实验报告
用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)
用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。
条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。
测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。
伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。
本实验采用拉伸法当中的显微镜直读法。
【实验目的】1. 熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2. 学习用逐差法处理数据;3. 了解CCD 成像系统。
【实验仪器】YWC-III 杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg 、0.2kg 的砝码若干。
杨氏模量测定仪的结构如图4-2-1所示。
(a)学生实验配置 (b)教学演示配置图4-2-1 杨氏模量测定仪1. 金属丝支架S 为金属丝支架,高约1.30m ,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm ,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。
支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。
2. 读数显微镜读数显微镜M 用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm, 分度值0.01mm ,每隔1mm 刻一数字。
H 1为读数显微镜支架。
D 成像、显示系统(作为示教仪)CCD 黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD 接在显微镜目镜与电视显示器上。
H 2为CCD 黑白摄像机支架。
【实验原理】物体在外力作用下,总会发生形变。
当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。
发生弹性形变时,物体内部产生恢复原状的内应力。
金属杨氏模量测量实验报告
金属杨氏模量测量实验报告一、实验目的1、学习用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜和标尺测量长度。
4、学习数据处理和误差分析的方法。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为$L$、横截面积为$S$的金属丝,在受到沿长度方向的拉力$F$作用时,其伸长量为$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \times (\Delta L/L)$,其中$E$就是杨氏模量。
2、光杠杆原理光杠杆是一个带有三个尖足的平面镜,前两尖足放在一个固定的平台上,后尖足放在金属丝的测量端。
当金属丝发生微小伸长时,光杠杆后尖足随之移动,带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺可以观测到平面镜反射的标尺像的移动,从而测量出微小的长度变化。
根据几何关系,有$\tan\theta =\Delta n / D$,其中$\Deltan$是标尺像的移动距离,$D$是望远镜到平面镜的距离。
又因为$\theta$很小,所以$\tan\theta \approx \theta$。
同时,$\theta =\Delta L / b$,其中$b$是光杠杆前后尖足的距离。
联立可得:$\Delta L = b \times \Delta n / D$将其代入杨氏模量的公式$E = F \times L /(S \times \Delta L)$,可得:$E = 8FLD /(S\pi d^2 \Delta n b)$,其中$d$是金属丝的直径。
三、实验仪器杨氏模量测量仪、光杠杆、望远镜、标尺、砝码、螺旋测微器、米尺等。
四、实验步骤1、调节仪器(1)将杨氏模量测量仪的底座调水平,使金属丝竖直。
(2)将光杠杆放在平台上,使其前两尖足与平台的沟槽对齐,后尖足与金属丝的测量端接触良好。
(3)调整望远镜和标尺的位置,使通过望远镜能清晰地看到标尺的像。
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)
用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。
条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。
测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。
伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。
本实验采用拉伸法当中的显微镜直读法。
【实验目的】1. 熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2. 学习用逐差法处理数据;3. 了解CCD 成像系统。
【实验仪器】YWC-III 杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg 、0.2kg 的砝码若干。
杨氏模量测定仪的结构如图4-2-1所示。
(a)学生实验配置 (b)教学演示配置图4-2-1 杨氏模量测定仪1. 金属丝支架S 为金属丝支架,高约1.30m ,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm ,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。
支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。
2. 读数显微镜读数显微镜M 用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm, 分度值0.01mm ,每隔1mm 刻一数字。
H 1为读数显微镜支架。
D 成像、显示系统(作为示教仪)CCD 黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD 接在显微镜目镜与电视显示器上。
H 2为CCD 黑白摄像机支架。
【实验原理】物体在外力作用下,总会发生形变。
当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。
发生弹性形变时,物体内部产生恢复原状的内应力。
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
实验一 拉伸法测金属丝杨氏模量
实验一拉伸法测金属丝杨氏模量一、实验内容与数据处理拉伸法测金属丝杨氏模量(1)调节杨氏模量仪的支架成铅直。
(2)调节光杠杆镜和望远镜。
粗调:先调节望远镜的高度,使之与光杠杆镜等高,再调节光杠杆镜的镜面,它和望远镜的倾斜度,使它们相互垂直。
然后利用望远镜上面的瞄准器,使望远镜对准反射镜,调节其角度使得通过镜筒上方应能从反射镜中看到标尺像。
细调:从望远镜内观察、旋转目镜直至看清叉丝。
然后调节镜筒中部的调焦螺旋,改变组合物镜的焦距直至清晰地看到标尺像。
仔细调节目镜和调焦螺旋,使标尺像与叉丝共面。
1、用逐差法处理荷重钢丝伸长变化的数据次数 荷重砝码重量P (kg ) 标尺读数S (cm )荷重砝码相差5kg 时的读数差S ∆(cm )P 增加时 P 减少时平均值2'i i S S s +=1 1 S 1=0.76 1'S =0.981S =0.84 =-=∆161S S S 3.79 2 2 S 2=1.61 2'S =1.672S =1.64=-=∆272S S S 3.765 3 3 S 3=2.40 3'S =2.43 3S =2.415 =-=∆383S S S 3.80 4 4 S 4=3.10 4'S =3.144S =3.12=-=∆494S S S 3.65 5 5 S 5=3.96 5'S =4.01 5S =3.985 =-=∆5105S S S 3.5856 6 S 6=4.62 6'S =4.70 6S =4.66 =∆S 3.78S ∆的标准偏差:)(=-∆-∆=∑∆12n S S S iS 0.127 7 S 7=5.39 7'S =5.42 7S =5.405 8 8 S 8=6.12 8'S =6.31 8S =6.215 9 9 S 9=6.72 9'S =6.82 9S =6.771010S 10=7.5710'S =7.5710S =7.572、D 、b 、l 和ρ的测量待测量 ρ(mm )D (cm ) b (cm ) l (cm )1 0.512 132.2 7.230 82.202 0.5153 O.5104 0.5175 0.513平均值=ρ0.005D =132.2 b =7.230 l =82.20仪器误差 0.004 0.5 0.002 0.05 标准偏差////数据处理:=∆∆=Sb plD E 28πρ 1.883*10^11(Pa)Sp b D l E E sp b D l ∆∆+∆∆+∆+∆+∆+∆=∆∆∆ρρ2= 3.3% 作P i —i S 拟合直线图,PSK ∆∆=从图中数据可知,bElDK 28πρ=与实验结果基本符合。
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆) 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
拉伸法测金属丝的杨氏模量实验报告
拉伸法测金属丝的杨氏模量实验报告实验目的:通过拉伸法测定金属丝在不同的受力情况下的应变
和应力,进而计算出金属丝的杨氏模量。
实验器材:金属丝、万能试验机、镜尺、卡尺、计算器等。
实验步骤:
1. 首先,将金属丝固定在万能试验机上,并通过压力调节阀调
节试验机的拉力。
2. 将镜尺固定在试验机上,调整到与金属丝的中心线垂直,并
将卡尺固定在金属丝上方,用来测量金属丝的变化长度。
3. 开始试验,通过调节试验机的拉力,逐渐拉伸金属丝,同时
测量金属丝的长度变化和相应的拉力大小。
4. 根据测得的拉力和金属丝长度,计算出金属丝的应力和应变。
5. 通过绘制应力-应变曲线,得到金属丝的杨氏模量。
实验结果:
拉伸过程中,金属丝的长度和拉力随着拉伸程度的增加而不断变化。
利用测得的数据,可以计算出相应的应力和应变。
而金属丝的杨氏模量可以通过应力-应变曲线上的斜率推算出来。
在此次实验中,我们通过拉伸法测量了两种不同材质的金属丝的杨氏模量。
结果如下表所示:
材质杨氏模量(E/×10^9Pa)
A 2.1
B 1.8
分析:
从实验结果可以看出,材质A的杨氏模量比材质B的大,说明材质A的刚度较大,抵抗变形的能力更强。
不过需要注意的是,一次实验结果仅代表该组条件下的实验结果,并不能代表整个材料的特性,需多次实验取平均值以得出更准确的结果。
结论:
通过拉伸法测定金属丝的杨氏模量,可以了解到不同材质金属的刚性和抗变形能力等特性,对于材料的选择和设计具有重要意义。
实验过程中需要严格按照操作规程来进行,确保实验结果的准确性和可靠性。
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆) 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
用拉伸法测金属丝的杨氏模量 参考报告
用拉伸法测金属丝的杨氏模量参考报告一、实验目的1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;5.学会实验报告的正确书写。
二、实验仪器YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、验原理在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:我们把E 称为杨氏弹性模量。
如上图: 四、实验内容<一> 仪器调整1、氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 下无挂物时刻度尺的读数0A ;2、依次挂上kg 1的砝码,七次,计下7654321,,,,,,A A A A A A A ;3、依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'A A A A A A A ;4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。