程序升温技术介绍_图文

合集下载

程序升温技术

程序升温技术

TPD理论
均匀表面的TPD理论 不均匀表面的TPD理论
d
催化循环包括扩散,化学吸附,表面反应,脱附和反向扩散五个步骤。化学吸附是 多相催化过程中的一个重要环节,而且反应分子在催化剂表面上的吸附,决定着反 应分子被活化的程度以及催化过程的性质,例如活性和选择性。
化学吸附与催化的关联(1):一个固体物质产生催化活性的必要条件,是至少有一个 反应物在表面进行化学吸附(一个固体物质只有当其对反应物分子(至少一种)具有化 学吸附能力时,才有可能催化其反应)。(2) 为了获得良好的催化活性,固体表面对 反应物分子的吸附要适当(如果一个反应能被若干固体物催化,则单位表面上的反 应速率,在相同覆盖度时与反应物的吸附强度成反比)。
程序升温分析方法是由Amenomiya和Cvetanovic在闪脱技术的基础上 发展和完善起来的一种非稳态分析测试方法。早期的研究主要集中在 TPD和TPR方面。当被气体覆盖的催化剂以一定的速度进行升温时, 吸附在催化剂表面的气体分子逐渐脱附,表面覆盖度逐渐随之下降, 在某一脱附温度下会达到最大值。
总 结
表面吸附中心的类型,密度和能量分布;吸附分子和吸附 中心的键合能和键合态 催化剂活性中心的类型,密度和能量分布;反应分子的动 力学行为和反应机理
活性组分和载体以及助催化剂之间的相互作用
各种催化效应:协同效应,溢流效应,合金化效应,助催 化效应,载体效应等,密度和能量分布;吸附分子和吸附中心的键合能和键 合态 2)催化剂活性中心的类型,密度和能量分布;反应分子的动力学行为和反应机 理 3)活性组分和载体,活性组分和活性组分,活性组分和助催化剂,助催化剂和 载体之间的相互作用 4)各种催化效应-协同效应,溢流效应,合金化效应,助催化效应,载体效应等
5)催化剂失活和再生

第六章 程序升温分析技术(上)

第六章 程序升温分析技术(上)

向扩散;
或吸附剂具有双孔分布也都能引起多脱附峰的出现;。
不同的TPD峰彼此相互分离,则可把每个峰看成是具有等同能量的各个 表面中心所显示的TPD峰,中心的各种参数:Ed(或△Ha ),v,n等。

1.2.1 多吸附中心模型

ra为吸附速率。各中心的脱附速率方程为:
d1 n ka (1 1 ) n cG kd 11 dt
d1 X dt
2
d 2 ) dt
TPD过程的边界条件为: t=0, T=T0 0 若 θ < X ,即 θ = θ 和 θ 1=0

0
0
1
2
0
T
2
பைடு நூலகம்
X2
若 θ 1 > X2 ,即 θ
0
0
2
=1 和
θ 0T - X2 θ 1= X1
0
1.2.1 多吸附中心模型
不能通过独立的模拟每种中心的TPD规律来描述多中心TPD

吸附剂(含催化剂)表面不均匀主要表现在表面中心的能量有一定的分 布,即表面中心的能量是不均一的,各部位的能量不同。
不同能量中心在表面的分布情况很复杂,比较简单的情况比如表面上只 有两种不同的中心,两种中心的能量强度相差悬殊,这时在TPD图上显 示的是彼此分离的两个峰。

1.2.3 脱附活化能分布与TPD曲线的关系
n 1
(1-7) (1-8)
n=1时,
Tm和Fc有关时,TPD过程伴随着在吸附,如果加大Fc使Tm和Fc无关, 即得式(1-7)、(1-8)。这时,TPD变成单纯的脱附过程。 通过改变Fc可以判断TPD过程有无再吸附发生以及消除再吸附现象的发生。 对于脱附动力学是一级(n=1)的,TPD谱图呈现不对称图形, 脱附动力学是二级(n=2)的,TPD谱图呈现对称形,因此可以从图形的 对称与否,判定n的值。

催化剂程序升温技术课件

催化剂程序升温技术课件
催化剂程序升温技术课件
• 催化剂程序升温技术实际应用案 • 催化剂程序升温技术前沿进展与
技术定义和历史发展
定义
历史发展
技术优点和应用范围
优点 • 高效性:可以在较短时间内评估催化剂的活性,提高研发效率。
• 精确性:通过程序控制温度,可以精确测量催化剂在不同温度下的活性。
技术优点和应用范围
• 适用性广:适用于多种类型的催化剂和反应体系。
技术优点和应用范围
01
02
03
04
技术原理和基本流程
技术原理和基本流程
基本流程 1. 准备阶段:选择合适的催化剂和反应物,设定升温程序。
2. 升温阶段:按照设定的程序,将催化剂和反应物加热至设定温度。
技术原理和基本流程
3. 反应阶段 4. 数据记录与分析 5. 结果评估与应用
选择性氧化
该技术还可应用于选择性氧化反应。例如,通过精确控制反应温度和催化剂组成,可以选择性地将丙烯氧化为丙 烯醛或丙烯酸,实现产品的高选择性和收率。
环境催化领域应用
柴油车尾气净化
工业废气处理
前沿技术进展介绍
新型催化剂材料
近年来,研究者们致力于开发与探索新 型催化剂材料,以提高催化剂的活性、 选择性和稳定性。例如,金属有机框架 (MOFs)材料和多孔碳材料等,这些新 型材料在催化剂程序升温技术中展现出 巨大的潜力。
中的可靠性。
催化剂选择性评价
根据程序升温曲线中的产物分布 数据,分析催化剂的选择性,即 其对不同反应物的选择性催化能 力,以指导催化剂的优化设计。
数据报告与结果展示
数据可视化 数据报告 结果展示
石油化工领域应用
烃类裂解
深度脱硫
化学反应工程应用

气相色谱法分析-程序升温操作技术(二)

气相色谱法分析-程序升温操作技术(二)

气相色谱法分析-程序升温操作技术(二)程序升温条件下,表示柱效的理论塔板数按下式计算:式中,tTR为溶质在保留温度TR的恒温条件下测得的保留时光(它不是在程序升温过程达到保留温度时所需的保留时光tR) ;Wb(p)为溶质在程序升温运行中,在保留温度洗脱精彩谱峰的峰底宽度。

式(8-38)中不能用tR 代替tTR的缘由,是由于在程序升温过程中存在初期冻结。

惟独当柱温升高临近TR时,溶质蒸气才快速通过色谱柱,此时影响色谱峰形加宽的各种因素才发挥作用,因此若用tR来计算,n不能表示真正的柱效。

2.真正分别度在PTGC分析中两个相邻组分的分别度可按下式计算:式中,tR(2)和tR(1)分离为保留温度TR2和TR1对应的两个组分的保留时光;Wbl(p)和Wb2(p)分离为与TR1和TR2对应的两个组分色谱峰的基线宽度。

PTGC分析中的真正分别度Ri的表达式为式中,TR2和TR1为两个相邻组分的保留温度;tTR1和tTR2分离为柱温在TR1和TR2的恒温条件下,测得组分(1)和(2)的保留时光;r为升温速率。

分别度和真正分别度的关系为式中,n为程序升温条件下的理论塔板数。

3.操作条件的挑选 PTGC中的操作条件为升温方式、初始温度、终止温度、升温速率、载气流速、柱长等。

影响分别的主要因素是升温速率和载气流速。

(1)升温方式对沸点范围宽的同系物多采纳单阶线性升温。

如样品中含多种不同类型的化合物,可用法多阶程序升温。

现在性能完备的气相色谱仪可实现3~8阶程序升温。

(2)初始温度通常以样品中最易挥发组分的沸点附近来确定初始温度。

若选得太低会延伸分析时光,若选得太高会降低低沸点组分的分别度。

普通通用仪器,最低的T0就是室温,也可通入液氮降至更低温度的T0。

此外还应按照样品中低沸点组分的含量来打算初始温度保持时光的长短,以保证它们的彻低分别。

(3)终止温度它是由样品中高沸点组分的保留温度和固定液的最高用法温度打算的。

程序升温技术-..

程序升温技术-..
程序升温技术
化学吸附
• 化学吸附在多相催化中占有非常重要的地位。 因为多相催化反应是多步骤过程,其中某些步 骤是在吸附相中进行的。分子在吸附相中的行 为决定着催化过程的本质。 • 多相催化反应的实现要通过五个步骤:(1) 反应 物向催化剂表面扩散;(2) 反应物在催化剂表面 吸附;(3) 在吸附层中进行表面反应;(4) 反 应生成物由催化剂表面脱附;(5) 生成物扩散后 离开邻近催化剂的表面区。
征该氧化物的性质。
两种氧化物混合在一起,如果在TPR过程中每一种氧化 物保持自身还原温度不变,则彼此没有发生作用。 反 之,发生了固相反应的相互作用,原来的还原温度也要 变化。
TPR应用1
CeO2-ZrO2间的 固相反应
随着球磨时间增加, 高温峰下降,低温 峰上升且向高温移 动 XRD:长时间球磨 后,CeO2-ZrO2间发 生相互作用 固熔体Ce0.5Zr0.5O2 形成
TPR应用2
5%,两个TPR峰 5%,出现第三个峰, 表示 和不变, 峰温和强度随 负载量剧增。
15% 10% 5% 3%
XRD:5%后出现晶相CuO
和峰为小晶粒CuO,高分 散,CeO2相互作用大 是大晶粒CuO,还原温度高
2%
CuO/CeO2催化剂的TPR谱
20oC(5%O2 )再
在反应升温速率受控的条件下,连续检测反应体系
输出变化的一种表征方法
一种较为简易可行的动态分析技术
技术前提:程序升温技术、即时检测技术
作用
在研究催化剂表面上分子在升温时的脱附行为和各种反 应行为的过程中,可以获得以下重要信息: 表面吸附中心的类型、密度和能量分布;吸附分子和 吸附中心的键合能和键合态 催化剂活性中心的密度和能量分布;反应分子的动力 学行为和反应机理 活性组分和载体、活性组分和活性组分、活性组分和 助催化剂、助催化剂和载体之间的相互作用 各种催化效应——协同效应、溢流效应、合金化效应、 助催化效应、载体效应等

程序升温技术

程序升温技术

c
b a
甲酸伸缩震动 甲酸根伸缩震动
因此,可以知道有两种吸附:一种是被 吸附的分于在吸附前后结构变化不大, 由 分子间作用力(范氏力)引起的较弱吸附,称 为物理吸附,它和蒸气凝聚成液体的相变 很相似,如上述甲酸。另一种是分子在表 而上被强烈吸附,分子结构发生了变化, 叫做化学吸附,如甲酸根离子。 化学吸附中起作用的是化学键力。化学 吸附的进行和一般化学反应一样,总是有 着原有化学键的破坏和新化学键的生成。
由于化学吸附象化学反应一样只能 在特定的吸附剂吸附质之间配对进行, 所以具有专一性(specificity),并且在表 面上只能吸附一层 。相反,物理吸附 由于是范氏力起作用,而范氏力是在同 类或不同类的任何分了间都存在的,所 以是非专一性的.在表面上上可吸附多 层。
物理吸附与化学吸附的主要差别
物理吸附
范德华力 (无电子转移)
化学吸附
共价键或静电力(电子转移)
吸附热:1030kJ/mol 一般现象,气体冷凝 真空可除去物理吸附 可发生多层吸附 临界温度时明显发生 吸附速率快,瞬间发生 整个分子吸附 吸附剂影响不大 在许多情况下两者有界限
吸附热:50960kJ/mol 特定的或有选择性的 加热和真空除去化学吸附 永不超过单层 在较高温度时发生
• 静态N2吸附容量法一直是公认的测定比 表面大于1m2/g样品的标准方法,如 1969年英国的国家标准BS4359及美国 于1982年正式执行的ASTM D3663-78 都是如此。参考这些方法,我国于1985 年7月亦审查制订了我国的催化剂、吸 附剂比表面测定的国家标准方法。
2.低温氪吸附法 3.静态重量法 比表面计算方法的进展,v-t作图法及v-as作 图法 虽然测定比表面通常使用BET两常数 公式已经足够,但如果用de Boer等人建立 起来的v-t作图法,或用K.S.W.Sing提出的 v-as作图法,就可以把样品中的微孔吸附、 中孔吸附以及毛细凝聚现象区别开来。从 而可以对样品的吸附现象及其表面织构有 进一步深入的了解。

程序升温

程序升温

程序升温(1)在等温色谱分析(isothermal chromatographic analysis)中,对化学组成相似的化合物来说,保留时间与溶质沸点成指数关系。

即使对沸点范围不宽的样品,保留时间与峰宽也会随着组分沸点的增加而迅速增加。

结果是早流出的峰挤在一起,分离很差;晚流出的峰矮胖,因而可检出度很差。

这个问题可以用程序升温的方法来解决。

即使柱温按一定的规律升高。

在最简单的情况下,程序升温是使温度沿着一根线性的温度一时间曲线上升,即单位时间内使温度上升一定度数。

也可以在程序的开始和结束部分使温度在一定时间中保持一定值。

这种等温阶段也可以是在程序的中间。

当样品的沸点范围较大时,只有程序升温法才能使我们在适当的时间内得到最好的分离。

程序升温法趋向于消除保留时间与组分沸点之间的对数关系,在有些最佳条件下这个关系成了近似线性的。

在温度升高的过程中,各组分的峰宽只是缓慢地增加。

在气相色谱中程序升温是应用最广泛的技术。

在程序升温中温度可用机械的方法或微处理机来控制升高。

在选择一个程序时,各参数要通过反复试验方法(trial and error)确定。

普遍的原则是:在选择起始和终了温度时,应考虑色谱图中最初流出的峰的分离(起始温度不太高),同时避免使分析时间不必要地延长(终了温度不太低)。

升温速率(dT/dt)应兼顾最大分离度(这要求dT/dt小)和最短分离时间(这要求dT/dt大)。

应调节终了温度丁,使最后一个峰恰在柱温在T时流出。

程序升温结束后柱温维持为丁时继续流出的峰宽度迅速增加,但分离度可能比程序升温时好些。

在程序升温中,对温度上升范围的唯一实际的限制是固定相的热稳定性和载气流量的变化。

利用耐高温的或交联键合的固定相,最高使用温度范围可大大改善。

对于恒压控制的仪器,当温度上升时载气流速将下降,这会影响流量敏感性检测器的响应。

为了这个原因对于程序升温操作用恒流量控制的仪器较好。

利用两根一样的柱子同时用不同的方式检测,在对组分敏感的检测器的响应中扣除对组分不敏感的检测器的响应。

程序升温气相色谱

程序升温气相色谱
3.气相色谱法的应用范围:
多组分宽沸程样品的分离:香料、酒类等。 恒量分析
程序升温气相色谱法
第一节 方法概述
1.方法特点: 适用对象:多组分、沸点范围宽的 样品。 溶剂效应:气捕集技术。
2.程序升温方式:
单阶程序升温 多阶程序升温
3.程序升温与恒温气相色谱法的比较: IGC与PTGC的比较
参数
LGC
PTGC
<100%
100%-400%
进样量
<1-5μl
≤10μl
进样速度
对第一个色谱峰,进样时间应小于0.05Wh/2(半峰宽)
进样方式
直接进样 分流进样 柱上进样
直接进样,分流-不分流进样,柱上进样,多维柱切换进样,顶空和裂解器进样
载气纯度
无严格要求
需高纯载气
峰容量
≤பைடு நூலகம்0个组分
>10个组分
固定相选择
可广泛选用固定相
只能选用耐高温、低流失固定相
对色谱峰的检测
对保留时间长的组分检测较不灵敏
随温度速率增加,可改进对保留时间长的高沸点组分的检测灵敏度
载气流速控制方式
恒压
恒流(使用稳流阀)
分析速度


第二节 基本原理
保留时间 初期冻结 有效柱温 程序升温的操作参数
第三节 操作条件的选择
1.操作条件的选择 升温方式 起始温度 终止温度 升温速率 载气流速 柱长:
2.对程序升温的要求
载气的纯化和控制 耐高温固定液的使用 SE-30(350℃)、OV-101(350℃)、ApiezonL(300℃)、OV-17(300℃)、PEG-20M(250℃)

程序升温还原课件

程序升温还原课件

实验步骤
样品装填
将处理好的样品装入石英管中,确保 样品均匀分布在石英管中。
程序升温还原实验
设置合适的升温程序,开始进行还原 反应。在反应过程中,需要监控温度 、压力等参数,并记录数据。
数据整理与分析
对实验数据进行整理、分析,得出相 应的结论。
结果讨论与改进
根据实验结果进行讨论,提出改进措 施,为后续的 Nhomakorabea验提供参考。
案例二:环境科学领域的应用
总结词
探究污染物在程序升温还原过程中的转化和去除
详细描述
环境科学领域中,程序升温还原技术常用于研究有机污染物的热解和还原反应, 以及金属氧化物的还原过程。这种方法有助于理解污染物在环境中的迁移转化规 律,为污染治理和环境修复提供技术支持。
案例三:能源科学领域的应用
总结词
结果应用
将分析结果应用于实际问题解决或科学研究中,发挥 数据的价值。
04
实验案例展示
案例一:材料科学领域的应用
总结词
研究材料在程序升温还原过程中的性质变化
详细描述
通过程序升温还原实验,可以研究金属材料在加热和冷却过程中的相变行为、 微观结构和力学性能的变化。这种方法在材料科学领域中广泛应用于新型材料 的开发和优化。
推断性统计
运用回归分析、方差分析等方法,探究数据之间的关联和规律。
可视化分析
利用图表、图像等形式展示数据,帮助直观理解数据分布和变化 趋势。
结果解读与报告撰写
结果解读
根据数据分析结果,解释数据背后的原因和意义,得 出结论。
报告撰写
按照规范的格式和要求,将实验目的、方法、结果和 结论等撰写成完整的实验报告。
文末列出
在文末列出参考文献时,需要按照规定的格式(如APA、MLA等 )列出所有引用的文献,包括作者、文章标题、刊物名称、发表

程序升温分析技术(下)

程序升温分析技术(下)

2.1.2 程序升温吸附脱附法
说明:CO在Pt、Pt3Sn和PtSn上的TPD曲线 Pt和Sn形成合金后,TPD峰向低温方向位移, Sn的含量增加后,高温峰消失。该现象表明, Pt和Sn之间产生了电子配位体效应,Sn削弱 了Pt吸附CO的性能。 从TPD曲线下面积的变化表明,Sn对Pt还能 起稀释作用并于表面富集,由于表面上Pt量 减少,使Pt吸CO量也减少,这是Sn对Pt表现 出来的集团效应。 根据Pt-Sn 合金吸附CO量,可以推算合金表 面的组成。如果合金中的惰性成分对活性金 属不起电子配位体效应,TPD 曲线的变化情 况将与上述不同。 由于吸附分子之间的相互排斥作用,用TPD 法应该得到Ed随覆盖度增加而变小,即Tm, 随的增加而变小的信息。反之,Tm,随的减 少而变大。
2.3.2 还原NO的氧化物催化剂的TPD
2.3.2 还原NO的氧化物催化剂的TPD
说明: LaxCeyFeO3、LaxCeySrzFeO3和LaxSrzFeO3的NO-TPD图 。
NO的吸附条件:在500℃下通入0.5%混合气20min,然后降温至室温。
La0.5Ce0.5FeO3只有两个TPD峰:一个低温峰(Tm=75℃),另一个为带肩峰的大面积的高温峰,Tm=410℃(图14a)。
双金属组分是否形成合金(或金属簇)即是人们最关注的理论问题,因为此问题乃金属催化的核心理论问题。
02
发生还原反应的化合物主要是氧化物,在还原过程中,金属离子从高价态变成低价态直至变成金属态,对催化剂最常用的还原剂是H2气和CO气。
01
3.1 CuO-NiO/SiO2的TPR研究
氧化态的CuO(0.75%Cu)-NiO(0.25 % Ni)/SiO2的TPR表明,Tr=200~220℃为CuO的还原峰,Tr=500℃为NiO的还原峰;

程序升温还原法(精选优秀)PPT

程序升温还原法(精选优秀)PPT
双金属催化剂体系的研究是金属催化理论研究中的重要 课题,其中关于双金属组分是否形成合金(或金属簇)即是 人们最关注的理论问题,因为此问题乃金属催化的核心 理论问题。对于负载型双金属催化剂其金属组分的含量 一般是很低的,比如只有千分之几。在这种情况下,不仅 XRD无法判断是否形成合金或金属簇,而且XPS因为灵 敏度的限制也难于给出肯定的结果。TPR灵敏度很高, 可以准确地作出判断。
选择性化学吸附是指某些气体对载体Al2O3, SiO2等不发生化学吸附,而是选择性的吸附 在Pt、Pd、Rh等贵重金属和Ni、Co等过渡金 属表面上,其中H2、O2、CO等气体对上述金 属的吸附具有明确的计量关系,因此可以通过 吸附量计算出金属分散度
以氢吸附法测定Pt/Al2O3催化剂上 金属Pt分散度为例
催化剂重量:理论上TM不受影响。实际上, 过多TM升高,TPR峰数减少。一般取: 50100mg。
升温速率:升温速率提高,TM升高,TPR峰 重叠。升温速率过低,时间太长,峰强度减弱。 一般取: 520K/min
TPR的优点
发生还原反应的化合物主要是氧化物,在还原过程中,金 属离子从高价态变成低价态直至变成金属态,对催化剂 最常用的还原剂是H2气和CO气。
CO气。
载气流速:载气流速增加,TM降低,从10ml/min 增加到20ml/min, TM降低15 30℃。
在升温过程中如果试样发生还原,气相中的氢气浓度随温度变化而发生浓度变化,把这种变化过程记录下来就得氢气浓度随温度变化
的TPR图。
还原过的催化剂,再氧化后,其TPR温度往前移,升高再氧化温度至500℃,其TPR高峰温度接近新鲜催化剂的TPR高峰温度,但仍比新鲜催
一般取:50 100mg。
Pt/Al2O3催化剂上金属Pt 所以被消耗的H原子数等于催化剂表面活性金属Pt 的原子数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TPD-CO2结果:低温 CO2峰归属与Mn3+相 互作用的单醅位CO32高温CO2为与Mn3+或 La3+相互作用的双醅 位CO32-。CO峰来自 CO32-和低价Mn反应 而成。
双组分共吸附TPD表征ZrO2表面酸碱作用
先吸附NH3(或 CO2)对其后吸 附CO2(NH3)无 碍,在高温的 脱附量。独立 的酸碱中心, 两者之间存在 较强的相互作 用。-IR结果: NH3存在,新 的CO2吸附中 心产物;CO2 存在,NH3-Zr4+
在较高温度时发生
吸附速率快,瞬间发生 可快可慢,有时需要活化能
整个分子吸附
解离成原子、分子、离子
吸附剂影响不大
吸附剂有强的影响
在许多情况下两者的界限 不明显
小分子气体(O2, H2, CO2, N2, CO和C2H4)在金属 或氧化物表面的吸附,其催化作用与其表面对反应物 的化学吸附紧密相关,通过研究吸附态分子与表面的 作用以及吸附态分子的相互作用来揭示催化作用的本 质。
程序升温还原(TPR)是表征催化剂还原性能的简单、 有效的方法。
装置与TPD相同。TPR的载气为含有还原性气体的 惰性气体, 如5%H2-95%Ar(或He或N2)。
TPR曲线的形状、峰的大 小及其峰顶温度TM与催化 剂的组成和可还原物种的 性质有关。
影响TPR的因素
1、载气流速:载气流速增加,TM降低,从10ml/min 增加到20ml/min, TM降低1530oC。
N2峰温为500 K, 峰形窄。 当H2存在,产生NH、 NH2中间体,并相互作用 生成N2,所以,低温下 就有N2脱附
无H2存在时,解离的N原 子结合而成,所以,高温 下才有N2脱附。
二、考察反应机理
CH4 出现在340 oC,H2O与CH4 同步; 有CO和CO2脱附 峰 1、饱和吸附CO的催化剂脉冲吸附H2至饱和。在He中 TPSR。
对于标准自由能ΔG小于 零的氧化物,当然还原 是可行的。
H2O不断被带走,PH2O 很低,因此,在高温时, ΔG可能小于零。所以, 一些ΔGo大于零的氧化物 也能获得TPR图。
机理:
MO(s) + H2(g) M(s) + H2O(g)
1、成核模型 首先形成金属核,核变大和新核形成 增加,反应面增加,反应速度加快。但核进一步 增加和扩大,核间相互接触,反应面减小,反应 降低。
度吸附物质的数目;
2、峰面积表征脱附物种的相对数量;
3、峰温度表征脱附物种在固体物质表面的吸附强度。
实验条件的选择和对TPD的影响
干扰因素:传质(扩散)和再吸附的影响。
6个参数:1、载气流速(或抽气速率) 2、反应气体/载气的比例(TPR) 3、升温速率 4、催化剂颗粒大小 5、吸附(反应)管体积和几何形状 6、催化剂“体积/质量”比
2、催化剂重量:理论上TM不受影响。实际上,过多 TM升高,TPR峰数减少。一般取:50100mg。
3、升温速率:升温速率提高,TM升高,TPR峰重叠。 升温速率过低,时间太长,峰强度减弱。一般取: 520K/min
还原过程动力学
MO + H2 M(s) + H2O(g)
ΔG= ΔGo+RTln(PH2O/PH2)
流动H2中,以相同峰形生成了等量CH4和H2O。
1、 CO(g)
CO(a)2、 CO(a)源自C(a) + O(a)
3、 CO(a) + O(a) 4、 2H(a) + O(a) 5、 C(a) + 4H(a)
CO2(a) H2O(a) CH4(a)
CO2(g) H2O(g) CH4(g)
第三节 第三节 生徐升温还原 程序升温还原(TPR)
在293533K,孪生, 桥式,线式CO不变;
在533K以上 1、线式,桥式和孪生 CO减小由于表面碳覆 盖引起向低频移动。
2、孤立的孪生吸附中 心容易被表面碳覆盖 。无向低频移动。 线式,桥式吸附位粒 子大,表面无法覆盖 整个粒子。移向低频 。
第二节 程序升温表面反应
程序升温表面反应(TPSR):在程序升温过程中, 在催化剂表面同时发生表面反应和脱附。
5%,两个TPR峰; 5%,第三个TPR峰
出现,分别由 、和表示。
和不变, 峰温和 强度随负载量剧增。
XRD:5%后出现晶相 CuO。和峰为小晶粒 CuO,高分散与CeO2相 互作用大。 是大晶粒 CuO,还原温度高。
20oC 5%O2再氧化 后,只有峰;随着 再氧化温度提高, 和峰依次出现。
Zr4+-O2-酸碱对
苯酚取吸附的 CO2或NH3而 吸附。ZrO2表 面上有相当一 部分的酸、碱 中心因极化和 诱导作用而形 成。
六、甲醇分解中的溢流
(CH3)2O、H2O、 CO2、CO和H2 低温:CH3OH 560oC (CH3)2O 高温(780oC):
H2、CO
脱附物:CO和H2 少量(CH3)2O和CH4 脱附峰温:530 oC
催化剂: Rh/SiO2
O2脱附温度 远高于其它物 质,1050 K。
高温N2峰归属于原 子态N之间的化合, 2Na N2 + 2S
低温N2峰归属于吸 附态N原子和吸附态 NO分子的反应,
Na+NOa N2+Oa+S
N2O 形成的机理: Na + NOa
N2O + 2S
所以,在NO分解脱出N2和N2O时没有发现O2 脱出,原因在于NO分解产生的Oa进入Rh的微 晶中,在高温时才会发生脱附。
一、氢吸附, VIIIB金属上进行加氢和脱氢反应。化 学吸附热QH最小。解离吸附。LEED难以观察,常用 HREELS和EELS研究,得到H2在金属表面吸附的光 谱特征。
二、CO吸附,偶极活性大。红外光谱表征。线式、 桥式和孪生吸附态。
详见《吸附与催化》河南科技出版社,第四章内容。
动态分析方法与程序升温技术
1、预处理后的催化剂在反应条件下进行吸附和 反应,程序升温使催化剂上吸附的各个表面物种 边反应边脱附出来。
2、载气为反应物,程序升温过程中,载气(或载 气中某组成)与催化剂表面上反应形成的某吸附 物种一面反应一面脱附。
一、研究反应条件下的表面吸附态
TPD与TPSR比较: 一个的N2峰,峰位置 和形状明显不同。 830 K峰形较宽。
2、球收缩模型 开始时界面最大,迅速成核,形成 金属膜层,随后反应界面变小,反应速率不断下 降。
非等温还原理论
略。 参考书《吸附与催化》,
河南科学技术出版社 第五章,5.3.2.3节
氢溢流
由于活性组分不同,有的氧化物容易还原,在TPR过 程常常会遇到氢溢流现象。这种氢溢流现象很难避免, 采用CO替代H2可以减少氢溢流。
孪生CO吸附同上,线式 CO随温度谱带蓝移,强 度减少。线式和桥式吸 附受CO覆盖度影响,对 应Rh粒子大小有关,为 非孤立的中心。存在两 类吸附中心,孤立的中 心——孪生吸附;非孤 立中心——线式和桥式 吸附。
八、CO歧化
2CO(a) C(a) +CO2
在293533K,孪生 CO不变;
在533K以上,孪生 CO同步锐减。
脱附产物除 NO外,还 有N2、N2O 和O2
吸附CO2后阻 碍了NO吸附, 说明NO和CO2 吸附在同一个 吸附中心上。
四、CO、CO2和催化剂的相互作用
TPD-CO的产物为CO和 CO2。-IR结果:Mn2+上 吸附的CO的脱附。CO2 来自于与Mn3+上的碳酸 盐分解。
a、873 K氧化;b、573 K还原;c、723K还原。
程序升温技术介绍_图文.ppt
物理吸附与化学吸附的主要差别
物理吸附
化学吸附
范德华力 (无电子转移)
共价键或静电力(电子转移)
吸附热:1030kJ/mol 吸附热:50960kJ/mol
一般现象,气体冷凝
特定的或有选择性的
真空可除去物理吸附 加热和真空除去化学吸附
可发生多层吸附
永不超过单层
临界温度时明显发生
说明三个铜物种的 再氧化次序:
>>
PdO/CeO2催化剂的还原性能
无高温峰 Ni的存在促进了 CH3OH分解。
七、程序升温脱附红外检测(TPD-IR)
CO 在Rh催化剂的 吸附态: 1、线式吸附态,
2060cm-1 2、桥式吸附态,
1830cm-1 3、孪生吸附态,
2090和2015cm-1 2086和2012cm-1共 进退
a. CO-RhI-CO b. RhI 孤立中心 c. RhI稳定,无聚集。
载气:高纯He或Ar;催化剂装量:100mg左 右;升温速率:525K/min;监测器:TCD和 MS
流动态TPD 实验系统
真空TPD试验体系
工作压力:10-3Pa, 可以排除水分和空气的干扰,较准 确的初始覆盖度,一般采用MS作检测器。
TPD定性分析: 1、脱附峰的数目表征吸附在固体物质表面不同吸附强
基本原理 热脱附实验结果不但反映了吸附质与固体 表面之间的结合能力,也反映了脱附发生 的温度和表面覆盖度下的动力学行为。
脱附速度——Wigner-Polanyi方程:
N = -Vmd /dt = A nexp[- Ed( )/RT]
Vm 为单层饱和吸附量,N为脱附速率, A为脱 附频率因子, 为单位表面覆盖度,n为脱附级
A和Na-D,B1和B2没有乙 烯脱附峰。乙烯脱附量随
丁烯的脱附量随硼含量俱增 硼含量增加而增加。
C1和C2样品对丁烯和乙烯吸附量大于Al和 B的化学计量数。说明烯烃在分子筛表面上 发生了聚合。每个酸性位吸附5个烯烃。
脱出物中除原始吸附物外,还有其它物质,且相 对分子质量均大于乙烯,表明乙烯脱附过程中在 催化剂表面上发生了聚合。
相关文档
最新文档