高中数学选修2-3-条件概率

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记为 A I B (或 AB );
3.若 AB 为不可能事件,则说事件A与B互斥.
探究:
三张奖券中只有一张能中奖,现分别由三名同学 无放回的抽取,问最后一名同学抽到中奖奖券的概率 是否比前两名同学小。
思考1?
如果已经知道第一名同学没有抽到中奖奖券,那 么最后一名同学抽到中奖奖券的概率又是多少?
已知第一名同学的抽奖结果为什么会影响最 后一名同学抽到中奖奖券的概率呢?
(1)因为100 件产品中有 70 件一等品,P(B) 70 0.7 100
(2)方法1: 因为95 件合格品中有 70 件一等品,所以
Q B AAB B
P(B A) 70 0.7368
方法2:
95

P(B
A)

P( AB) P( A)

70 95
100 100

0.7368
(假定生男生女为等可能)
例3
设P(A|B)=P(B|A)=
1 2
,P(A)= 1 ,求P(B). 3
例4 盒中有球如表. 任取一球
玻璃
木质
总计

2
3
5

4
7
11
总计 6
10
16
若已知取得是蓝球,问该球是玻璃球的概率.
变式 :若已知取得是玻璃球,求取得是蓝球的概率.
例 5 一张储蓄卡的密码共有6位数字,每位数字都可从
练习 抛掷两颗均匀的骰子,已知第一颗骰子掷
出6点,问:掷出点数之和大于等于10的概率。
变式 :抛掷两颗均匀的骰子,已知点数不同,求至少
有一个是6点的概率?
例 2 考虑恰有两个小孩的家庭.
(1)若已知 某一家有一个女孩,求这家另一个是男孩 的概率;
(2)若已知 某家第一个是男孩,求这家有两个男孩 (相当于第二个也是男孩)的概率

间缩小到只包含A的样本点 P(B | A) n( AB) 2 n( A) 3
B5
1 3
A
2
4,6
3. 设 100 件产品中有 70 件一等品,25 件二等品,
规定一、二等品为合格品.从中任取1 件,求 (1) 取得 一等品的概率;(2) 已知取得的是合格品,求它是一等 品的概率.
解 设B表示取得一等品,A表示取得合格品,则
⑵几何解释:
⑶可加性: 如果 B和C 互斥,

BA
那么 P (B U C ) | A P(B | A) P(C | A)
基本概念
3.概率 P(B|A)与P(AB)的区别与联系
P(AB) 表 示 在 样 本 空 间 中,计 算 AB发 生
的 概 率,而 P(B A) 表 示 在 缩 小 的 样 本 空 间A 中, 计 算 B 发 生 的 概 率.用 古 典 概 率 公 式,则
0—9中任选一个。某人在银行自动取款机上取钱时,忘记 了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次就按
对的概率。
例 6 甲、乙两地都位于长江下游,根据一百多年的气象记
录,知道甲、乙两地一年中雨天占的比例分别为20%和18%, 两地同时下雨的比例为12%,问: (1)乙地为雨天时,甲地为雨天的概率为多少? (2)甲地为雨天时,乙地也为雨天的概率为多少?
0.56 0.7
BA
P( A) P( A)
5
2.抛掷一颗骰子,观察出现的点数
B={出现的点数是奇数}={1,3,5}
A={出现的点数不超过3}={1,2,3}
若已知出现的点数不超过3,求出现的点数是奇数 的概率
解:即事件 A 已发生,求事件 B 的概率
也就是求:P(B|A)
A B 都发生,但样本空
P(B
A)

AB 中 样 本 点 数 A 中 样 本 点 数,
P(AB)
百度文库

AB 中 样 本 点 数 中样本点数
一 般 来 说, P(B A)比 P(AB) 大.
例题讲解: 例1在5道题中有3道理科题和2道文科题,如果不放回
的依次抽取2道题 (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.
n()
P(B |A)相当于把A看作新的
基本事件空间求A∩B发生的 概率
BA
基本概念
1.条件概率
对任意事件A和事件B,在已知事件A发生的 条件下事件B发生的条件概率”,叫做条件概率。 记作P(B |A).
2.条件概率计算公式:
P(B | A) P(AB) P( A)
注:⑴ 0 ≤ P(B | A) ≤1 ;
例 7一个箱子中装有2n 个白球和(2n-1)个黑球,
一次摸出个n球.
(1)求摸到的都是白球的概率;
(2)在已知它们的颜色相同的情况下,求该颜色是白色 的概率。
例 8 如图所示的正方形被平均分成9个部分,向大
正方形区域随机的投掷一个点(每次都能投中), 设投中最左侧3个小正方形的事件记为A,投中最上 面3个小正方形或中间的1个小正方形的事件记为B, 求 P(A|B)。
2.2.1条件概率
复习引入:
我们知道求事件的概率有加法公式:
若事件A与B互斥,则. P( AU B) P(A) P(B)
那么怎么求A与B的积事件AB呢? 注: 1.事件A与B至少有一个发生的事件叫做A与B的
和事件,记为 A U B (或 A B );
2.事件A与B都发生的事件叫做A与B的积事件,
B 70 95A
5
4、5个乒乓球,其中3个新的,2个旧的,每次取一个,不
放回的取两次,求:
(1)第一次取到新球的概率; (2)第二次取到新球的概率; (3)在第一次取到新球的条件下第二次取到新球的概率。
5、一只口袋内装有2个白球和2个黑球,那么
(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?
一般地,在已知另一事件A发生的前提下,事件 B发生的可能性大小不一定再是P(B).
条件的附加意味着对样本空间进行压缩.
引例:
掷红、蓝两颗骰子。
设事件A=“蓝色骰子的点数为3或6” 事件B=“两颗骰子点数之和大于8” 求(1)P(A),P(B),P(AB)
(2)在“事件A已发生”的附加条件下事件B发 生 的概率?
1.某种动物出生之后活到20岁的概率为0.7, 活到25岁的概率为0.56,求现年为20岁的这种 动物活到25岁的概率。
解 设A表示“活到20岁”(即≥20),B表示 “活到25岁” (即≥25)
则 P(A) 0.7, P(B) 0.56
由于B A故A I B B,

所求概率为
P(B A) P( AB) P(B) 0.8
(3)比较(2)中结果与P(B)的大小及三者概率之 间关系
思考2?
对于上面的事件A和事件B,P(B|A)与它们的概 率有什么关系呢?P(B |A)称为在已知事件A发生的条件
下事件B发生的条件概率
n( AB)
P(B | A) n( AB) n( A)
n() n( A)
P( AB) P( A)
相关文档
最新文档