流变学复习(名词解释)
聚合物流变学复习题参考答案
聚合物流变学复习题一、名词解释(任选5小题,每小题2分,共10分):1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。
应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。
或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。
2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT 将 某一温度下测定的力学数据变成另一温度下的力学数据。
3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。
挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。
4、熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。
5、非牛顿流体:凡不服从牛顿粘性定律的流体。
牛顿流体:服从牛顿粘性定律的流体。
6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。
膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。
7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。
9、断裂韧性K 1C :表征材料阻止裂纹扩展的能力,是材料抵抗脆性破坏能力的韧性指标,s b C E c K γπσ21==,其中,σ b 为脆性材料的拉伸强度;C 为半裂纹长度;E 为材料的弹性模量;s γ为单位表面的表面能。
10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。
或拉伸流动:质点速度仅沿流动方向发生变化的流动。
流变学复习(名词解释)
流变学:研究材料流动及变形规律的科学。
熔融指数:在一定的温度和负荷下,聚合物熔体每10min通过规定的标准口模的质量,单位g/10min。
假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。
可回复形变:先对流变仪中的液体施以一定的外力,使其形变,然后在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复。
韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。
第2光滑挤出区:剪切速率持续升高,当达到第二临界剪切速率后,流变曲线跌落,然后再继续发展,挤出物表面可能又变得光滑,这一区域称为第二光滑挤出区挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。
冷冻皮层:熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。
松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。
Deborah数:松弛时间与实验观察时间之比。
《1时做黏性流体,》1时做弹性固体。
残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。
表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。
表观剪切黏度:表观粘度定义流动曲线上某一点τ与γ的比值。
入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。
驻点:两辊筒间物料的速度分布中,在x’*处,物料流速分布中,中心处的速度=0,称驻点。
流变学名词解释和填空题更正版
1、简单剪切流动在两个无限大的平行板之间充满液体,其中一板固定,另一板平行移动,流体在此移动板曳引作用下所形成的流动称为简单剪切流动2、粘度对牛顿流体,可以定义粘度即剪切应力与剪切速率之比对非牛顿流体,与牛顿流体类比,可以定义 n =8 / 丫为表观剪切粘度;同时定义n 为微分剪切粘度或称真实剪切粘度。
3、松弛松弛指在一定的温度和较小的恒定应变下,材料的应力随时间增加而减小的现象。
4、蠕变指在一定的温度和较小的恒定外力(拉力、压力或扭力)等作用下,材料的形变随时间增加而增大的现象。
5、剪切速率对简单剪切流动,剪切速率丫,即剪切应变与剪切时间之比;对非简单流动,剪切速率1、流变学:是研究材料流动及变形规律的科学。
2、熔融指数:在一定的温度和负荷下,聚合物熔体每lOmin通过规定的标准口模的质量,单位g/10min。
3、表观剪切黏度:聚合物流变曲线上某一点的剪切应力与剪切速率之比4、牛顿流体:指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。
5、可回复形变:粘弹性流体在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复,发现只有一部分形变得到恢复,另一部分则作为永久变形保留下来,其中可恢复形变量Sr表征流体在形变过程中储存弹性能的大小。
6、粘流活化能:是描述物料粘-温依赖性的物理量,是流动过程中,流动单元用于克服位垒(分子间作用力)以便更换位置所需要的能量,由原位置跃迁到附近“空穴”所需的最小能量或者每摩尔运动单元所需要的能量。
它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多7、线性弹性体的剪切模量为剪切应力和剪切应变之比8线性粘弹性体的剪切松弛模量G(t) = A U,其中,S(A, t)为随时间变化的剪切应力函数,£为剪切应变9、临界分子量在进行聚合物熔体粘度的测定时,lgn与IgZw有线性关系,Zw是分子量大小的量度,即主链上原子数的平均值,在某一分子量值前后直线斜率发生突变,这一分子量称临界分子量Mc.10、触变性流体凡流体在恒温和恒定的切变速率下,粘度随时间递减的流体为触变体。
药剂学11.流变学
第十一章 流变学基础
1
主要内容
一.概述 二.流体的基本性质 三.流变性测定法 四.流变学在药剂学中的应用
2
第一节 概述
一、基本概念 • 流变学 (Rheology)系指研究物质变形和流动
的科学。
物体在外力作用下表现出来的变形性和流动性 称为流变性。
物体中质点 相对运动的 表现和结果
流变学是把液体和固体的性质结合为整体进行研究
3、流动
不可逆过程
液体受应力作用发生变形,即表现为流动。
4
4.黏性(viscosity)
流体在外力的作用下质点间相对运动而产生的阻力。
5.塑性(plasticity)
施加较大外力时才发生变形,解除外力后不能复原。
6.屈服值(yield value)
引起变形或流动的最小应力
5
7、剪切应力与剪切速度
• 特点:切变应力增大其 粘度也随之增大(切变 稠化)
• 胀性流动的剂型:
含有大量固体微粒的高浓 度混悬剂如50%淀粉混悬 剂、糊剂等。
16
高浓度细小微粒
打破紧密排列,体积膨胀
分散剂
分散剂
湿状态
干状态
胀性流体的结构变化示意图
17
三、触变性
触变性:随着切变应力增大时, 粘度下降,切变应力消除后粘度 在等温条件下缓慢地恢复原来状 态的现象。
玻璃管内,使具有一定密度和直 径的玻璃制或钢制的圆球自由落 下,通过测定球落下时的速度, 可以得到试验液的黏度。
采用标准液比对的方法
(0 )t s (0 s )ts
25
3、旋转式黏度计
原理:筒内装入试验液,然后用特制的旋转子进行
旋转时,考察产生的弯曲现象,利用作用力求得 产生的应力。
聚合物流变学复习题参考答案
1聚合物流变学复习题参考答案一、名词解释(任选5小题,每小题2分,共10分):1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。
应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。
或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。
2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT 将某一温度下测定的力学数据变成另一温度下的力学数据。
3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。
挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。
4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。
5、非牛顿流体:凡不服从牛顿粘性定律的流体。
牛顿流体:服从牛顿粘性定律的流体。
6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。
膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。
7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。
9、断裂韧性K 1C :表征材料阻止裂纹扩展的能力,是材料抵抗脆性破坏能力的韧性指标,s b C E c K γπσ21==,其中,σb 为脆性材料的拉伸强度;C 为半裂纹长度;E 为材料的弹性模量;s γ为单位表面的表面能。
10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。
或拉伸流动:质点速度仅沿流动方向发生变化的流动。
湖北工业大学流变学复习资料
湖北工业大学流变学复习资料湖北工业大学流变学复习参考题型挑选填空题直观综合仅供参考第一章:绪论1.何谓流变学(rheology)?流变学就是研究和阐明物质或材料流动和变形规律的科学。
就是化学、力学和工程学交叉的交叉学科。
2.流变学分支和方法论地位流变学分支:高分子流变学、石油工程流变学、食品流变学、悬浮液流变学、地质流变学、泥石流流变学、固体流变学(金属加工流变学、岩石流变学)、非牛顿流体流变学、分形体流变学、生物流变学和血液流变学,光、电、磁流变学、日用化工流变学、表面活性剂流变学、界面流变学(至少记住5个p1)方法论地位:流变学本身即为彰显出来朴素的实事求是观点,具备方法论促进作用,可以与多种学科交叉,构成代莱学科分支。
?3.流变学主要研究对象:非牛顿流体的流变特性、粘弹性材料的流变特性、流变测量技术、流变状态方程,即本构方程(揭示物质受力和变形的本质规律。
例:牛顿粘性定律、胡克定律)。
4.流变学与化学工程的关系/流变学与日用化工(重化工?)的关系化学工程:单体聚合反应、高分子加工、乳化过程与流体的流变行为密切相关。
必须研究其传达和反应过程、设计反应器、工程压缩,必须对演变过程特性存有明晰重新认识。
流变学提供材料的流变状态方程,用于解决非牛顿流体的动量传递问题,并进一步为非牛顿流体的热质传递和反应工程提供基础。
流变学是非牛顿流体化学工程的重要理论基础之一。
日用化工:日用化学品(膏霜、乳液)为多组分、多相态的非牛顿流体。
日用化工过程为非牛顿流体的制造过程。
1)乳液、泡沫的稳定性:包含热稳定性、耐剪切稳定性、储存稳定性等(表面粘度、表面弹性)2)产品的涂敷性:光滑性和涂敷深浅性能3)抽走能力,屈服应力4)增稠性:各种流变性调节剂(粘多糖、聚丙烯酸等)5)流平性指甲油等6)触变性膏霜、牙膏7)流动控制能力在洗衣粉料浆中加入适量甲苯磺酸钠,调节降低粘度,使之易于喷粉成型。
5.非牛顿流体的特殊性质:剪切变稀、剪切减仁和、屈服应力、触变性、粘弹性、爬竿效应、湍流减阻效应(toms效应)、无管虹吸现象、挤出胀大6.非牛顿流体的触变性:若流体的应力或粘度随剪切时间的增大而减小,并最终达到平衡粘度,该特性称为正触变性,简称触变性。
《高分子流变学》复习资料
第二章 流变学的基本概念
1、单位张量和对称张量:
单位张量
对称张量(������������������������������������ = ������������������������������������ )
2、无穷小位移梯度张量
������������11 σ = �������������21 ������������31
������������������������������������ ⎤ ������������������������ ⎥ ������������������������������������ ⎥ ������������������������ ⎥ ⎥ ������������������������������������ ⎥ ������������������������ ⎦
0 0 1 0� 0 1
������������12 ������������22 ∙
������������13 ������������23 �。 ∙
3、应变张量 ������������������������������������ ������������ = ������������������������������������ = ������������������������������������� ������������������������������������
������������12 ������������22 ������������32
1 ������������ = �0 0
������������13 ������������11 ������������23 � = � ∙ ������������33 ∙
流变学名词解释和填空题更正版
1、简单剪切流动在两个无限大的平行板之间充满液体,其中一板固定,另一板平行移动,流体在此移动板曳引作用下所形成的流动称为简单剪切流动2、粘度对牛顿流体,可以定义粘度即剪切应力和剪切速率之比对非牛顿流体,和牛顿流体类比,可以定义η=δ/γ为表观剪切粘度;同时定义η为微分剪切粘度或称真实剪切粘度。
3、松弛松弛指在一定的温度和较小的恒定应变下,材料的应力随时间增加而减小的现象。
4、蠕变指在一定的温度和较小的恒定外力(拉力、压力或扭力)等作用下,材料的形变随时间增加而增大的现象。
5、剪切速率对简单剪切流动,剪切速率γ ,即剪切应变和剪切时间之比;对非简单流动,剪切速率1.流变学:是研究材料流动及变形规律的科学。
2、熔融指数:在一定的温度和负荷下,聚合物熔体每lOmin通过规定的标准口模的质量,单位g/10min。
3、表观剪切黏度:聚合物流变曲线上某一点的剪切应力和剪切速率之比4、牛顿流体:指在受力后极易变形,且切应力和变形速率成正比的低粘性流体。
5、可回复形变:粘弹性流体在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复,发现只有一部分形变得到恢复,另一部分则作为永久变形保留下来,其中可恢复形变量Sr表征流体在形变过程中储存弹性能的大小。
6、粘流活化能:是描述物料粘-温依赖性的物理量,是流动过程中,流动单元用于克服位垒(分子间作用力)以便更换位置所需要的能量,由原位置跃迁到附近“空穴”所需的最小能量或者每摩尔运动单元所需要的能量。
它表征粘度对温度的依赖性,E越大, 粘度对温度的依赖性越强,温度升高,其粘度下降得越多7、线性弹性体的剪切模量为剪切应力和剪切应变之比8、线性粘弹性体的剪切松弛模量G(t) = ^U,其中,S(A,t)为随时间变化的剪切应力函数,ε为剪切应变9、临界分子量在进行聚合物熔体粘度的测定时,lgn和lgZw有线性关系,Zw是分子量大小的量度,即主链上原子数的平均值,在某一分子量值前后直线斜率发生突变,这一分子量称临界分子量Mc.10、触变性流体凡流体在恒温和恒定的切变速率下,粘度随时间递减的流体为触变体。
(完整word版)流变学复习重点(word文档良心出品)
流变学复习重点一.名词解释:1.震凝性:在等温条件下,液体流动粘度随外力作用时间变大称震凝性,或称反触变形。
发生触变效应时,可以认为液体内部有某种结构遭到破坏,或者认为在外力作用下体系内某种结构的破坏率大于其恢复速率。
2.零剪切粘度:当剪切速率r →0时,σ-r 呈线性关系,流体流动性质与牛顿流体相仿,粘度趋于常数0η,成为零剪切粘度0η。
3.挤出胀大比:聚合物熔体完全松弛的挤出物直径与口型直径比。
4.WFL 方程:12()()lg lg ()()S T S C T T T a T C T T ηη∙-==-∙-时温等效原理中计算平移因子的方程,其适用温度范围为材料的Tg~Tgg100℃(Tg 为材料玻璃化转变温度)。
5.本构方程:又称状态方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
二.简答:1.四种无时间依赖性的流体的流动曲线以及基本特征。
①Bingham 塑性体:主要流动特征是存在屈服应力σy ,因此具有塑性体的可塑性质。
只有当外界施加的应力超过屈服应力时,物体才能流动。
②假塑性流体 主要流动特征是当流动很慢时,剪切粘度保持为常数,而随着剪切速率的增大,剪切粘度反常地减少。
③胀流行流体:主要特征是剪切速率很慢时,流动行为基本上同牛顿流体;剪切速率超过某一个临界值后,剪切粘度不是随剪切速率的增大而减小,恰恰相反,剪切速率越大,粘度越大,呈剪切变稠效应。
④牛顿流体:粘度随剪切速率呈正比关系。
2.Bagley 修正 重心思想是保持压力梯度P Z∂∂不变,将毛细管(其实是完全发展流动区)虚拟地延长,并将入口的压力降等价为在虚拟延长长度上的压力降。
3.熔体破裂定义:当外力作用速率很大时,外界赋予液体的形变能远远超出了液体的承受的极限时,多余的能量将以其他形式表现出来,其中产生小表面,消耗表面能是一种形式,而发生熔体破裂。
分类:LDPE 型和HDPE 型。
机理:与熔体的非线性粘弹性,与分子链在剪切流场找那个的取向和解取向,缠结和解缠结及外部工艺条件有关。
流变学总复习
张量的特性 ① 如果在一个坐标系中,笛卡儿张量的所有分量都 等于零,那么它们在所有其他笛卡儿坐标系中也等 于零。 ② 两个同阶笛卡儿张量的和或差仍是同阶张量,于 是同阶张量的任何线性组合仍是同阶张量。 ③ 张量方程的意义。如果某个张量方程在一个坐标 系中能够成立,那么对于用允许变换所能得到的所 有坐标系,它也成立。
聚合物流变行为的特性
多样性: 聚合物的种类和结构,固体高聚物有线性弹性、 橡胶弹性及黏弹性;溶液和熔体有线性黏性、非线性 黏性、触变性等不同的流变行为。 高弹性: 聚合物所特有的流变行为,轻度交联的高聚物(橡 胶)。 时间依赖性: 松弛现象与聚合物长链分子的结构以及分子链之 间互相缠结有关。
第二部分
高分子材料流变学可分高分子结构流变学 和高分子加工流变学两大块。
高分子流体是一个泛意上的概念。 包括: 高分子的均相熔体;多相体系熔体;复合体系熔体; 乳液;悬浮液;高分子浓溶液、稀溶液等。 高分子流体流动行为常常取决于下面多种因素:
分子量的大小和分子量的分布; 分子的结构、形状和分子之间的相互作用; 相间的相互作用; 温度和流场的形状; 物理缠结和化学交联等。
本构方程
反映流体的力学本质特征的方程; 联系应力张量和应变张量或应变速率张量的所有 分量的方程; 又称为流变状态方程。 建立本构方程是流变学的中心任务。
线性弹性
虎克定律与弹性常数
虎克定律: 应力与应变之间存在线性关系。
=c
弹性常数 线性弹性也称为虎克弹性 。
拉伸实验中,材料在受拉应力作用下产生长度方向的应 变,根据虎克定律:
Q=R4(△P)/8l
Hagen-Poiseuille(哈根- 泊肃叶)方程 流量与单位长度上的压力降 并与管径的四次方成正比。
化工原理名词解释
化工原理名词解释化工原理是指在化学工程领域中所涉及的基本概念和原理。
在化工生产过程中,涉及到了许多复杂的化学反应、物质转化和能量转移等过程,而化工原理正是用来解释和描述这些过程的基本概念和原理。
下面将对一些常见的化工原理名词进行解释。
1. 化学反应速率。
化学反应速率是指单位时间内反应物消耗或生成物产生的量。
在化学反应中,反应速率受到许多因素的影响,包括温度、浓度、催化剂等。
化学反应速率的研究对于控制化工生产过程、提高反应效率具有重要意义。
2. 流变学。
流变学是研究物质变形和流动规律的学科。
在化工生产中,许多物质在加工过程中会发生变形和流动,而流变学的理论可以帮助我们理解和控制这些过程。
例如,通过流变学的研究可以确定塑料的加工温度和压力,从而保证产品的质量。
3. 质量平衡。
质量平衡是化工生产过程中一个非常重要的概念,它要求在任何闭合系统中,物质的质量在反应或转化过程中不会净增加或减少。
质量平衡原理被广泛应用于化工生产中,例如在化工反应器中,通过对反应物和生成物的质量平衡分析,可以确定最优的操作条件和反应路径。
4. 热力学。
热力学是研究能量转化和传递规律的学科。
在化工生产中,许多过程涉及到能量的转化和传递,而热力学的原理可以帮助我们理解和控制这些过程。
例如,在化工反应中,热力学的原理可以帮助我们确定反应的放热或吸热特性,从而选择合适的反应条件和设备。
5. 分离工艺。
分离工艺是指将混合物中的组分分离出来的过程。
在化工生产中,许多原材料和产品都是复杂的混合物,而分离工艺的原理可以帮助我们选择合适的分离方法,提高产品的纯度和收率。
常见的分离工艺包括蒸馏、结晶、萃取等。
6. 反应工程。
反应工程是研究化学反应过程的工程学科。
在化工生产中,许多产品都是通过化学反应得到的,而反应工程的原理可以帮助我们设计和优化反应设备,提高产品的产率和质量。
反应工程涉及到反应动力学、传质传热等多个方面的知识。
7. 控制工程。
控制工程是研究控制系统设计和运行原理的学科。
药剂学-流变学基础复习指南
第七章流变学基础学习要点一、概述(一)流变学1. 定义:流变学(rheology)是研究物质变形和流动的科学。
变形是固体的固有性质,流动是液体的固有性质。
2.研究对象:(1) 具有固体和液体两方面性质的物质。
(2) 乳剂、混悬剂、软膏、硬膏、粉体等。
(二)变形与流动1. 变形是指对某一物体施加外力时,其内部各部分的形状和体积发生变化的过程。
2. 应力是指对固体施加外力,则固体内部存在一种与外力相对抗而使固体保持原状的单位面积上的力。
3. 流动:对液体施加外力,液体发生变形,即流动。
(三)弹性与黏性1. 弹性是指物体在外力的作用下发生变形,当解除外力后恢复原来状态的性质。
可逆性变形----弹性变形。
不可逆变形----塑性变形2. 黏性是流体在外力的作用下质点间相对运动而产生的阻力。
3. 剪切应力(S):单位液层面积上所施加的使各液层发生相对运动的外力,FS。
A4. 剪切速度(D):液体流动时各层之间形成的速度梯度,dv=。
Ddx5. 黏度:η,面积为1cm2时两液层间的内摩擦力,单位Pa·s,Sη=。
D (四)黏弹性1. 黏弹性是指物体具有黏性和弹性的双重特征,具有这样性质的物体称为黏弹体。
2. 应力松弛是指试样瞬时变形后,在不变形的情况下,试样内部的应力随时间而减小的过程,即,外形不变,内应力发生变化。
3. 蠕变是指把一定大小的应力施加于黏弹体时,物体的形变随时间而逐渐增加的现象,即,应力不变,外形发生变化。
二、流体的基本性质A:牛顿流动B:塑性流动C:假黏性流体D:胀性流动图7-1 各种类型的液体流动曲线(一)牛顿流体:1. 特征(1) 剪切速度与剪切应力成正比,S=F/A=ηD或1S=。
Dη(2) 黏度η:在一定温度下为常数,不随剪切速度的变化而变化。
2. 应用纯液体、低分子溶液或高分子稀溶液。
(二)非牛顿流体1. 特征:(1) 剪切应力与剪切速度的关系不符合牛顿定律。
(2) 黏度不是一个常数,随剪切速率的变化而变化。
聚合物流变学习题参考答案
1 聚合物流变学复习题参考答案一、名词解释(任选 5 小题,每小题 2 分,共 10 分):1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。
应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。
或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象.2.端末效应:流体在管子进口端一定区域内剪切流动与收敛流动会产生较大压力降,消耗于粘性液体流动的摩擦以及大分子流动过程的高弹形变,在聚合物流出管子时,高弹形变恢复引起液流膨胀,管子进口端的压力降和出口端的液流膨胀都是与聚合物液体弹性行为有密切联系的现象。
2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。
挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。
4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。
5、非牛顿流体:凡不服从牛顿粘性定律的流体。
牛顿流体:服从牛顿粘性定律的流体。
6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。
膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。
7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。
10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。
流变学名词解释和填空题更正版
1、简单剪切流动在两个无限大的平行板之间充满液体,其中一板固定,另一板平行移动,流体在此移动板曳引作用下所形成的流动称为简单剪切流动2、粘度对牛顿流体,可以定义粘度即剪切应力与剪切速率之比对非牛顿流体,与牛顿流体类比,可以定义门=5 / 丫为表观剪切粘度;同时定义门为微分剪切粘度或称真实剪切粘度。
3、松弛松弛指在一定的温度和较小的恒定应变下,材料的应力随时间增加而减小的现象。
4、蠕变指在一定的温度和较小的恒定外力(拉力、压力或扭力)等作用下,材料的形变随时间增加而增大的现象。
5、剪切速率对简单剪切流动,剪切速率丫,即剪切应变与剪切时间之比;对非简单流动,剪切速率1、流变学:是研究材料流动及变形规律的科学。
2、熔融指数:在一定的温度和负荷下,聚合物熔体每lOmin通过规定的标准口模的质量,单位g/10min。
3、表观剪切黏度:聚合物流变曲线上某一点的剪切应力与剪切速率之比4、牛顿流体:指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。
5、可回复形变:粘弹性流体在一定时间内维持该形变保持恒定,而后撤去外力,使形变白然恢复,发现只有一部分形变得到恢复,另一部分则作为永久变形保留下来,其中可恢复形变量Sr表征流体在形变过程中储存弹性能的大小。
6、粘流活化能:是描述物料粘-温依赖性的物理量,是流动过程中,流动单元用于克服位垒(分子间作用力)以便更换位置所需要的能量,由原位置跃迁到附近“空穴”所需的最小能量或者每摩尔运动单元所需要的能量。
它表征粘度对温度的依赖性,E 越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多7、线性弹性体的剪切模量为剪切应力和剪切应变之比8、线性粘弹性体的剪切松弛模量G(t)=也,其中,S(A, t)为随时间变化的剪切应力函数,8为剪切应变9、临界分子量在进行聚合物熔体粘度的测定时,lgn与lgZw有线性关系,Zw是分子量大小的量度,即主链上原子数的平均值,在某一分子量值前后直线斜率发生突变,这一分子量称临界分子量Mc.10、触变性流体凡流体在恒温和恒定的切变速率下,粘度随时间递减的流体为触变体。
聚合物流变学复习题含参考答案
➢绝大数高分子成型加工都是粘流态下加工的,如挤出,注射,吹塑等。
➢弹性形变及其后的松驰影响制品的外观,尺寸稳定性。
之所以出现以上的特点,主要原因有:➢高分子的流动是通过链段的协同运动来完成的;➢高分子的流动不符合牛顿流体的流动规律。
5、试述温度和剪切速率对聚合物剪切粘度的影响。
并讨论不同柔性的聚合物的剪切粘度对温度和剪切速率的依赖性差异。
答:(一)随着温度的升高,聚合物分子键的相互作用力减弱,粘度下降。
但是各种聚合物熔体对温度的敏感性不同。
聚合物熔体的一个显著特征是具有非牛顿行为,其粘度随剪切速率的增加而下降。
(二)柔性高分子如PE、POM等,它们的流动活化能较小,表观粘度随温度变化不大,温度升高100℃,表观粘度也下降不了一个数量级,故在加工中调节流动性时,单靠改变温度是不行的,需要改变剪切速率。
否则,温度提得过高会造成聚合物降解,从而降低制品的质量。
6、试述影响聚合物粘流温度的结构因素。
➢分子链越柔顺,粘流温度越低;而分子链越刚性,粘流温度越高。
➢高分子的极性大,则粘流温度高,分子间作用越大,则粘流温度高。
➢分子量分布越宽,粘流温度越低。
➢.相对分子质量愈大,位移运动愈不易进行,粘流温度就要提高。
➢外力增大提高链段沿外力方向向前跃迁的几率,使分子链的重心有效地发生位移,因此有外力对粘流温度的影响,对于选择成型压力是很有意义的。
➢延长外力作用的时间也有助于高分子链产生粘性流动,增加外力作用的时间就相当于降低粘流温度。
7、按常识,温度越高,橡皮越软;而平衡高弹性的特点之一却是温度愈高,高弹平衡模量越高。
这两个事实有矛盾吗?为什么?不矛盾。
原因:1.温度升高,高分子热运动加剧,分子链趋于卷曲构象的倾向更大,回缩力更大,故高弹平衡模量越高;2.实际形变为非理想弹性形变,形变的发展需要一定是松弛时间,这个松弛过程在高温时比较快,而低温时较慢,松弛时间较长,如图。
按常识观察到的温度越高,橡皮越软就发生在非平衡态,即t<tO.8、对聚合物熔体的粘性流动曲线划分区域,并说明区域名称及对应的粘度名称,解释区域内现象的产生原因。
流变学重点难点指导
流变学重点难点指导一、名词解释1、简单剪切流动在两个无限大的平行板之间充满液体,其中一板固定,另一板平行移动,流体在此移动板曳引作用下所形成的流动称为简单剪切流动。
2、粘度对牛顿流体,可以定义粘度之比对非牛顿流体,与牛顿流体类比,可以定义a()()为表,即剪切应力与剪切速率观剪切粘度;同时定义实剪切粘度。
3、松弛d()d()d为微分剪切粘度或称真松弛指在一定的温度和较小的恒定应变下,材料的应力随时间增加而减小的现象。
对简单剪切流动,剪切速率,即剪切应变与剪切时间之t比;对非简单流动,剪切速率ddt4、蠕变蠕变指在一定的温度和较小的恒定外力(拉力、压力或扭力)等作用下,材料的形变随时间增加而增大的现象。
5、剪切速率对简单剪切流动,剪切速率,即剪切应变与剪切时间之t比;对非简单流动,剪切速率ddt6、粘流活化能粘流活化能是描述物料粘-温依赖性的物理量,是流动过程中,流动单元用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
7、线性弹性体的剪切模量线性弹性体的剪切模量为剪切应力和剪切应变之比8、线性粘弹性体的剪切松弛模量线性粘弹性体的剪切松弛模量G(t)S(时间变化的剪切应力函数,二、作图1、1、在直角坐标系中用立方体微元图示示意应力分量t某z,tzz,并用文字注明其含义y单位立方体上T某某,Tz某应力分量示意图T某某zTz某0,t)0,其中,S(0,t)为随0为剪切应变某T某某表示在某不变的平面上指向某方向的应力分量,为法相应力分量;Tz某表示在z不变的平面上指向某方向的应力分量,为切相应力分量。
2、建立合理坐标系用图示示意Poieuille流动下的第一、第二法向应力差,并用文字及方程毛细管流变仪原理建立如上图所示的主坐标系,流体沿z方向流动,r方向为速度梯度方向,θ方向为中性方向,则第一法向应力差系数为N第二法向应力差系数为N1()tzztrr()trrt23画出熔融指数仪的基本结构示意图并标示出其主要组成部分三、填空举例:1、聚合物对应力的响应可分为_粘性流动_和_弹性变形_。
流变学的基本知识
《临床血液流变学》P5第二章流变学的基本知识第一节流变学、生物流变学及类血液流变学一、流变学流变学(rheology)一词中的rheo起源于希腊语,有流动之意。
远在公元前5世纪,人们就流传着希腊哲学家Heraclitus的一句脍炙人口的名言:“一切在流,一切在变”。
流变学一词由此而来。
然而,流变学成为一门独立学科则是20世纪20年代的事情,当时,由于橡胶、塑料、油漆、润滑剂以及食品工业的迅速发展,推动了对上述原材料的研究。
因为这些物质都包含有流动和复杂变形的结构,这些物质所具有的运动现象,很难用经典的弹性力学和流体力学的方法来分析,为此,研究这类物质的流动与变形,必须紧密结合这些物质的结构和物理、化学属性,美国的物理化学家Bingham 在对油漆、糊状粘土、印刷油墨、润滑剂以及某些食品作了大量的研究后,认为这些物质都包含有使其能够复杂变形和流动的结构,其运动方式远较一般弹性体的变形和一般液体的流动复杂。
同时还指出,这些物质的复杂变形发生在流动过程中,并对其流动产生重大影响,在他的倡议下,美国于1928年成立了流变学会,并把研究物质流动和变形的科学称为流变学。
与流体力学、弹性力学、材料力学相比,流变学有2个突出的不同特点:其一,流变学研究的重点不仅限于物质的粘性运动和弹性变形,而是兼有这2种物理属性,或者更确切地说,是由这2种物理属性结合而成的物质的新的物理属性,即粘弹性和塑弹性。
其二,流变学研究的内容和范围不仅从宏观角度去探讨物质的力学性质和行为,而且还从微观的角度去揭示物质内部结构及其理化性质与其宏观力学和运动的关系。
由此可见,流变学又可以看作是物体的力学与构成物体的物质化学互相渗透的科学,正是从这一点出发,流变学又被定义为有关物体的力学性质和力学行为的物理化学。
物质在外力作用下能够变形或运动,是物质的普遍特性,不论是液体的流动,弹性体的变形或者是更为复杂的塑性、粘弹性以及塑弹性,均属于物质流变性的表现方式。
流变学第二章 (2)
(3)高分子液体拉伸粘度的特点
高聚合度支化聚合物
低聚合度线 性聚合物
高聚合度线性聚合物
应变硬化行为与聚合物分子量分布、支化程度等的大分子结构相关。 可通过测定拉伸粘度的实验来表征聚合物大分子结构。
剪切与拉伸微观结构
(4)应用
四、动态粘度 聚合物流体是非牛顿性的粘弹性液体, 在流动过程中既表现出随时间而持续发展的不 可逆的粘性形变,又具有可以恢复的弹性形变。 通常,对于这种非牛顿性的粘弹性体在剪切中 可用粘度来衡量其粘性的大小, 而用法向应力差或挤出胀大等来恒量其弹性, 当用动态力学实验的方法,即在正弦交变的应 变 ( 或应力 ) 的作用下,可同时测得材料的粘度 和弹性模量。
法向应力差产生的原因
法向应力差是聚合物材料弹性的主要表现;弹性是 由于链段的取向造成的,而大分子之间的缠结又大 大有利于形变时链段的弹性回复。大分子链的取向 引起的拉伸力与流线平行。
Weissenberg效应
——法向应力差的影响
现象: 与牛顿型流体不同,盛在容器中的高分子 液体(图,当插入其中的圆棒旋转时,没有因惯 性作用而甩向容器壁附近,反而环绕在旋转棒效 应附近,出现沿棒向上爬的“爬杆”现象。这种 现象称,又称“包轴”现象。
由于相位差的存在模量与粘度都是复数分别称为复数模量g与复数粘度g表示聚合物在形变过程中由于弹性形变储存的能量储能模量g表示形变时以热的形式损耗的能量损耗模量称为动态粘度tan称为损耗角正切与粘性耗散相关作业题一名词解释
一、表观剪切粘度函数
(1)牛顿流体的剪切粘度定义 在简单剪切流场中,已知 牛顿流体流动时所受的剪应力 σ21 与剪切速率呈简单线性关 系,比例系数称粘度,η0 是不 随剪切速率变化的常数,单位 为Pa.s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流变学:研究材料流动及变形规律的科学。
熔融指数:在一定的温度和负荷下,聚合物熔体每10min通过规定的标准口模的质量,单位g/10min。
假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。
可回复形变:先对流变仪中的液体施以一定的外力,使其形变,然后在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复。
韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。
第2光滑挤出区:剪切速率持续升高,当达到第二临界剪切速率后,流变曲线跌落,然后再继续发展,挤出物表面可能又变得光滑,这一区域称为第二光滑挤出区挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。
冷冻皮层:熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。
松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。
Deborah数:松弛时间与实验观察时间之比。
《1时做黏性流体,》1时做弹性固体。
残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。
表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。
表观剪切黏度:表观粘度定义流动曲线上某一点τ与γ的比值。
入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。
驻点:两辊筒间物料的速度分布中,在x’*处,物料流速分布中,中心处的速度=0,称驻点。
本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。
幂律方程:用于描述非牛顿型流动行为的方程。
粘流活化能:E定义为每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。
第二光滑挤出区:当剪切速率继续增大时,熔体在模壁附近会出现“全滑动”,这时会得到表面光滑的挤出物,这一区域称为第二光滑挤出区。
Weissenberg数:第一法向应力差与剪切应力之比。
非牛顿指数:在入口收敛流动的边界流线微分方程中,用来表征熔体非牛顿特性的参数。
第一法向应力差:沿着流动方向受拉伸,拉抻了的分子链产生最大法向应力σ11 ,使流体处于紧张状态,像有收缩力作用,起到一个“箝住效应”; 在此同时,由于剪切作用,另一方面会在垂直于流动方向(垂直于剪切面)产生正向推力σ22 ,两者之差就是第一法向应力差。
触变性流体:在恒温和恒定的切变速率下,粘度随时间递减的流体。
震凝性流体:在恒温和恒定的切变速率下,粘度随时间递增的流体。
平衡转矩:胶料混炼时,转矩随物料的不断均化最终达到的平衡值。
拉伸粘度拉:伸应力与拉伸应变速率之比,表示流体对拉伸流动的阻力。
宾汉流体: 与牛顿型流体的流动曲线均为直线,但它不通过原点,只有当剪切应力超过一定屈服应力值之后才开始塑性流动。
牙膏、油漆是典型的宾汉流体。
胀塑性流体: 剪切速率很低时,流动行为与牛顿型流体基本相同,剪切速率超过某一临界后,随剪切速率增大,流动曲线弯向切应力坐标轴,剪切黏度增大,呈现“剪切变稠”的流体。
拉伸流动:指物料运动的速度方向在速度梯度方向平行。
冻结分子取向:因分子取向被冻结而产生的应力称冻结分子取向熔体破裂(破碎)现象:高分子熔体从口模挤出时,当挤出速度过高,超过某一临界剪切速率时,容易出现弹性湍流,导致流动不稳定,挤出物表面粗糙,随挤出速度的增大,可能分别出现波浪形,鲨鱼皮形,竹节形,螺旋形畸变,最后导致完全无规则的挤出物断裂,称为熔体破裂现象。
拖曳流:指对流体不加压力而靠边界运动产生力场,由粘性作用使流体随边界流动,称Couette库爱特流动。
压力流:指物料在管中流动,是由于管道两端存在压力差,而边界固定不动,称Poiseuille 泊肃叶流动。
出口压力降:指粘弹性流体在毛细管入口区的弹性形变在经过毛细管后尚未全部松弛,至出口处仍残存部分内压力,则将表现为出口压力降。
临界切应力&临界切变速率:一般随剪切速率增大,至一临界值就产生破裂,而且越来越严重,这个开始产生破裂的速率或应力。
残余应力或内应力大:若物料冷却速率高,冷却时间短而松弛时间较长,则冷却后有较多应力被冻结在制品内,称残余应力或内应力大。
用于表征高聚物熔体弹性的物理量有:可回复剪切形变、挤出物胀大、法向应力效应,熔体破裂等。
弹性模量的影响因素:链结构(分子量、分子量分布、支化);加工条件(温度、剪切速率);配方(填料)拉伸流动:从流变学意义上讲,指物料运动的速度方向在速度梯度方向平行。
拉伸粘度:在稳态单轴拉伸中,即拉伸速率为恒定值,设x1为拉伸方向,体系的稳态拉伸粘度定义为:粘流活化能:E定义为分子链流动时用于克服分子间作用力以便更换位置所需要的能量,或者每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。
螺杆特性曲线口模特性曲线挤出机稳定工作点对同一螺杆改变不同的转速,将方程绘在- 坐标图上得到的一系列具有负斜率的平行直线称为螺杆特性曲线改变口模大小,将绘在坐标图上得到的一系列经过原点,斜率不同的直线称为口模特性曲线。
两组直线的交点就是适于该机头口模和螺杆转速下挤出机的综合工作点,该点所对应的qv为挤出机在操作条件下的生产率。
螺杆转速:直线越上越大;口模尺寸:斜率大的大开炼加工过程压力、速度分布压力度分布:极大值:在x’=-λ,即在辊距之前极小值:在x’= λ,p=0,即物料脱离辊筒表面的位置.在x’=-x’0,物料刚进入辊筒处,物料尚未承受压力.在最小辊距处,即x’=0处,即此时物料内压力为极大值的一半.速度分布两个特殊点:x’=±λ,vx=v,即压力极大值处和物料脱辊处,物料流速等于辊筒表面线速度,且速度沿y方向均等分布,保证压出料片速度均匀平稳压出.在- λ<x’< λ,前方压力小,后部压力大,压差作用向前,形成正压力流,各层速度大于辊筒表面线速度.在x’<- λ,前方压力大,后部压力小,形成反压力流,各层流速小于辊筒表面线速度.在x’*处,物料流速分布中,中心处的速度=0,称驻点.在x’<x’*,正负流速共存,形成旋转运动λ的意义:量纲为一的体积流量,与流量\辊距\辊速相关。
随λ的升高,压力分布曲线变宽变高,吃料与出料处间的流道加长。
冻结分子取向产生机理:进入模腔的物料一般处于高温低剪切状态,但当物料接触到冷模壁后,物料冷凝,致使粘度升高,并在模壁上产生一层不流动的冷冻皮层。
该皮层有绝热作用,使贴近皮层的物料不立即凝固,在剪切应力作用下继续向前流动。
若高分子链一端被冻结在皮层内,而另一端仍向前流动,必然造成分子链沿流动方向取向,且保压时间越长,分子链取向程度越高。
在后来的冷却阶段,这种取向被冻结下来。
可见,分子取向冻结大多不发生在制品中心处,而发生在表皮层以下的那层材料中。
消除(减轻)熔体破裂现象的措施:(1)适当降低分子量,加宽分子量分布;(2)适当升高挤出温度,但应防止交联、降解。
某些情况下如顺丁橡胶可利用低温光滑区挤出;(3)适当降低挤出速度,某些情况下,可利用高速的第二光滑区;(4)用喇叭型的口型,可提高rcrit,可消除死角;(5)加入填充补强剂和增塑剂。
影响熔体挤出破裂行为因素:一是口模的形状和尺寸;二是挤出成型过程的工艺条件;三是挤出物料的性质。
流动曲线:在剪切流动中,表征剪切应力与剪切速率之间的关系的曲线。
流体的流动主要是压力和粘弹力。
流动形式可区分为:压力流和拖曳流.流动和变形之间的关系:流动-液体-粘性-耗散能量-产生永久形变-无记忆效应-牛顿定律-时间过程变形-固体-弹性-贮存能量-形变可以恢复-有记忆效应-虎克定律-瞬时效应体破裂现象的机理分析对于LDPE型熔体,其应力主要集中在口模入口区,且入口区的流线呈典型的喇叭形收缩,在口模死角处存在涡流或环流。
当r较低时,流动是稳定的,死角处的涡流也是稳定的,对挤出物不产生影响,但是,当r>rcrit,入口区出现强烈的拉伸流,造成的拉伸形变超过熔体所能承受的弹性形变极限,强烈的应力集中效应使流道内的流线断裂,使死角区的环流乘机进入主流道而混入口模。
主流线断裂后,应力局部下降,又会恢复稳定流动,然后再一次集中弹性形变能,再一次流线断裂。
这样交替轮换,主流道和环流区的流体轮番进入口模。
两种形变历史和携带能量完全不同的流体,挤出时的弹性松弛行为也完全不同,引起口模出口处挤出物的无规畸变。
对于HDPE型熔体,流动时的应力集中效应主要不在口模入口区,而是发生在口模内壁附近,口模入口区不存在死角循环。
低r时,熔体流过口模壁,在壁上无滑移,挤出过程正常。
当r增高到一定程度,由于模壁附近的应力集中效应突出,此处的流线会发生断裂,又因为应力集中,使熔体贮能大大增加,当能量累积超过熔体与模壁之间的摩擦力的P能承受的极限时,将造成熔体沿模壁滑移,熔体突然增速,同时释放出能量,释能后的熔体再次与模壁粘着,从而再集中能量,再发生滑移,这种过程周而复始,造成聚合物熔体在模壁附近时滑时粘,表现在挤出物上呈现出竹节状或套锥形的有规畸变。
剪切粘度影响因素:1、链结构:前面已经介绍过聚合物的流动是分段进行的,是通过链段相继移动,导致分子链重心沿外力方向移动,从而实现流动,因此分子间作用力小,分子链柔顺性大,分子链中链段数越多而且越短,链段活动能力越大,钻孔洞容易,通过链段活动产生的大分子相对位移的效果也越大,流动性越好。
2、加工条件:粘度对切变速率依赖性与生产实践的关系前面已介绍的切力变稀对高分子材料的加工具有重要意义。
在炼胶,压延,挤出时,胶料流动速度快,切变速率,切应力较大,γ高,粘度低,流动性好,生产快,而当流动停止时,粘度变得很大,有良好的挺性,半成品停放时不易变形,不会发粘,有利于提高质量。
粘度降低,使熔体易于加工,在填充模具时易流过窄小的流道,而且使得注射机,挤出机运转时所需能量减小。
3、配方:填充补强材料和软化增塑材料A 碳黑的影响碳黑用量\粒径\结构性的影响原因: 碳黑粒子为活性填料,表面可吸附几条大分子链,形成类缠结点,阻碍大分子链运动和滑移,体系粘度上升,碳黑用量越多,缠结点越多,流动阻力增大.在用量相等的情况下,粒径小的,表面积大,橡胶与碳黑相互作用增强,粘度增大.B 碳酸钙影响属于无机填料, 降低成本右图对PP影响,随碳酸钙用量增加粘度增大. 原因:刚性粒子,不容易变形,阻力增大,又会增大分子链与碳酸钙颗粒间的摩擦作用.C 增塑剂影响主要用于粘度大\熔点高\难加工的高填充体系,降低粘度\改善流动性.在低剪切速率下,分子量分布宽粘度反而大的原因:当剪切速率较小时,分布宽者,一些特长的分子相对较多,可形成缠结结构比较多,故粘度比较大,当剪切速率增大时,分子量分布宽的试样中,由于缠结结构较高,且易被较高的剪切速率破坏,开始出现“切力变稀”的γc值较低,而且越长的分子随剪切速率增加对粘度下降的贡献越大。