圆的认识--公开课.PPT课件
合集下载
圆的认识ppt课件
很多交通工具如轮胎、轮毂和车盖等都采用 圆形设计,因为这种形状可以减少摩擦和风 阻,提高行驶效率。
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
圆的认识ppt课件
4 .在一个圆中可以画出( )条直径和半径。在同圆(或等圆)中,所有直径都( )所有半径都( ),直径等于半径的( )倍。
练习总结:一、填空
圆心
o
半径
r
直径
d
无数
相等
相等
2
两端都在圆上的 线段叫做直径。 ( ) 圆的直径都是一条直线,半径是一条射线。( ) 所有的直径都相等,所有的半径都相等。( ) 画圆时圆规两脚间的距离是圆的半径。( )
走进圆的王国
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
简约风年终工作总结
CLICK HERE TO ADD A TITLE
说说生活中,哪些地方还能看到圆?
演讲人姓名
十五的月亮圆又圆
这些平面图形是由线段围成的。
01
圆是由 围成的平面图形。
02
曲线
03
车轮为什么要做成圆的?你想知道其中的奥秘吗?
章节一
你会画圆吗?
CHAPTER ONE
圆的画法:
1、把圆规的两脚分开,定好两脚间的距离(即半径3厘米)。
2、把有针尖的一只脚固定在一点(即圆心)上。
3、把装有铅笔尖的一只脚旋转一周,就画出一个圆。
01.
O
01.
圆心
01.
半径 r
01.
直径 d
01.
01.
01.
A
01.
01.
B
01.
C
01.
o
C
D
G
H
M
N
B
F
E
图中哪些是半径?哪些是直径? 哪些不是,为什么?
o
练习总结:一、填空
圆心
o
半径
r
直径
d
无数
相等
相等
2
两端都在圆上的 线段叫做直径。 ( ) 圆的直径都是一条直线,半径是一条射线。( ) 所有的直径都相等,所有的半径都相等。( ) 画圆时圆规两脚间的距离是圆的半径。( )
走进圆的王国
CLICK HERE TO ADD A TITLE
单击此处添加文本具体内容
演讲人姓名
简约风年终工作总结
CLICK HERE TO ADD A TITLE
说说生活中,哪些地方还能看到圆?
演讲人姓名
十五的月亮圆又圆
这些平面图形是由线段围成的。
01
圆是由 围成的平面图形。
02
曲线
03
车轮为什么要做成圆的?你想知道其中的奥秘吗?
章节一
你会画圆吗?
CHAPTER ONE
圆的画法:
1、把圆规的两脚分开,定好两脚间的距离(即半径3厘米)。
2、把有针尖的一只脚固定在一点(即圆心)上。
3、把装有铅笔尖的一只脚旋转一周,就画出一个圆。
01.
O
01.
圆心
01.
半径 r
01.
直径 d
01.
01.
01.
A
01.
01.
B
01.
C
01.
o
C
D
G
H
M
N
B
F
E
图中哪些是半径?哪些是直径? 哪些不是,为什么?
o
《圆的认识》公开课课件
与圆相关的数学问题挑战与探讨
复杂几何图形中的圆
探讨圆与其他几何图形(如三角形、矩形等)的组合问题,求解面 积、周长等。
圆的动态变化
研究圆的半径、位置等参数变化时,圆的性质如何变化。
圆的高级应用
介绍圆在高等数学、物理学等领域的应用,如圆周运动、复平面上的 圆等。
THANKS
谢谢
单位圆法
以坐标原点O为圆心,1为半径作单 位圆,利用三角函数在单位圆上的 性质表示任意角,从而画出对应的 图形。
03
CHAPTER
圆的性质定理与证明
切线长定理及其证明
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等。
证明方法
通过连接圆心和切点,利用切线性质和相似三角形性质进行证明。
切线性质定理及其证明
弦切角推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
与圆相关的线段性质
切线性质
圆的切线垂直于经过切点的半径 。
切线长定理
从圆外一点引圆的两条切线,它 们的切线长相等,圆心和这一点
的连线平分两条切线的夹角。
割线性质
从圆外一点引圆的两条割线,这 一点到每条割线与圆的交点的两
条线段长的积相等。
05
CHAPTER
与圆相关的图形变换与计算
圆的平移与旋转
平移定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形 运动称为平移。
旋转定义
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运 动称为旋转。
圆的平移与旋转特性
圆在平移和旋转过程中,其形状和大小均不发生改变,仅位置和方 向发生变化。
圆的参数方程
01
定义
圆的参数方程是{x=a+r*cosθ, y=b+r*sinθ},其中θ为参数,表示圆上
《圆的认识》公开课优秀教学课件
北京天坛 客家土楼
作业
1、必做题:练习四第1、2 、3题。 2、选做题:练习四思考题。
3、通过圆心且两端都在圆上的线段是直径。直径一般用字母 d表示。
想一想
什么决定圆的位置?什么决定圆的大小? 答:圆心决定圆的位置,
半径的长短决定圆的大小。
直径 d
半径 r· 圆心O源自 r在同一圆里,半径有无数条,长度都相等。
• o
在同一圆里,直径有无数条,长度都相等。
r
r
do
r
r
do
在同一圆里,直径的长度是半径的2倍,半 径的长度是直径的 1 。
长度都( 相等)。
②在同一个圆内,有( 无数)条直径,而且
长度都( 相等)。
③画圆时,圆规两脚间的距离就是圆的(半径)。
④在同一个圆内,d=(2r) 或 r=(
)
d 2
基础练习
4、填表。
d(米) 4
10 2.4 5.6
9
r (米) 2
5
1.2
2.8
4.5
基础练习
5、选择题。
①( B)决定圆的位置,( )A决定圆的大小。
水池的周长约31.4米。
这个池占地面积约是多少?
车轮是圆形的。
生活中到处都 可以发现圆。
1 在生活中经常看到圆,圆和以前学过的 图形有什么不同呢?
圆和学过的图形有什么不同?
长方形
正方形 三角形
平行四边形
梯形
由线段围成的平面图形
圆
由曲线围成的 平面图形
我是圆规,我的一只脚 固定在一个点上,另一只脚 绕着这个点旋转一圈,就画 出了一个圆。
圆规画圆的方法步骤:
1、定长 2、定点 3、旋转一周
《圆的认识》公开课教学课件
05
圆的拓展知识
圆的数学史
圆的定义与性质
介绍圆的基本定义、圆周率的历史发 展以及圆的性质等。
圆与生活
探讨圆在日常生活中的广泛应用,如 车轮、建筑、天文等领域。
圆的趣味问题
要点一
圆与运动
介绍与圆相关的趣味运动项目,如滚铁环、投篮等。
要点二
圆与艺术
探讨圆在艺术创作中的运用,如圆在绘画、雕塑、音乐等 领域的美学价值。
圆的未来发展
圆与科技
探讨圆在科技领域的发展趋势,如圆在机器 人、航天器、新能源等领域的应用前景。
圆与教育
探讨如何将圆的拓展知识融入数学教育中, 以培养学生的创新思维和实践能力。
THANKS
感谢观看
圆的面积计算
总结词
理解圆的面积的计算公式,掌握面积 的测量方法。
详细描述
通过课件演示,让学生了解圆的面积 的定义,并掌握面积的计算公式。同 时,通过实际操作,让学生学会如何 测量圆的面积。
圆与其他形状的组合计算
总结词
理解圆与其他形状的组合计算方法,掌握组合图形的面积和 周长的计算。
详细描述
通过课件演示,让学生了解圆与其他形状的组合图形,并掌 握组合图形的面积和周长的计算方法。通过实例演示,让学 生更好地理解组合图形的计算方法。
《圆的认识》公开课教学课 件
汇报人: 202X-12-26
目录
• 圆的基本概念 • 圆的性质 • 圆的测量与计算 • 圆的实际应用 • 圆的拓展知识
01
圆的基本概念
什么是圆
总结词
描述圆的定义
详细描述
圆是一个平面图形,由一条封闭的曲线围成,曲线上的每一个点都与圆心保持 相同的距离。
圆的形成
《圆的认识》PPT课件 省级重点中学名师公开课获奖课件
苏教版五年级数学下册
圆的认识
教学目标
1.同学们应感受到数学与生活是息息相关 的,感受到数学知识的价值,激发大家 的学习兴趣。
2.让大家能认识画圆的工具,初步学会用 圆规画圆。能应用圆的知识解释一些日 常生活中的现象。
·
· 直径 d
半径 r
O
圆心
图中有几条半径?几条直径?
G
E
C
F
B
M
o
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
r
do
r r
•r do
r
• do
r r
r
•
d=r+r
do
r
d=2r
r=
d 2
口答(填一填,我能行! )
半径 (r) 2 分米 直径 (d) 4 分米
3 米 5 厘米 0.12 米 1.42 厘米 6 米 10 厘米 0.24 米 2.84 厘米
判断对错,并说明理由。
圆的认识
教学目标
1.同学们应感受到数学与生活是息息相关 的,感受到数学知识的价值,激发大家 的学习兴趣。
2.让大家能认识画圆的工具,初步学会用 圆规画圆。能应用圆的知识解释一些日 常生活中的现象。
·
· 直径 d
半径 r
O
圆心
图中有几条半径?几条直径?
G
E
C
F
B
M
o
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
r
do
r r
•r do
r
• do
r r
r
•
d=r+r
do
r
d=2r
r=
d 2
口答(填一填,我能行! )
半径 (r) 2 分米 直径 (d) 4 分米
3 米 5 厘米 0.12 米 1.42 厘米 6 米 10 厘米 0.24 米 2.84 厘米
判断对错,并说明理由。
圆的概念优质课PPT课件
试想一下,如果车 轮不是圆的(比如 椭或正方形的), 坐车的人会是什么
感觉?
议一议、说一说
2、如果车轮做成三角形或正方形的,坐 车的人会是什么感觉?
r
把车轮做成圆形,车轮上各点到车轮中 心(圆心)的距离都等于车轮的半径,当车 轮在平面上滚动时,车轮中心与平面的距离 保持不变,因此,当车辆在平坦的路上行驶 时,坐车的人会感到非常平稳,这就是车轮 都做成圆形的数学道路。圆上的点到圆心的 距离是一个定值
O·
AA
CB
B
O·
A
【探秘之旅三】
劣弧与优弧
小于半圆的弧(如图中的 ⌒AC )叫做劣弧;
大于半圆的弧(用三个字母表示,
⌒ 如图中的 ABC )叫做优弧.
B
弧有三类,分别是 优弧、劣弧、半圆。
O·
A
C
【探秘之旅四】
等圆
·
·
能够重合的两个圆是等圆。 容易看出:半径相等的两个圆是等圆; 反过来,同圆或等圆的半径相等。
合.
确定一个圆的要素:
一是圆心, 圆心确定其位置, 二是半径, 半径确定其大小.
O
A
A
同步练习
r
1、填空:
·O
(1)根据圆的定义,
“圆”指的是“圆周 ”,而不是
“圆面”。
(2)圆心和半径是确定一个位圆置的两个
必需条件,圆心大决小定圆的
,
半径决定圆的
,二者缺一不
可。
议一议、说一说
1、车轮为什么做成圆形的?
【探秘之旅一】 与圆有关的概念
弦
连接圆上任意两点的线段(如图
AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B
O·
感觉?
议一议、说一说
2、如果车轮做成三角形或正方形的,坐 车的人会是什么感觉?
r
把车轮做成圆形,车轮上各点到车轮中 心(圆心)的距离都等于车轮的半径,当车 轮在平面上滚动时,车轮中心与平面的距离 保持不变,因此,当车辆在平坦的路上行驶 时,坐车的人会感到非常平稳,这就是车轮 都做成圆形的数学道路。圆上的点到圆心的 距离是一个定值
O·
AA
CB
B
O·
A
【探秘之旅三】
劣弧与优弧
小于半圆的弧(如图中的 ⌒AC )叫做劣弧;
大于半圆的弧(用三个字母表示,
⌒ 如图中的 ABC )叫做优弧.
B
弧有三类,分别是 优弧、劣弧、半圆。
O·
A
C
【探秘之旅四】
等圆
·
·
能够重合的两个圆是等圆。 容易看出:半径相等的两个圆是等圆; 反过来,同圆或等圆的半径相等。
合.
确定一个圆的要素:
一是圆心, 圆心确定其位置, 二是半径, 半径确定其大小.
O
A
A
同步练习
r
1、填空:
·O
(1)根据圆的定义,
“圆”指的是“圆周 ”,而不是
“圆面”。
(2)圆心和半径是确定一个位圆置的两个
必需条件,圆心大决小定圆的
,
半径决定圆的
,二者缺一不
可。
议一议、说一说
1、车轮为什么做成圆形的?
【探秘之旅一】 与圆有关的概念
弦
连接圆上任意两点的线段(如图
AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B
O·
5.1《圆的认识》课件(21张PPT)
有了轮子, 运输胡萝卜 真省力呀!
课堂总结
这节课我们学习了什么?通过这节课的学习,你有什么收获?
填一填。
(1)在一圆中,半径有(无数)条,直径有(无数 )条,直径的长度是
半径的( 2倍 ),半径的长度是直径的( 一半)。 (2)圆的位置由( 圆心)决定,圆的( 大小)由半径决定。 (3)填表。(单位:cm)
(1)小圆的直径是多少厘米? 15÷(2+1)=5(cm) 答:小圆的直径是5 cm。
(2)长方形的面积是多少平方厘米? 5×2=10(cm) 15×10=150(cm2) 答:长方形的面积是150 cm2。
布置作业
(1)教材58页“做一做”1、2题。 (2)教材60页1、2题。
5.1《圆的认识》
圆在生活中随处可见,让我们一起来欣赏一下吧!
定半径
定圆心
旋转一周
圆心 O
圆心到圆上任意一点的距离都相等。
连接圆心和圆上任意一点的线段叫做半径, 半径一般用字母r表示。
圆心 半径r O
在同一圆里有无数条半径,所有半径的长度相等。 `
圆心 O 直径d
通过圆心,两端点在圆上,长度相等。
r
6
2.8
5.6
12.5
d
12
0.39
0.78
25
判一判。(对的画“√”,错的画“×”)
(1) 圆 的 半 径 和 直 径 分 别 相 等 。
(2)两端都在圆上的线段就是直径。
× (× ) ()
看图填空。 (1)圆的直径是(3 cm ),圆的半径是1(.5 cm )。
(2)半圆的半径是(5 cm ),半圆的直径是(10 cm )。 (3)长方形的长是(8 cm ),长方形的宽是(4 cm )。
课堂总结
这节课我们学习了什么?通过这节课的学习,你有什么收获?
填一填。
(1)在一圆中,半径有(无数)条,直径有(无数 )条,直径的长度是
半径的( 2倍 ),半径的长度是直径的( 一半)。 (2)圆的位置由( 圆心)决定,圆的( 大小)由半径决定。 (3)填表。(单位:cm)
(1)小圆的直径是多少厘米? 15÷(2+1)=5(cm) 答:小圆的直径是5 cm。
(2)长方形的面积是多少平方厘米? 5×2=10(cm) 15×10=150(cm2) 答:长方形的面积是150 cm2。
布置作业
(1)教材58页“做一做”1、2题。 (2)教材60页1、2题。
5.1《圆的认识》
圆在生活中随处可见,让我们一起来欣赏一下吧!
定半径
定圆心
旋转一周
圆心 O
圆心到圆上任意一点的距离都相等。
连接圆心和圆上任意一点的线段叫做半径, 半径一般用字母r表示。
圆心 半径r O
在同一圆里有无数条半径,所有半径的长度相等。 `
圆心 O 直径d
通过圆心,两端点在圆上,长度相等。
r
6
2.8
5.6
12.5
d
12
0.39
0.78
25
判一判。(对的画“√”,错的画“×”)
(1) 圆 的 半 径 和 直 径 分 别 相 等 。
(2)两端都在圆上的线段就是直径。
× (× ) ()
看图填空。 (1)圆的直径是(3 cm ),圆的半径是1(.5 cm )。
(2)半圆的半径是(5 cm ),半圆的直径是(10 cm )。 (3)长方形的长是(8 cm ),长方形的宽是(4 cm )。
《圆的认识》公开课课件
归纳法
通过大量实例和观察,归纳出一般 性的结论。在圆的证明中,有时可 以通过归纳法来证明一些性质。
圆的定理和推论
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的弧。这个定理是圆 的基本性质之一,在圆的证明和
作图中非常有用。
切线长定理
经过圆外一点的切线与切点之间 的线段长等于过切点的直径与该 点的距离。这个定理在解决与切
圆与三角形的相切
当一个三角形与圆相切时,切线 与半径垂直。利用这个性质,我 们可以解决一些几何问题。
圆与其他图形的结合
圆与直线的位置关系
根据圆心到直线的距离,我们可以判 断圆与直线是相交、相切还是相离。 这些位置关系在解决几何问题中非常 有用。
圆与多边形的结合
在一个多边形中,如果所有顶点都在 同一个圆上,则这个多边形称为圆内 接多边形。通过圆内接多边形的性质 ,我们可以研究圆的性质。
圆的面积是指圆所占平面的大小,通常用字母A表示。
圆的面积的计算公式
A = πr^2,其中r表示圆的半径。
圆的面积的应用
通过圆的面积公式,我们可以计算出圆的面积,进而求出圆内接多 边形的面积等。
圆的相关计算
圆的相关计算包括:求圆心角、圆弧长、圆内接多边形的面 积等。这些计算都需要用到圆的半径和直径,以及相关的数 学公式和定理。
圆与圆的关系
内含、相交、外离、同心
内含:一个圆完全位于另 一个圆的内部。
外离:两个圆没有公共的 交点。
相交:两个圆有公共的交
同心:两个圆有共同的圆
•·
点。
心。
圆在生活中的应用
轮胎、餐具、建筑、天文
轮胎:车辆的轮胎设计为 圆形,可以保证平稳滚动 。
建筑:圆形窗户和门框在 建筑中常用于装饰和结构 。
通过大量实例和观察,归纳出一般 性的结论。在圆的证明中,有时可 以通过归纳法来证明一些性质。
圆的定理和推论
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的弧。这个定理是圆 的基本性质之一,在圆的证明和
作图中非常有用。
切线长定理
经过圆外一点的切线与切点之间 的线段长等于过切点的直径与该 点的距离。这个定理在解决与切
圆与三角形的相切
当一个三角形与圆相切时,切线 与半径垂直。利用这个性质,我 们可以解决一些几何问题。
圆与其他图形的结合
圆与直线的位置关系
根据圆心到直线的距离,我们可以判 断圆与直线是相交、相切还是相离。 这些位置关系在解决几何问题中非常 有用。
圆与多边形的结合
在一个多边形中,如果所有顶点都在 同一个圆上,则这个多边形称为圆内 接多边形。通过圆内接多边形的性质 ,我们可以研究圆的性质。
圆的面积是指圆所占平面的大小,通常用字母A表示。
圆的面积的计算公式
A = πr^2,其中r表示圆的半径。
圆的面积的应用
通过圆的面积公式,我们可以计算出圆的面积,进而求出圆内接多 边形的面积等。
圆的相关计算
圆的相关计算包括:求圆心角、圆弧长、圆内接多边形的面 积等。这些计算都需要用到圆的半径和直径,以及相关的数 学公式和定理。
圆与圆的关系
内含、相交、外离、同心
内含:一个圆完全位于另 一个圆的内部。
外离:两个圆没有公共的 交点。
相交:两个圆有公共的交
同心:两个圆有共同的圆
•·
点。
心。
圆在生活中的应用
轮胎、餐具、建筑、天文
轮胎:车辆的轮胎设计为 圆形,可以保证平稳滚动 。
建筑:圆形窗户和门框在 建筑中常用于装饰和结构 。
《认识圆》课件
算。
圆在计算机图形学中也有重要应 用,例如绘制圆形、圆形渐变等
都需要用到圆的性质。
圆在经济学、统计学等其他学科 中也有一定的应用,例如在分析 数据时可以用圆来表示数据的集
中趋势和离散程度。
THANKS
感谢观看
03
圆的面积与周长
圆的面积计算公式
总结词
圆的面积计算公式是圆的半径的平方与π 的乘积。
VS
详细描述
圆的面积计算公式为A=πr^2,其中A表 示圆的面积,r表示圆的半径,π是一个常 数,约等于3.14159。这个公式是圆的面 积计算的基础,通过它可以将圆的半径或 直径与面积联系起来。
圆的周长计算公式
圆上所有点到定点距离等于定长
在一个平面内,有一个固定的距离(半径),到 这个平面内所有点的距离都等于这个定长,这个 图形就是圆。
圆的性质
圆心与半径唯一确定一个圆
一个圆的圆心和半径是唯一的,不同的圆有不同的圆心和半径。
直径是半径的两倍
在一个圆中,直径的长度是半径的两倍。
圆心角与弧的关系
在同一个圆或等圆中,相等的圆心角所对的弧相等。
圆的分类
01
02
03
按照半径长度分类
按照半径的长度,可以将 圆分为大圆和小圆。
按照圆心位置分类
按照圆心的位置,可以将 圆分为同心圆、同轴圆和 同径圆。
按照形状分类
按照形状,可以将圆分为 正圆、椭圆和不规则圆等 。
02
圆的性质与定理
圆周角定理
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹弧之间的关系。
圆在数学中的运用
总结词
圆是数学中一个非常重要的概念,它 在几何学、解析几何和微积分等领域 都有广泛的应用。
圆在计算机图形学中也有重要应 用,例如绘制圆形、圆形渐变等
都需要用到圆的性质。
圆在经济学、统计学等其他学科 中也有一定的应用,例如在分析 数据时可以用圆来表示数据的集
中趋势和离散程度。
THANKS
感谢观看
03
圆的面积与周长
圆的面积计算公式
总结词
圆的面积计算公式是圆的半径的平方与π 的乘积。
VS
详细描述
圆的面积计算公式为A=πr^2,其中A表 示圆的面积,r表示圆的半径,π是一个常 数,约等于3.14159。这个公式是圆的面 积计算的基础,通过它可以将圆的半径或 直径与面积联系起来。
圆的周长计算公式
圆上所有点到定点距离等于定长
在一个平面内,有一个固定的距离(半径),到 这个平面内所有点的距离都等于这个定长,这个 图形就是圆。
圆的性质
圆心与半径唯一确定一个圆
一个圆的圆心和半径是唯一的,不同的圆有不同的圆心和半径。
直径是半径的两倍
在一个圆中,直径的长度是半径的两倍。
圆心角与弧的关系
在同一个圆或等圆中,相等的圆心角所对的弧相等。
圆的分类
01
02
03
按照半径长度分类
按照半径的长度,可以将 圆分为大圆和小圆。
按照圆心位置分类
按照圆心的位置,可以将 圆分为同心圆、同轴圆和 同径圆。
按照形状分类
按照形状,可以将圆分为 正圆、椭圆和不规则圆等 。
02
圆的性质与定理
圆周角定理
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹弧之间的关系。
圆在数学中的运用
总结词
圆是数学中一个非常重要的概念,它 在几何学、解析几何和微积分等领域 都有广泛的应用。
人教版圆的认识ppt课件
圆的几何变换
总结词
描述圆的几何变换
详细描述
圆的几何变换包括平移、旋转和对称。平移是将圆沿任意方向移动一定的距离 ,旋转是将圆绕圆心旋转一定的角度,对称则是关于某一直线或点进行对称。
圆与其他图形的几何变换
总结词
描述圆与其他图形的几何变换
详细描述
圆与其他图形可以通过几何变换进行相互转换。例如,将圆进行平移或旋转可以 得到椭圆,将圆进行对称可以得到扇形等。这些变换在几何学中有着广泛的应用 。
03 圆上所有点到定点连线段相等
从圆上任意一点到圆心的连线段都相等,这个线 段称为直径。
圆的基本性质
01 圆心角与弧的关系
在同一个圆或等圆中,相等的圆心角所对的弧也 相等。
02 弦与直径的关系
通过圆心的弦是直径,直径将圆分成两个相等的 部分。
03 弦与弦心距的关系
弦的中垂线经过圆心,弦心距等于弦的一半。
圆与椭圆的交点
将圆的方程与椭圆的方程联立,解出交点 的坐标。
圆与双曲线的交点
将圆的方程与双曲线的方程联立,解出交 点的坐标。
THANKS
感谢观看
直径
经过圆心的弦称为直径,直径是弦 中最长的。
切线与弦的关系
01
切线与弦垂直
切线垂直于过切点的弦,即切线与弦互相垂直。
02
切点与弦的中点的关系
切点是弦的中点与圆心连线的交点,即中点到切 点的距离等于半径。
05
圆的方程与作图方法
圆的方程
圆的一般方程
$x^2 + y^2 + Dx + Ey + F = 0$,其中D、E、F 为常数,D^2 + E^2 - 4F > 0。
《圆的认识》ppt课件
0.7厘米 2.6米
直径d 0.4米 0.8分米 2.06厘米 1.4厘米 5.2米
达标练习
3.找出下面圆中的直径,并用彩笔描出来。
达标练习
4.画出下面各图形的对称轴。
达标练习
5.下图中,圆的直径是多少厘米?半径呢?
21厘米
半径:21÷(2×3+1)=3(厘米) 直径:3×2=6(厘米)
答:圆的直径是6厘米,半径是3厘米。
北京版·第五单元
圆的认识
小学数学·六年级(上)
学习目标
在观察、操作、画图等活动中感受并发现圆 01 的有关特征。
知道什么是圆的圆心、半径和直径,能借 02 助圆规画圆,会应用圆的知识解释一些日
常生活现象。 03 在探索与发现的过程中,发现规律,培养
观察、比较、分析、综合和抽象概括能力。
重点 难点
课后作业
作业:
1.跟大家分享你这节课你所学的知识。 2.从课时练中选取。
Thank you!
重点 难点
认识圆的各部分名称,理解在同一个圆内直径与半 径的关系。
了解、掌握画圆的多种方法,初步学会 用圆规 画圆。
新课导入
新课导入
探索新知
从奇妙的自然界到文明的人类社会,从精巧的手工艺品到气 势宏伟的各种建筑……到处都可以看到大大小小的圆,你能说一说 在生活中我们见到的圆吗?
探索新知
圆和以前学过的图形有什么不同?
探索新知
一、定长 二、定点 三、一只脚旋
转一周
2厘米
探索新知
认识圆的圆心、半径和直径
直径d
· O 圆心
连接圆心和圆上任意一点的线段叫作半径。 ·
通过圆心并且两端都在圆上的线段叫作 直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
15
• 把用圆规画的圆剪下来,对折,打开再换 个方向对折,再打开,反复几次之后,你 发现了什么?
所有的折痕都相交于圆心这一点。
-
16
1·圆中心的这一点叫做圆心,一般用大写字母o表示。 2·连接圆心和圆上任意一点的线段叫做半径。一般用小写 字母r表示。
d
r
•
o
3·通过圆心并且两端都在圆上的线段叫做直径,一般用小写
同圆内,半径有无数条,长度都相等。
-
19
• o d
同圆内,直径有无数条,长度都相等。
-
20
r•
r
do
-
21
r r
•r do
-
22
r
• do
r r
-
23
r
•
d=r+r
do
r
d=2r
r=
d 2
-
24
找一找 在下图中找出直径和半径
c
b
•
a
fo
g
e
-
25
考考你:判断对错
× (1)圆的直径是半径的2倍。( ) × ··· (2)两端都在圆上的线段叫做直径。( )
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子-圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这 就成了最初的车子。
会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是 神赐给人的神圣图形。一直到两千多年前我国的墨子才给圆下了一个 定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都 相等。这个定义比希腊数学家欧几里得给圆下定义要早100年。
√ (3)画圆时,圆心决定圆的位置。( )
(4)要画直径是4厘米的圆,圆规两脚间的距离是4
× 厘米。( ) × (5)半径2厘米的圆比直个边长 8 厘米的正方形里,画一个 最大的圆,这个圆的直径是( 8 )厘米,半径 是( 4 )厘米。
8厘米
2、在一个长 6 分米、高 4 分米的长方形里, 画一个最大的圆,这个圆的半径是( 2 )分米。
-
1
-
2
-
3
(这些平面图形是由线段首 尾连接所围成的.)
圆是由 曲线 所围成的平面图 形。
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
• 学生分组利用手中的材料画圆,比 一比哪个小组的方法最多。
用圆规画圆的步骤:
1.定点 ─圆心 决定 圆的位置 2.定长 —半径 决定 圆的大小 3.旋转.
-
29
课堂小结
通过本节课的学习,你在 知识上有哪些收获?
-
30
1.必做题:习题2 . 1第2题. 2.选做题:练习册P59第12题.
-
31
我们从周围的事物中发现了圆,了解、掌 握了圆的特点,知道在日常生活中如何利 用圆。在宇宙中圆无处不在,圆的许多秘 密人们还没有发现。同学们要努力探索圆, 为科技进步作出你们的贡献!
-
27
的为把?什圆车形车么形轮行轴车行作吗应轮吗成?装要?方椭在作那成里圆?
-
28
圆形,是一个看来简单,实际上是很奇妙的圆形。一万八千年前
的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个 转盘上制成的。
古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的 时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着 走省劲得多。
字母d表示。
-
17
动手折一折,画一画,量一量,比一 比,在小组里讨论: (1)在同一个圆里可以画多少条半径,多少条直径? (2)在同一个圆里,半径的长度都相等吗?直径呢? (3)同一个圆的直径和半径有什么关系? (4)圆是轴对称图形吗?它有几条对称轴?
并说出你用什么方法得到的结论。
-
18
r
• o
-
32