2017湛江市二模
2023年广东省湛江市经开区中考数学二模试卷(含解析)

2023年广东省湛江市经开区中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 王老师给全班同学留了一个特色寒假作业,画一张有关兔子的图画,以下四个图形是开学后收上来的图画中的一部分,其中是轴对称图形的是( )A. B. C. D.2. 下列各数中,为无理数的是( )B. 0C. 3D. 3.5A. −3273. 函数y=x x−5中,自变量x的取值范围是( )A. x>0且x≠5B. x≥5C. x>5D. x≤54. 已知a<b<0,则点A(a−b,ab)在第象限.( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 若方程3x+1=4和方程2x+a=0的解相同,则a=( )A. 1B. 2C. −1D. −26. 下列说法中,正确的是( )①对角线垂直且互相平分的四边形是菱形;②对角线相等的四边形是矩形;③同弧或等弧所对的圆周角相等;④弧分为优弧和劣弧.A. ①④B. ①③C. ①③④D. ②③④7.如图,在△ABC中,点E,F分别是AB,BC边上的中点,连接EF,如果AC=6cm,那么EF的长是( )A. 3cmB. 4cmC. 5cmD. 6cm8. 某超市一月份的营业额为300万元,第一季度的营业额共1200万元,如果平均每月增长率为x,则由题意可列方程为( )A. 300(1+x)2=1200B. 300+300×2x=1200C. 300+300×3x=1200D. 300[1+(x+1)+(x+1)2]=12009.如图,AB是△ABC外接⊙O的直径,点D在⊙O上,且∠BDC=41°,则∠ABC=( )A. 39°B. 41°C. 49°D. 59°10. 定义:如果a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记做x=log a N.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法正确的个数为( )①log61=0;②log323=3log32;③若log2(3−a)=log827,则a=0;④log2xy=log2x+log2y(x>0,y>0).A. 4B. 3C. 2D. 1二、填空题(本大题共5小题,共15.0分)11. 对我国“天宫空间站梦天实验舱”的零部件检查应采用的调查方式为______ .(填“普查”或“抽样调查”).12. 在平面直角坐标系中,点P(2,−3)到x轴的距离是______ .13. 已知圆锥的母线长为8,底面半径为6,则此圆锥的侧面积是.14.如图,在网格中,小正方形的边均1,点A、B、O在格点上,则∠OAB正弦是.15. 小学里我们学过梯形,如图,一个小梯形的下底长为2a,上底和两腰长都为a,用小梯形按图所示拼接,观察图形、表格,若小梯形的个数为2022,则拼接所成图形的周长是______a.梯形个数12345…n图形周长5a8a11a14a17a…三、解答题(本大题共8小题,共75.0分。
第四讲绝对值函数和绝对值不等式

绝对值函数和绝对值不等式11nn ii i i z z .【方法概论】遇到绝对值的问题时,方法主要以下几种:分类讨论:即去掉绝对值;这种方法是解决绝对值问题的根本方法。
典型例题:22cos ,||1,21,||1,x x xx f (x )+f (x +l )-2|+|f (x )-.【过关习题4】1.【2018年学考选考十校联盟,☆☆】a ,b 是实数,如此“|a |≤1且|b |≤1〞是“|a +b |+|a -b |≤2〞的.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.【2018年某某高三适应性考试,,☆☆】a >0,函数f (x )=|x 2+|x -a |-3|在区间[-1,1]上的最大值是2,如此a =.3.【2018年某某二模,17,,☆☆☆】f (x )=x 2-ax ,|f (f (x ))|≤1在[1,2]上恒成立,如此实数a 的最大值为.4.【2017年某某某某二模,,☆☆☆☆】函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值为M (a ,b ∈R ,c >0为常数)且存在实数a ,b ,使得M 取最小值2,如此a +b +c =.5.【☆☆】设正实数x ,y ,如此|x -y |+1x+y 2的最小值为.6.【2017年某某二模,10,☆☆】设函数f (x )=x 2+ax +b (a 、b ∈R)的两个零点为x 1、x 2,假如|x 1|+|x 2|≤2,如此.A .|a |≥1B .|b |≤1C .|a +2b |≥2D .|a +2b |≤27.【2017年某某4月份学考,☆☆】a ,b ∈R ,a ≠1,如此|a +b |+⎪⎪⎪⎪⎪⎪1a +1-b 的最小值为.8.【2017年某某某某市柯桥中学5月质检,8,☆☆】x ,y ∈R ,如此.A .假如|x 2+y |+|x -y 2|≤1,如此⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -122≤32B .假如|x 2-y |+|x -y 2|≤1,如此⎝⎛⎭⎪⎫x -122+⎝⎛⎭⎪⎫y -122≤32C .假如|x +y 2|+|x 2-y |≤1,如此⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y +122≤32D .假如|x +y 2|+|x 2+y |≤1,如此⎝⎛⎭⎪⎫x -122+⎝⎛⎭⎪⎫y +122≤329.【2016年某某高考,8,☆☆☆】实数a 、b 、c ,下面四个选项中正确的答案是.A .假如|a 2+b +c |+|a +b 2+c |≤1,如此a 2+b 2+c 2<100B .假如|a 2+b +c |+|a 2+b -c |≤1,如此a 2+b 2+c 2<100C .假如|a +b +c 2|+|a +b -c 2|≤1,如此a 2+b 2+c 2<100D .假如|a 2+b +c |+|a +b 2-c |≤1,如此a 2+b 2+c 2<10010.【2017年某某高级中学最后一模,17,☆☆】设实数x ,y ,z 满足⎩⎨⎧|x +2y -3z |≤6,|x -2y +3z |≤6,|x -2y -3z |≤6,|x +2y +3z |≤6,如此|x |+|y |+|z |的最大值为.11.【2017年某某名校协作体,7,☆】设f (x )=|2x -1|,假如f (x )≥|a +1|-|2a -1||a |对任意的a ≠0恒成立,如此x 的取值X 围为.12.【2016年某某样卷,☆】f (x )=ax 2+bx +c ,a 、b 、c ∈R ,且a ≠0,记M (a ,b ,c )为|f (x )|在[0,1]上的最大值,如此a +b +2cM (a ,b ,c )的最大值是.13.【☆☆】设函数f (x )=|x 2+ax +b |,假如对任意的实数a 、b ,总存在x 0∈[0,4]使得f (x 0)≥m 成立,如此实数m 的取值X 围是.14.【2017年某某某某、富阳、长兴联考,☆☆☆】函数f (x )=-x 3-3x 2+x ,记M (a ,b )为函数g (x )=|ax +b -f (x )|(a >0,b ∈R)在[-2,0]上的最大值,如此M (a ,b )的最小值为. 15.【2017年某某一模,9,☆☆☆】设函数f (x )=x 2+ax +b ,记M 为函数y =|f (x )|在[-1,1]上的最大值,N 为|a |+|b |的最大值,如此.A .假如M =13,如此N =3 B .假如M =12,如此N =3 C .假如M =2,如此N =3 D .假如M =3,如此N =316.【2017年某某,☆☆☆】设函数f (x )=|ax +2x +b |,假如对任意的x ∈[0,4],函数f (x )≤12恒成立,如此a +2b =.17.【某某省某某市2017届高三二模,17,☆☆☆】对任意实数x 都有|a cos 2x +b sin x +c |≤1恒成立,如此|a sin x +b |的最大值为.18.【某某省某某市2016届高三教学质量测试(二),14,☆☆】 设max{a ,b }=⎩⎨⎧a (a ≥b )b (a <b ),x ,y ∈R ,m +n =6,如此F =max {}|x 2-4y +m |,|y 2-2x +n |的最小值为.19.【☆☆】f (x )=ax 2+bx +c (a ≠0),假如对任意的|x |≤1,都有|f (x )|≤1,如此|a |+|b |+|c |的最大值为.20.【2014年某某高考,☆☆】在直角平面坐标系xOy 中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,如此|OA →+OB →+OD →|的最大值为.21.【某某省2017年预赛,10,☆☆☆】f (x )=⎩⎨⎧-2x , x <0,x 2-1,x ≥0,假如方程f (x )+21-x 2+|f(x )-21-x 2|-2ax -4=0有三个不等的实数根x 1,x 2,x 3,且x 1<x 2<x 3,假如x 3-x 2=2(x 2-x 1),如此a =.22.【2006年某某,☆】函数f (x )=12(sin x +cos x )-12|sin x -cos x |,如此f (x )的值域为.23.【2008年某某,☆】函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎫π2,3π2内的图像是.ABCD24.【某某省某某市2015年高三教学质量调测,15,☆☆☆】当且仅当x ∈(a ,b )∪(c ,d )(b ≤c )时,函数f (x )=2x 2+x +2的图像在函数g (x )=|2x +1|+|x -t |的下方,如此b -a+d -c 的取值X 围为.25.【2016高考某某文数,☆☆】平面向量a ,b ,|a |=1,|b |=2,a ·b =1.假如e 为平面单位向量,如此|a ·e |+|b ·e |的最大值是______.26.【2014年某某预赛,9,☆☆】a 、b 为实数,对任何满足0≤x ≤1的实数x ,都有|ax +b |≤1成立,如此|20a +14b |+|20a -14b |的最大值是.27.【2014年某某预赛,14,☆☆】f (x )=⎩⎨⎧-x 2+x ,x ≤1,log 12x , x >1,g (x )=|x -k |+|x -1|,假如对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,如此实数k 的取值X 围为.28.【2014年全国联赛,3,☆☆】假如函数f (x )=x 2+a |x -1|在[0,+∞)上单调递增,如此实数a 的取值X 围是.29.【2015年某某预赛,1,☆☆】假如对任意实数x ,|x +a |+|x +1|≤2a 恒成立,如此实数a 的最小值为.30.【2016年某某预赛,1,☆☆☆】方程x =|x -|x -6||的解为.31.【2016年某某预赛,12,☆☆】设x ∈R ,如此函数f (x )=|2x -1|+|3x -2|+|4x -3|+|5x -4|的最小值为.32.【2016年某某预赛,11,☆☆☆】设a ∈R ,方程||x -a |-a |=2恰有三个不同的实数根,如此a =.33. 【1982年全国,4,☆☆】由曲线|x -1|+|y -1|=1确定的曲线所围成的图形的面积是.A .1B .2C .πD .434.【2017年某某预赛,5,,☆☆】定义区间[x 1,x 2]的长度为x 2-x 1.假如函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],如此区间[a ,b ]的长度的最大值和最小值的差为. 35.【2018年某某预赛,8,☆】设f (x )=|x +1|+|x |-|x -2|,如此f (f (x ))+1=0有个不同的解.36.【2015年全国,6,☆☆】在平面直角坐标系xOy 中,点集K ={(x ,y )|(|x |+3|y |-6)(3|x |+|y |-6)≤0}所对应的平面区域的面积为.37.【2008年某某预赛,9,☆☆☆】在平行直角坐标系中,定义点P (x 1,y 1),Q (x 2,y 2)之间的“直角距离〞为d (P ,Q )=|x 1-x 2|+|y 1-y 2|.假如C (x ,y )到点A (1,3)、B (6,9)的“直角距离〞相等,其中实数x 、y 满足0≤x ≤10,0≤y ≤10,如此所有满足条件点C 的轨迹的长度之和为.38.【2014年某某预赛,4,☆☆】在直角坐标系中,曲线|x -1|+|x+1|+|y |=3围成的图形的面积是.39.【2017年某某十校期末调研考试,9,☆☆】设x 、y ∈R ,如下不等式成立的是.A .1+|x +y |+|xy |≥|x |+|y |B .1+2|x +y |≥|x |+|y |C .1+2|xy |≥|x |+|y |D .|x +y |+2|xy |≥|x |+|y |40.【2017年某某市高三教学质量调测,9,☆☆☆】记min{x ,y }=⎩⎨⎧y ,x ≥y ,x ,x <y ,设f (x )=min{x 2,x 3},如此.A .存在t >0,|f (t )+f (-t )|>f (t )-f (-t )B .存在t >0,|f (t )-f (-t )|≥f (t )-f (-t )C .存在t >0,|f (1+t )+f (1-t )|>f (1+t )+f (1-t )D .存在t >0,|f (1+t )-f (1-t )|>f (1+t )-f (1-t )41.【某某省2016届高三下学期第二次五校联考(理),18,☆☆☆】函数f (x )=ax 2+bx +c ,g (x )=c |x |+bx +a ,对任意x ∈[-1,1],|f (x )|≤12.(I)求|f (2)|的取值X 围;(II)证明:对任意的x ∈[-1,1],都有|g (x )|≤142.【某某省某某市2016届高三期末考试,20,☆☆☆】函数f (x )=-x 2+2bx +c ,,设函数g (x )=|f (x )|在区间[-1,1]上的最大值为M .(I)假如b =2,试求出M ;(II)假如M ≥k 对任意的b ,c 恒成立,试求出k 的最大值.43.【2016某某预赛,16,☆☆☆☆】a为实数,函数f(x)=|x2-ax|-ln x,请讨论函数f (x)的单调性.。
2023届广东省湛江市高三二模作文“生与熟”评讲课件28张

读1、2号文,你打几分,并说明你的打分理由
4
优秀范文:由生得熟练,熟中创新生
凡绘画之通皆由生而熟,郑板桥却自出心裁,主张更要熟中有生,由胸 有成竹提升到胸无成竹的境界,这由生至熟再至生的过程无频带给我们启迪在 生活中,不止于绘画,其他领域亦需我们做到由生得熟练,熟中创新生。
由生入熟。生为一无所知,熟为已俱功力;由熟再生,生则为创新转化, 跳出案白。前者似文与可画竹,挥毫千遍已能胸有成竹,后着似郑板桥画竹, 胸无定竹,千变万化,新意进出。欲达臻境要经过由生至熟的初步吸纳,再有 由熟创生的灵感升“熟”是相对的 2、循序渐进,“熟”而出新。 3、既要”胸有成竹,更要“胸无成竹”
1 可用于本次作文的素材
1.庖丁解牛 2.达芬奇画蛋 3.欧阳修笔下的卖油翁 4.熟能通其窍,精能尽其妙。(杜甫) 5.熟读唐诗三百首,不会作诗也会吟。(孙洙)
存在问题
1.偷换关键词(如用创新替代材料的第二个“生”),存 在贴标签式表述; 2.三词关系跳跃,关键词之间的逻辑关系没有理清,缺合 理递进或反推; 3.素材不足; 4.熟到生的重要性和时代性着墨不多
学无止境,学无定法。任何领域的学习都历经生到熟的过 程,都需要我们认认真真,规规矩矩下苦功夫去沉潜涵泳。但 是,当我们进入熟境之后,我们仍需警惕人性中的惰性,不迷 惑于轻车熟路的简便轻松,更不囿于成规故法,而是要走出舒 适圈,敢于突破、敢于创新,追求法外之趣。
2024届广东省湛江市高考二模地理试题(含答案解析)

2024届广东省湛江市高考二模地理试题学校:___________姓名:___________班级:___________考号:___________一、单选题在快速城镇化进程中,交通网络的高效性成为城市规划的重要方面。
日本东京高度发达且密集的公共交通网络(如图),包括地铁、私铁(日本私营铁路)、JR(日本旅客铁路)等,它们共同支撑着这个超大城市的运行。
东京的交通规划特别注重多模式交通的无缝对接、交通拥堵的缓解、出行方式的融合。
完成下面小题。
1.影响东京公共交通网络效率的关键因素是()A.乘车客流量B.覆盖范围C.换乘便捷性D.运行频率2.推测为缓解交通拥堵,东京城市规划的重点为()A.道路扩建B.地铁优先C.停车管制D.拥堵收费3.JR山手线的建设主要有利于()A.降低东京中心区常住人口密度B.改善郊区生态环境C.扩大农业种植面积D.推动大量人口迁移传统村落又称古村落,是具有丰富的文化与自然资源的村庄,被认为是中国农耕文明的“活化石”,蕴藏着丰富的历史信息和文化景观。
我国西北地区传统村落旅游早年发展程度较低,近年来不断发展,有效推动了乡村振兴战略的实施。
下图示意传统村落旅游发展机制。
完成下面小题。
4.据图推测,早期西北地区传统村落旅游发展程度较低的主要影响因素是()A.人口数量B.生态环境C.基础设施D.旅游资源5.近年来,西北地区传统村落旅游坚持以“集群系统性保护发展,差异化发展”为规划策略,可以避免()A.产业模式多样化B.冲击原住民生活C.游客体验感欠佳D.同质化现象突出甘肃省农业碳排放总量变化趋势可大致分为持续上升和波动下降两个阶段。
种植业碳排放量在甘肃省农业碳排放总量中约占60%,畜牧业约占40%。
下图示意甘肃省各市州农业碳排放量及年均增长率。
完成下面小题。
6.甘肃省农业碳排放量()A.兰州略高于临夏B.年均增长率陇南大于庆阳C.武威远高于白银D.年均增长率天水大于张掖7.推测嘉峪关一直处于低碳排放水平的主要原因是()A.地理面积较小B.自然条件恶劣C.常住人口较多D.生态环境较好8.甘肃省减少农业碳排放量亟须采取的措施是()A.调整产业结构B.增加农业能耗C.降低生产成本D.大量燃烧秸秆新英湾位于海南省北部,是一个半封闭内湾,有春江、徐浦河和北门江等三条较大河流注入。
广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)

广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x ||(x ∈R )为与x 距离最近的整数(当x 为两相邻整数算术平均数时,||x ||取较大整数),令函数f (x )=||x ||,如:,,,,则=( )A .17B .C .19D .9.(2023•潮州二模)已知函数f (x )=|sin x |,g (x )=kx (k >0),若f (x )与g (x )图像的公共点个数为n ,且这些公共点的横坐标从小到大依次为x 1,x 2,…,x n ,则下列说法正确的是( )A .若n =1,则k >1B .若n =3,则C .若n =4,则x 1+x 4>x 2+x 3D .若,则n =2023九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n }和{q n }满足:p 1=1,q 1=2,p n +1=p n +3q n ,q n +1=2p n +q n ,n ∈N *,则下列结论错误的是( )A .数列是公比为的等比数列B .仅有有限项使得C .数列是递增数列D .数列是递减数列一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f (x )与其导函数f '(x )的定义域均为R ,且f '(x )+e ﹣x +x也是偶函数,若f (2a ﹣1)<f (a +1),则实数a 的取值范围是( )A .(﹣∞,2)B .(0,2)C .(2,+∞)D .(﹣∞,0)∪(2,+∞)12.(2023•深圳二模)已知ε>0,,且e x +εsin y =e y sin x ,则下列关系式恒成立的为( )A .cos x ≤cos yB .cos x ≥cos yC .sin x ≤sin yD .sin x ≥sin y(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.26.(2023•深圳二模)设椭圆C:)的左、右焦点分别为F1,F2,直线l过点F1.若点F2关于l的对称点P恰好在椭圆C上,且,则C 的离心率为( )A.B.C.D.二十一.抛物线的性质(共1小题)(多选)27.(2023•深圳二模)设抛物线C:y=x2的焦点为F,过抛物线C上不同的两点A,B分别作C的切线,两条切线的交点为P,AB的中点为Q,则( )A.PQ⊥x轴B.PF⊥AB C.∠PFA=∠PFB D.|AF|+|BF|=2|PF|二十二.直线与抛物线的综合(共1小题)(多选)28.(2023•高州市二模)阿波罗尼奥斯是古希腊著名的数学家,与欧几里得、阿基米德齐名,他的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.其中给出了抛物线一条经典的光学性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.此性质可以解决线段和的最值问题,已知抛物线C:y2=2px(p>0),M是抛物线C上的动点,焦点,N(4,2),下列说法正确的是( )A.C的方程为y2=x B.C的方程为y2=2xC.|MF|+|MN|的最小值为D.|MF|+|MN|的最小值为二十三.直线与双曲线的综合(共1小题)(多选)29.(2023•广州二模)已知双曲线Γ:x2﹣y2=a2(a>0)的左,右焦点分别为F1,F2,过F2的直线l与双曲线Γ的右支交于点B,C,与双曲线Γ的渐近线交于点A,D(A,B在第一象限,C,D在第四象限),O为坐标原点,则下列结论正确的是( )A.若BC⊥x轴,则△BCF1的周长为6aB.若直线OB交双曲线Γ的左支于点E,则BC∥EF1C.△AOD面积的最小值为4a2D.|AB|+|BF1|的取值范围为(3a,+∞)二十四.正态分布曲线的特点及曲线所表示的意义(共1小题)(多选)30.(2023•湛江二模)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量M(单位:g)服从正态分布N(165,σ2),且P (M<162)=0.15,P(165<M<167)=0.3.下列说法正确的是( )A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167g的概率为0.7 B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167g~168g的概率为0.05C.若从种植园成熟的红橙中随机选取600个,则质量大于163g的个数的数学期望为480D.若从种植园成熟的红橙中随机选取600个,则质量在163g~168g的个数的方差为136.5广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)参考答案与试题解析一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为【答案】ACD【解答】A选项,连接AD,如图所示:在正四面体P﹣ABC中,D是PD的中点,所以PB⊥AD,PB⊥CD,因为AD⊂平面ACD,CD⊂平面ACD,AD∩CD=D,所以直线PB⊥平面ACD,因为AE⊆平面ACD,所以PB⊥AE,所以直线AE与PB所成角为;故A选项正确;B选项,把△ACD沿着CD展开与面BCD同一平面内,由AD=CD=,AC=4,,所以cos∠ADB=cos()=﹣sin∠ADC=﹣,所以×,所以△ABC的周长最小值为不正确,故B选项错误;C选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设半径为r,由等体积法可知,,所以半径r=,故C选项正确;D选项,10个小球分三层,(1个,3个,6个)放进去,要使小球半径最大,则外层小球与四个面相切,设小球半径为r,四个角小球球心连线M﹣NGF是棱长为4r的正四面体,其高为,由正四面体内切球的半径为高的得,如图正四面体P﹣HIJ,则MP=3r,正四面体P﹣ABC的高为3r+r+r=,得r=,故D选项正确.故选:ACD.二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)【答案】C【解答】解:对于A,由题意,R(x)的值域为,其中p是大于等于2的正整数,选项A正确;对于B,①若a,b∈(0,1],设(p,q互质,m,n互质),,则R(a•b)≥R(a)•R(b),②若a,b有一个为0,则R(a•b)≥R(a)•R(b)=0,选项B正确;对于C,若n为大于1的正数,则,而R(x)的最大值为,所以该方程不可能有实根,选项C错误;对于D,x=0,1或(0,1)内的无理数,则R(x)=0,R(1﹣x)=0,R(x)=R(1﹣x),若x为(0,1)内的有理数,设(p,q为正整数,为最简真分数),则,选项D正确.故选:C.三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af (b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.【答案】BCD【解答】解:因为f(﹣1﹣x)=f(7+x),所以f(x)=f(6﹣x),f(x)的图象关于x=3对称,因为函数f(x+2)﹣1为奇函数,所以f(x)的图象关于点(2,1)对称,且f(0+2)﹣1=0⇒f(2)=1,又f(﹣x+2)﹣1=1﹣f(x+2)⇒f(x+2)=2﹣f(2﹣x),所以f(x)=2﹣f(4﹣x)=2﹣f[6﹣(2+x)]=2﹣f(2+x)=2﹣[2﹣f(2﹣x)]=f(2﹣x)=f[6﹣(2﹣x)]=f(x+4),即f(x)=f(x+4),所以f(x)的周期为4,所以f(2022)=f(2)=1,故A错误;由上可知,f(x)=f(2﹣x),f(x+1)=f[2﹣(x+1)]=f(1﹣x),故B正确;因为∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a),即(a﹣b)[f(a)﹣f(b)]>0,所以f(x)在区间[2,3]单调递增,因为f(x)的图象关于点(2,1)对称,所以f(x)在区间[1,2]单调递增,又f(x)的图象关于x=3对称,所以f(x)在区间[4,5]单调递减,C正确;因为,所以g(x)的图象关于点(2,1)对称,所以f(x)与g(x)的交点关于点(2,1)对称,不妨设x1<x2<x3<•<x m,则x1+x m=x2+x m﹣1=x3+x m﹣2=⋅⋅⋅=4,y1+y m=y2+y m﹣1=y3+y m﹣2=⋅⋅⋅=2,所以x1+x2+⋯+x m=2m,y1+y2+⋯+y m=m,所以,D正确.故选:BCD.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b【答案】B【解答】解:因为,,考虑构造函数,则,当0<x<e时,f′(x)>0,函数f(x)在(0,e)上单调递增,当x>e时,f′(x)<0,函数f(x)在(e,+∞)上单调递减,因为ln2≈0.7,所以e0.7≈2,即,所以,所以,即,又,所以,故b>a>c.故选:B.五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增【答案】ACD【解答】解:因为f(x)=cos x+tan x,所以f(x+2π)=cos(x+2π)+tan(x+2π)=cos x+tan x=f(x),所以函数f(x)为周期函数,A正确;因为,,所以,所以函数为奇函数,故函数的图象关于原点对称,所以为函数f(x)的中心对称,C正确;当时,,因为0<cos x<1,0<sin x<1,所以f′(x)>0,所以函数f(x)在上单调递增,D正确;由可得,当时,由0<cos x≤1,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,当,由﹣1≤cos x<0,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,又f(0)=1,f(π)=﹣1,作出函数f(x)在的大致图象可得:结合函数f(x)是一个周期为2π的函数可得函数f(x)没有对称轴,B错误.故选:ACD.六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.【答案】A【解答】解:∵x3﹣x2=2(x2﹣x1)=4x1,∴x2=3x1,x3=7x1,又f(x1)=f(x2)=f(x3)>0,且x1,x2,x3∈(0,),∴x3﹣x1=6x1=π,,,∴π﹣2x1﹣φ=2x2+φ,即,∴.故选:A.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.【答案】AB【解答】解:令g(x)=,则g'(x)=,所以g(x)在[0,1)上单调增,在(1,+∞)上单调减,所以f(x)的大致图像如下所示:令t=f(x),所以关于x的方程4ef2(x)﹣af(x)+=0有6个不同实根等价于关于t方程4et2﹣at+=0在t∈(0,)内有2个不等实根,即h(t)=4et+与y=a在t∈(0,)内有2个不同交点,又因为h′(t)=4e﹣=,令h′(t)=0,则t=±,所以当t∈(0,)时,h′(t)<0,h(t)单调递减;当t∈(,+∞)时,h′(t)>0,h(t)单调递增;所以h(t)=4et+的大致图像如下所示:又h()=4,h()=5,所以a∈(4,5).对照四个选项,AB符合题意.故选:AB.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x||(x∈R)为与x距离最近的整数(当x为两相邻整数算术平均数时,||x||取较大整数),令函数f(x)=||x||,如:,,,,则=( )A.17B.C.19D.【答案】C【解答】解:根据题意,函数f(x)=||x||,当1≤n≤2时,有0.5<<1.5,则f()=1,则有=1,当3≤n≤6,有1.5<<2.5,则f()=2,则有=,当7≤n≤12,有2.5<<3.5,则f()=3,则有=,……,由此可以将重新分组,各组依次为(1,1)、(、、、)、(、、、、、)、……,第n组为2n个,则每组中各个数之和为2n×=1,前9组共有=90个数,则是第10组的第10个数,则=2×9+10×=19.故选:C.9.(2023•潮州二模)已知函数f(x)=|sin x|,g(x)=kx(k>0),若f(x)与g(x)图像的公共点个数为n,且这些公共点的横坐标从小到大依次为x1,x2,…,x n,则下列说法正确的是( )A.若n=1,则k>1B.若n=3,则C.若n=4,则x1+x4>x2+x3D.若,则n=2023【答案】B【解答】解:对于A:当k=1时,令y=sin x﹣x,则y′=cos x﹣1<0,即函数y=sin x﹣x在定义域上单调递减,又当x=0时,y=0,所以函数y=sin x﹣x有且仅有一个零点为0,同理易知函数y=﹣sin x﹣x有且仅有一个零点为0,即f(x)与g(x)也恰有一个公共点,故A错误;对于B:当n=3时,如下图:2易知在x=x3,且x3∈(π,2π),f(x)与g(x)图象相切,由当x∈(π,2π)时,f(x)=﹣sin x,则f′(x)=﹣cos x,g′(x)=k,故,从而x3=tan x3,所以+x3=tan x3+===,故B 正确;对于C:当n=4时,如下图:则x1=0,π<x4<2π,所以x1+x4<2π,又f(x)图象关于x=π对称,结合图象有x3﹣π>π﹣x2,即有x2+x3>2π>x1+x4,故C错误;对于D:当时,由f()=g()=1可得,f(x)与g(x)的图象在y轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D错误.故选:B.九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n}和{q n}满足:p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,n∈N*,则下列结论错误的是( )A.数列是公比为的等比数列B.仅有有限项使得C.数列是递增数列D.数列是递减数列【答案】ABD【解答】解:由题意可知,第二个式子乘以λ后与第一和式子相加可得,令,解得,取可得,因为p1=1,q1=2,所以,所以,所以数列是公比为的等比数列,选项A说法错误;因为p1=1,q1=2,所以,所以当n为正奇数时,,即,当n为正偶数时,,即,选项B说法错误;由p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,可知p n>0,q n>0,且数列{p n}和{q n}均为递增数列,而,所以数列是递增数列,选项C说法正确;因为,所以数列是递增数列,选项D说法错误.故选:ABD.一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f(x)与其导函数f'(x)的定义域均为R,且f'(x)+e﹣x+x也是偶函数,若f(2a﹣1)<f(a+1),则实数a的取值范围是( )A.(﹣∞,2)B.(0,2)C.(2,+∞)D.(﹣∞,0)∪(2,+∞)【答案】B【解答】解:因为f(x)为偶函数,则f(x)=f(﹣x),等式两边求导可得f′(x)=﹣f′(﹣x),①因为函数f'(x)+e﹣x+x为偶函数,则f′(x)+e﹣x+x=f′(﹣x)+e x﹣x,②联立①②可得f′(x)=﹣x,令g(x)=f′(x),则g′(x)=﹣1≥﹣1=0,且g′(x)不恒为零,所以函数g(x)在R上为增函数,即函数f′(x)在R上为增函数,故当x>0时,f′(x)>f′(0)=0,所以函数f(x)在[0,+∞)上为增函数,由f(2a﹣1)<f(a+1),可得f(|2a﹣1|)<f(|a+1|),所以|2a﹣l|<|a+1|,整理可得a2﹣2a<0,解得0<a<2.故选:B.12.(2023•深圳二模)已知ε>0,,且e x+εsin y=e y sin x,则下列关系式恒成立的为( )A.cos x≤cos y B.cos x≥cos y C.sin x≤sin y D.sin x≥sin y【答案】A【解答】解:构造函数f(x)=,x∈,则f′(x)=,当x∈时,cos x>sin x,f′(x)=>0,因为0<e x,0<e y,当=,eɛ>1,0<sin x<sin y时,则>>0,所以>x>y>0,y=cos x,x∈(0,)单调递增,所以cos x<cos y,当=<0,eɛ>1,sin x<sin y<0时,则<<0,所以﹣<x<y<0,y=cos x,x∈(﹣,0)单调递减,所以cos x<cos y.当=,eɛ>1,sin x=sin y=0时,则x=y=0,此时cos x=cos y,综上,cos x≤cos y.故选:A.(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0【答案】ABD【解答】解:f(x)=e x﹣﹣1,则f′(x)=e x﹣x,f″(x)=e x﹣1,当x∈(0,+∞)时,f″(x)>0,f′(x)单调递增,当x∈(﹣∞,0)时,f″(x)<0,f′(x)单调递减,所以f′(x)≥f′(0)=1,所以f(x)在R上单调递增,且f(0)=0,若a+b>0,则a>﹣b,所以f(a)>f(﹣b),则f(a)﹣f(﹣b)>0,故B正确;f(b)+f(﹣b)=e b﹣b2﹣1+(e﹣b﹣b2﹣1)=e b+e﹣b﹣b2﹣2,令h(b)=e b+e﹣b﹣b2﹣2,h′(b)=e b﹣e﹣b﹣2b,令h′(b)=u(b),u′(b)=e b+e﹣b﹣2≥0,u(b)在R上单调递增,而h′(0)=u(0)=0,故h(b)在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,故h(b)≥h(0)=0,所以f(b)+f(﹣b)≥0⇒f(a)+f(b)≥f(a)﹣f(﹣b)>0,故A正确;对于D,若f(a)+f(b)<0⇒f(a)<﹣f(b)≤f(﹣b)⇒a<﹣b,即a+b<0,故D 正确;设f(c)=﹣f(b),若c<a<﹣b,则f(c)=﹣f(b)<f(a),满足f(a)+f(b)>0,但a+b<0,故C错误.故选:ABD.一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2【答案】B【解答】解:由题意可得=ln(2t2﹣1)+2,∴t1=1+ln(ln(2t2﹣1)+2),t1,t2>,∴t2﹣t1=t2﹣1﹣ln(ln(2t2﹣1)+2)=ln(),令h(x)=,x∈(,+∞),h′(x)=,令u(x)=ln(2x﹣1)+2﹣在x∈(,+∞)上单调递增,且u(1)=0,∴x∈(,1)时,h′(x)<0,函数h(x)单调递减;x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增.∴x=1时,函数h(x)取得极小值即最小值,h(1)=,∴函数y=ln()取得最小值ln,即﹣ln2.即t2﹣t1的最小值为﹣ln2,故选:B.一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)【答案】ACD【解答】解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.【答案】ABD【解答】解:连接PC,并延长交AB于Q,△ABC中,AB=2,AC=5,∠BAC=60°,BC,AC边上的两条中线AM,BN相交于点P,则,,,,,,,====,故A正确;===,故B正确;===.故C错误;,故D正确.故选:ABD.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小【答案】BD【解答】解:设圆台的上底面的圆心为O1,下底面的圆心为O,点A为上底面圆周上任意一点,圆台的高为h,球的半径为R,如图所示,则=,对选项不正确;,设f(r)=﹣3r3﹣4r2+4r+8,则f'(r)=﹣9r2﹣8r+4,令f'(r)=0可得9r2+8r﹣4=0,解得,,易知r2∈(0,2),且当r∈(0,r2),f'(r)>0;r∈(r2,2),f'(r)<0,f(r)在(0,r2)单调递增,在(r2,2)单调递减,由f(0)=8,f(1)=5,f(2)=﹣24,∃r0∈(1,2),使得f(r0)=0,当r∈(0,r0),f(r)>0,即V'>0;当r∈(r0,2),f(r)<0,即V'<0,所以V在(0,r0)单调递增,在(r0,2)单调递减,则B,D正确,C错误.故选:BD.一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直【答案】BD【解答】解:对于A选项,若直线m与α相交,且平面α内存在直线l与直线m平行,由于m⊄α,则m∥α,这与直线m与α相交矛盾,假设不成立,A错;对于B选项,若m⊂α,则在平面α内必存在l与直线m垂直,若直线m与α相交,设m⋂α=A,如下图所示:若m⊥α,且l⊂α,则m⊥l,若m与α斜交,过直线m上一点P(异于点A)作PB⊥α,垂足点为B,过点A作直线l,使得l⊥AB,因为PB⊥α,l⊂α,则l⊥PB,又因为l⊥AB,PB∩AB=B,PB、AB⊂平面PAB,所以l⊥平面PAB,因为m⊂平面PAB,所以l⊥m,综上所述,平面α内存在直线l与直线m垂直,B正确;对于C选项,设直线l与平面α的一个公共点为点A,假设存在平面γ,使得α∥β且m∥β,过直线m作平面γ,使得γ⋂β=l,因为m∥γ,m⊂β,γ⋂β=l,则l∥m,因为γ∥α,记β⋂α=n,又因为γ⋂β=l,则n∥l,因为在平面β内有且只有一条直线与直线l平行,且A∈n,故m、n重合,所以,m⊂α,但m不一定在平面α内,当m与α相交时,则m与γ也相交,C错误;对于D选项,若m⊥α,则过直线m的任意一个平面都与平面α垂直,若m与α不垂直,设直线m与平面的一个公共点为点A,则过点A有且只有一条直线l与平面α垂直,记直线l、m所确定的平面为γ,则α⊥β,D正确.故选:BD.一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为【答案】AC【解答】解:建立如图所示的空间直角坐标系A﹣xyz,则根据题意可得:A(0,0,0),B(1,0,0),D(0,1,0),C(1,1,0),A1(0,0,1),C1(1,1,1),D1(0,1,1),B1(1,0,1),∴,,设平面A1BD的一个法向量为,则,取,若B1P∥平面A1BD,则,∴(﹣λ,1,μ﹣1)⋅(1,1,1)=﹣λ+1+μ﹣1=0,∴λ=μ,故,其中,令,解得λ=0或1,∴B1P与CD1可能是,∴A正确;对B选项,∵λ=μ,∴P点在棱CD1上,将平面CDD1与平面A1BCD1沿着CD1展成平面图形,如图所示,线段A1D=≥A1D,由余弦定理可得:,∴,∴B错误;对C选项,∵B1C1⊥平面CC1D1D,连接C1P,则∠B1PC1即为B1P与平面CC1D1D所成角,若B1P与平面CC1D1D所成角为,则,所以C1P=B1C1=1,即点P的轨迹是以C1为圆心,以1为半径的个圆,于是点P的轨迹长度为,C正确;D选项,当λ=1时,P点在DD1上,过点A1作A1H∥CP交BB1于点H,连接CH,则CH∥A1P,所以平行四边形CHA1P即为正方体过点A1、P、C的截面,设P(0,1,t),∴,∴,,∴点P到直线A1C的距离为,∴当时,,△PA1C的面积取得最小值,此时截面面积最小为,当t=0或1时,,△PA1C的面积取得最大值,此时截面面积最大为,故截面面积的取值范围为,D错误.故选:AC.一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.【答案】AD【解答】解:由AB⊥BD,CD⊥BD,平面ABD与平面BCD的夹角为,∴与所成角为或,=++,∴2=2+2+2+2•+2•+2•,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=17,∴AC=,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=41,∴AC=,综上所述:AC=或.故选:AD.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,【答案】BC【解答】解:在棱长为2的正方体ABCD﹣A1B1C1D1中,建立如图所示的空间直角坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),D1(0,0,2),B1(2,2,2),E(1,0,0),所以,则点P(2λ,2λ,2﹣2λ),对于A,,,,而,显然,即是平面AB1C 的一个法向量,而,因此不平行于平面AB1C,即直线EP 与平面AB1C不平行,A错误;对于B,,则,因此当时,|PE|取得最小值,B正确;对于C,,于是,当且仅当时取等号,C正确;对于D,取A1D1的中点F,连接EF,C1F,CE,如图,因为E为边AD的中点,则EF∥DD1∥CC1,当C1∈平面CEP时,P∈平面CEFC1,连接B1D1∩C1F=Q,连接BD∩CE=M,连接MQ,显然平面CEFC1∩平面BDD1B1=MQ,因此MQ∩D1B=P,BB1∥CC1,CC1⊂平面CEFC1,BB1⊄平面CEFC1,则BB1∥平面CEFC1,即有MQ∥BB1,而,所以,D错误.故选:BC.(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为【答案】BCD【解答】解:易得DE⊥AB,CE⊥AB,又DE∩CE=E,则AB⊥面CDE,又CN⊂面CDE,则AB⊥CN,同理可得CN⊥BD,AB∩BD=B,则CN⊥平面ABD,又AN,BN⊂平面ABD,所以CN⊥BN,CN⊥AN,则当点P与点N重合时,AP+BP取得最小值,又AN=BN=DN=DE=×=,则最小值为AN+BN=,故A错误;在正四面体ABCD中,因为DP⊥平面ABC,易得P在DM上,所以DM∩CN=P,又点M,N也是△ABC和△ABD的内心,则点P为正四面体ABCD内切球的球心,CM=CE=,DM==,设正四面体ABCD内切球的半径为r,因为V D﹣ABC=V P﹣ABC+V P﹣ABD+V P﹣BCD+V P﹣ACD,所以S△ABC•DM=S△ABC•r+S△ABD•r+S△BCD•r+S△ACD•r,解得r=MP=DM=,即DP=DM,故CP=3PN,故B正确;设三棱锥P﹣ABC外接球的球心为O,半径为R,易得球心O在直线DN上,且ON⊥NC,则R2=OC2=CN2+(OP﹣NP)2,解得R=,故三棱锥P﹣ABC外接球的表面积为4πR2=,故C正确;∵DM==,即D到平面ABC的距离为,则B到平面ACD的距离为,∵E是AB的中点,∴E到平面ACD的距离为×,∵CM=CE,∴M到平面ACD的距离为××=,∴直线MN到平面ACD的距离为,故D正确.故选:BCD.一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称【答案】B【解答】解:∵圆M:x2+y2﹣4x+3=0可化为:(x﹣2)2+y2=1,∴圆心为O1(2,0),半径为r1=1,对于A:因为(4﹣2)2+02>1,所以点(4,0)在圆M外,故A错误;对于B:若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则两圆外切,圆x2+y2﹣4x﹣6y+a=0可化为(x﹣2)2+(y﹣3)2=13﹣a,圆心为O2(2,3),半径为,因为|O1O2|=r1+r2,所以,解得a=9,故B正确;对于C:∵O1(2,0)到直线的距离为,∴直线与圆M相切,故C错误;对于D:显然圆心O1(2,0)不在直线4x+3y﹣2=0上,则圆M不关于4x+3y﹣2=0对称,故D错误;故选:B.二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.【答案】A【解答】解:如图,连接PF1,PF2,设P到x轴距离为d P,M到x轴距离为d M,则设△PF1F2内切圆的半径为r,则,===(c+a)r∴不妨设|PQ|=cm,则|MQ|=(c+a)m(m>0),∴|PM|=|MQ|﹣|PQ|=am(m>0),因为椭圆的离心率为,∴,故选:A.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.【答案】D【解答】解:按椭圆对称轴所在直线建立直角坐标系,则椭圆方程为,令y=﹣c,有一个,所以有,所以,所以=,所以e==.故选:D.。
2024年全国一卷数学新高考题型细分S13圆锥曲线解答题3

2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。
其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。
2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。
方便老师备课选题。
3、题型纯粹按照个人经验进行分类,没有固定的标准。
4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。
每道题目后面标注有类型和难度,方便老师备课选题。
1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。
2016 2017 初三英语二模题型汇编 写作优质范文汇编

2016-2017学年-初三英语二模写作优质范文汇编--题型汇编.学年初三二模写作题目汇编与范文2016-2017One【虹口区】(以“我的生活乐趣”My joy of living”94. Write a passage of at least 60 words on the topic “ 60个词的短文,标点符号不占格)为题,写一篇不少于生活有艰辛,也有乐趣,你的生活乐趣是什么?你为何觉得这是你的乐趣所在?你是怎么想的?怎么做的?【参考范文】 There is no doubt that we all have to face difficulties and stress in life, so we should develop a way of joy in our daily life. In my opinion, my joy of life is to listen to light music.Whenever I am stuck in trouble or feel depressed, I will spare myself some time to listen tolight music because it can help me adjust myself and make me calm down again. I think onlyin this way can I deal with the problems I'm faced with better or treat other people moreproperly.Above all, that's my joy of living and I think that you can have a try next time. I hopeyou will get benefit from it.Two【黄浦区】94. In 60 to 120 words, write about the topic “… is agood habit”.(以“……是好习惯”为题,写一篇60-120个词的短文,标点符号不占格)一个好的习惯会让我们终身受益。
东北三省四市2017届高三数学二模试卷理(含解析)

2017年东北三省四市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞) B.(﹣∞,4] C.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.8.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a11.已知向量,,若m+n=1,则|的最小值为()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4= .16.F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.20.椭圆C:的长轴长为2,P为椭圆C 上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.21.已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.五、23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.2017年东北三省四市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】A5:复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2} 【考点】1E:交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】K8:抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.5.已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.30【考点】8E:数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n≥0,解得n,分类讨论即可得出.【解答】解:∵a n+1﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞) B.(﹣∞,4] C.【考点】7C:简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.【考点】L!:由三视图求面积、体积.【分析】通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是正四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以四棱锥的体积.故选D.8.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.7【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件及n次独立重复试验中事件A恰好发生k次的概率计算公式得到p=1﹣()n,由此能求出n的最小值.【解答】解:将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,∴p=1﹣()n,∴()n≤.∴n的最小值为4.故选:A.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】H6:正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈,∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.10.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a【考点】EF:程序框图.【分析】分析程序运行的功能是比较a、b、c的大小并按大小顺序输出,写出运行结果即可.【解答】解:由程序框图知,程序运行的功能是比较a、b、c的大小并按大小顺序输出,程序运行后输出的是c≤b≤a.故选:A.11.已知向量,,若m+n=1,则|的最小值为()A.B.C.D.【考点】93:向量的模.【分析】根据题意,由向量的坐标计算公式可得的坐标,由向量模的公式可得||=,由基本不等式的性质可得≥()2=,即m2+n2≥;即可得答案.【解答】解:根据题意,向量,则=m﹣n=(3m+n,m﹣3n),||==,又由m+n=1,则有≥()2=,即m2+n2≥;故||=≥,即||的最小值为;故选:C.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.【考点】3T:函数的值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要即可,当m<2时,只要即可,由此能求出结果.【解答】解:当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立;当m>2时,,只要即可,解得2<m<5;当m<2时,,只要即可,解得,综上.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48 种不同的分法(用数字作答).【考点】D8:排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x .【考点】6H:利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x.故答案为:y=x.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4= 30 .【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.16.F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为或2 .【考点】KC:双曲线的简单性质.【分析】运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到.【解答】解:当b>a>0时,由,可知A为BF的中点,由条件可得=,则Rt△OAB中,∠AOB=,渐近线OB的斜率k=,即离心率e===2.同理当a>b>0时,可得e=;故答案为:或2.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f (x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005,对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10,其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X的数学期望为EX=1×+2×+3×=2.19.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M(2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.20.椭圆C:的长轴长为2,P为椭圆C 上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.【考点】KH:直线与圆锥曲线的综合问题;KL:直线与椭圆的位置关系.【分析】(I)由2a=2,解得a=,设P(x0,y0),A1(,0),A2(,0).由=1,可得=﹣.根据OM∥PA1,可得,于是===﹣=﹣,解得b2.(II)设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2).与椭圆方程联立化为:(2k2+1)x2+4k2x+2k2﹣2=0,利用根与系数的关系与中点坐标公式可得线段AB的中点Q,QN的方程为:y﹣=﹣,可得N.根据<<0,解得:0<2k2<1.利用弦长公式可得:|AB|=,即可得出.【解答】解:(I)由2a=2,解得a=,设P(x0,y0),A1(,0),A2(,0).则=1,可得=﹣.∵OM∥PA1,∴,∴====﹣=﹣,解得b2=1.∴椭圆C的方程为=1.(II)设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=,x1•x2=,∴y1+y2=k(x1+x2+2)=,可得线段AB的中点Q,QN的方程为:y﹣=﹣,∴N.∵<<0,解得:0<2k2<1.∴|AB|=•=,∵<1,∴|AB|∈.21.已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.【考点】6D:利用导数研究函数的极值.【分析】(1)求导,令f′(x)=0,根据函数单调性与导数的关系,即可求得函数f(x)的极值;(2)采用分析法,要证明f(e+x)>f(e﹣x),只需证(e﹣x)ln(e+x)>(e+x)ln(e ﹣x),构造辅助函数求导,由F′(x)>0,即可求得函数单调性递增,F(x)>F(0)=0,即可求得f(e+x)>f(e﹣x);(3)由(1)可知0<x1<e<x2,则0<e﹣x1<e,由(2)可知,f(x)在(e,+∞)上单调递减,x1+x2>2e,x0=>e,即可f'(x0)<0.【解答】解:(1)由f(x)=,x>0,求导f′(x)=,当x∈(0,e),f′(x)>0,f(x)单调递增,x∈(e,+∞)时,f′(x)<0,f(x)单调递减,∴当x=e时,f(x)取极大值为,无极小值,(2)证明:要证明f(e+x)>f(e﹣x),即证>,只需证(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),求导F′(x)=﹣ln(e2﹣x2)=+>0,∴f(x)在(0,e)单调递增,∴F(x)>F(0)=0,∴(e﹣x)ln(e+x)>(e+x)ln(e﹣x),∴f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)可知0<x1<e<x2,由0<e﹣x1<e,由(2)可知:f>f=f(x1)=f(x2),由2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,即x1+x2>2e,则x0=>e,∴f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.五、23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.【考点】3R:函数恒成立问题.【分析】(1)化简f(x)的解析式,判断f(x)的单调性,根据单调性得出f(x)的最小值化简即可得出结论;(2)分离参数得t≤,把2a+b=2代入不等式,根据基本不等式的性质得出的最小值,从而得出t的范围.【解答】解:(1)证明:令x+a=0得x=﹣a,令2x﹣b=0得x=,∵a>0,b>0,∴﹣a,则f(x)=,∴f(x)在(﹣∞,]上单调递减,在(,+∞)上单调递增,∴f min(x)=f()=a+=1,2a+b=2;(2)∵a+2b≥tab恒成立,∴t≤恒成立,∵2a+b=2,∴a+b=1,∴=+=+=+≥=,(当且仅当a=b时取等号)∴的最小值为,∴t.。
2017年广东惠州高三二模英语试卷-学生用卷

2017年广东惠州高三二模英语试卷-学生用卷一、阅读理解1、【来源】 2017年广东惠州高三二模(A篇)第21~23题6分2019~2020学年广东深圳南山区深圳市南头中学高一上学期期中第1~3题6分(每题2分) Are you looking forward to watching some great films in this summer?Here are four films you won't miss.Wonder WomanWonder Woman is this summer's most exciting film. Though being a superhero film, it is the most unique: you will see the first female superhero starred by Gal Gadot. On general release from 1 June.The MummyTom Cruise awakens an ancient princess who has now become a mummy. Cruise jumps from the sky, runs around a lot and wakes up naked in a sleeping bag – but it's Sofia Boutella as the Mummy who draws the most attention. Director Alex Kurtzman speaks highly of Sofia Boutella as the Mummy: "If you look at her eyes, there's a whole performance going on here. Even not saying anything, she can convey something very emotional to me." On general release from 8 June.Baby DriverAnsel Elgort is a getaway driver, who is forced to work for a crime boss. This is a comedy-action-romance from British writer-director Edgar Wright. The sound in the film is as great as the visuals, which makes it much like a musical, but it is quite different from La La Land. Baby Driver isn't just a series of song pieces. Instead, it finds its form in the elegant, rapid-fire combination of movement and sound. Released 28 June in Canada and the US.A Man Called OveThis film has become one of Sweden's most popular comedies. In the film a lonely retiree who has given up on life, was trying to kill himself, but all his attempts failed. Meanwhile, he developed an unlikely friendship with his Persian neighbor. It is really a tearjerker(赚人热泪的)film, which is funny, tragic, and heartwarming as well. Released 25 May in Hong Kong, 30 June in the UK.(1) If you are a big fan of Batman and Superman, which film will you like best?A. Wonder WomanB. The MummyC. Baby DriverD. A Man Called Ove(2) Alex Kurtzman speaks highly of Sofia Boutella because.A. her eyes are very beautifulB. she doesn't say anything as the mummy in the filmC. she gives an excellent performanceD. she is a woman with strong emotions(3) Which of the following statements is right according to the text?A. Wonder woman is the first female superhero.B. Sofia Boutella performs as well as Tom Cruise.C. Baby Driver is a musical like La la Land.D. The audience of A Man Called Ove may experience different feelings.2、【来源】 2017年广东惠州高三二模(B篇)第24~27题8分When I was a boy there were no smart phones, and our television only got one channel clearly. Still, I was never bored. The fields, hills, and woodlands around my home were the perfect playground. I can remember once hiking to a nearby lake. At the backside of it I was amazed to find an old dirt road that I had never seen before. It was full of muddy tracks and deep woods bordered it on both sides, but exploring it still seemed like a fine adventure.I walked on and on for hours. I was sure my guardian angel was whispering in my ear "turn around and head back home" , but I was stubborn, so I walked on. There was still neither a car nor a house in sight.I noticed that the sun was starting to go down and I grew scared. I didn't want to end up trapped on this road, and I was worried that it would be dark before I could make my way back to the lake again.I continued to walk on with TAL#NBSP something growing inside of me. My heart was pounding and my legs were aching. I was almost in tears when I turned one last curve and saw something in the distance. It was a house that I recognized. I jumped up and down and laughed out loud. It was still over a mile away but my legs felt like feathers and I hurried back to my house in no time. I walked in with a big smile on my face just in time for dinner.I remembered this recently when I saw a sign that said: "All roads lead home." It is true. In this life,all roads, no matter how they twist and turn, can lead us home again. What is important, though, is how we travel them. Are we going to go forth in fear or are we going to go forth in faith? Are we going to make this life a terrible trip or are we going to make this life a joyful journey? The choice is ours.(1) Why did the author hardly feel bored when he was young?A. Because he could have fun in nature.B. Because he could watch TV all day.C. Because he had many friends.D. Because he used to explore the old dirt road.(2) How did the author feel when he was exploring the dirt road?A. He thought he would be scolded by his parents.B. He felt contradictory in mind.C. He thought he would be trapped in the woods.D. He was unconscious.(3) What does "something"probably mean in paragraph 3?A. DoubtB. HopeC. CourageD. Fear(4) What does the author ainly intend to tell us?A. Always make choices on our own.B. All roads lead home.C. It's our attitude that matters in our life.D. Every effort is worthwhile.3、【来源】 2017年广东惠州高三二模(C篇)第28~31题8分In many ways, Providence Mount St. Vincent in Seattle is a typical senior living community. It is home to about 400 elderly residents and provides them with different types of assistance. However, it is also the Inter-generational Learning Center—a preschool where children and seniors have the chance to bond.Established in 1991, the ILC's purpose is to allow kids to learn about acceptance while also being nurtured. It also aims to help seniors develop a greater sense of self-worth and strengthen social interactions. Babies to prekindergarten-aged children are placed into six different classes at the ILC. The kids attend art and music classes, as well as story time and exercise time with the seniors. Marie Hoover,ILC director, said that interacting with the seniors has proven beneficial for the young ones, making them more open-minded."For the ILC children, interacting with the residents is simply part of their day-to-day life here and the way aging is 'normalized' , which may be the most important benefit they receive , " Hoover said. " I've had parents call me years after their children have graduated from our program to let me know about some incidents when their child was the first to warmly greet someone who happened to be in a wheelchair."As for the seniors, they're delighted by the companionship the children provide. The children bring so much energy and joy to our residents. Many of residents are widows or widowers and can become lonely. Their adult children may still be working, so they may not get to see them as often as they would like. Having the children stay with the old makes our residents feel they are still part of a community. The young and the old connect and learn from one another at TAL#NBSP this unique facility.(1) ILC is intended to.A. build a typical senior living communityB. take good care of the childrenC. benefit both the children and the seniorsD. rid the seniors of loneliness(2) From what Hoover said in Para. 3, we can learn that the ILC children.A. keep in touch with the seniors even if they have left ILCB. come to realize that aging is a normal part of lifeC. take different attitudes to the elderly after graduationD. think it easy to interact with the elderly residents in ILC(3) From what Hoover said in Para. 3, we can learn that the ILC children.A. keep in touch with the seniors even if they have left ILCB. come to realize that aging is a normal part of lifeC. take different attitudes to the elderly after graduationD. think it easy to interact with the elderly residents in ILC(4) The underlined words this unique facility may refer to.A. a special buildingB. a typical familyC. a typical teaching programD. a special learning cente4、【来源】 2017年广东惠州高三二模第32~35题8分DAre you content with the shape of your nose? If not, the climate may be to blame, not your parents.This is according to a recent study carried out by scientists from Pennsylvania State University, US. They found that climate played a key role in shaping our noses. The findings were based on an examination of the size and shape of noses of 476 people from four regions---West Africa, East Asia, South Asia and Northern Europe, using 3-D facial imaging technology."People have thought for a long time the difference in nose shape among humans across the world may have arisen as a result of natural selection because of climate," Arslan Zaidi, one of the lead authors of the study, told The Guardian. But while previous studies were based on measurements from human skulls, Zaidi and his team looked at nose shape itself.The result showed that wider noses are more common in warm and humid climates, while narrower noses are more common in cold and dry climates. That, Zaidi said, could be because narrower nasal passages help to increase the moisture(潮湿)content of air and warm it,which is easier on our lungs. This, in turn, led to a gradual decrease in nose width in populations living far away from the equator.More study is still needed to test the link between climate and nose shape, but Zaidi believes the current findings are valuable in understanding potential health issue. "As we become more of a global community, we are going to come across climates that we are not adapt to," he told the Guardian. This means moving to a very different climate might increase the risk of breathing problems.However, he added, "This may not be necessarily true for various reasons such as of modern medicine and the fact that our current climate is very different from what it used to be."(1) From the passage we know most people from Singapore have noses.A. widerB. narrowerC. smallerD. larger(2) Narrower noses are helpful to.A. cool the airB. warm the airC. take in more oxygenD. dry the air(3) What can be learned about the study?A. Zaidi's team measured human skull using 3-D technology.B. Shapes of our noses are determined by our parents.C. Nose shape helps people adapt to the environment.D. It's certain that people will suffer from more breathing problems.(4) Which of the following can be the best title of the passage?A. What factors shape noses?B. How to make your nose attractive?C. Nose shapes cause breathing problemsD. Climate shapes noses二、七选五5、【来源】 2017年广东惠州高三二模第36~40题10分2017~2018学年四川成都青羊区成都石室中学(文庙校区)高二下学期期中第36~40题10分(每题2分)By 2025, water shortage will be a big problem for about 1.8 billion people. In a world where water resource is increasingly short, nations cannot afford to waste it.1After we use water in our homes and businesses, it is washed away, and takes many valuable resources with it.Waste water is rich in carbon and nutrients. 2 A number of nations and major cities have already built waste water treatment plants. They can effectively recover nutrients and bioenergy, and produce "new water" that can be reused. But more than 80% of all waste water still currently flows into natural ecosystems, polluting the environment and taking valuable nutrients and other recoverable materials with it.3 This is still better than the situation in smaller cities. In Latin American countries, those living in small and medium-sized cities at most treat in the form of septic tanks(化粪池) that lack regular and proper maintenance.Imagine that outside one of these small cities lies a lovely piece of land: on the surface it is pleasingly built and provides habitats for local wildlife. Beneath the surface is a wetland that treats waste water and produces energy. The energy produced saves families from having to use firewood collected in the wild. This is not a dream project. 4 A team of scientists have been looking into the potential of constructed wetland environments. Having analyzed 800 examples of biomass in more than 20 countries, they found that, depending on climate and the type of plant used in the construction of this type of wetland, up to 45 hectares of land could be irrigated using waste water. 5A. But that is exactly what we do.B. This can provide ready access to clean water.C. There is no longer any good reason to waste any type of water.D. A "constructed wetland environment" is already in practice on a small scale .E. This would reduce the need for fresh water for irrigation and energy for pumping.F. If collected and treated properly, it could provide new water, fertilizer, and energy.G. Although waste-water systems in large cities are effective , the whole procedure usually costs much.三、完形填空6、【来源】 2017年广东惠州高三二模第41~60题30分2017年广东惠州高三二模第41~60题30分As older students at your school, do you sometimes feel a kind of responsibility? I was lucky enough to be named one of our prefects (监督生). My1 has so far meant that I've had to help with school meetings, events, and many 2 across the school.One of the events was a soccer tournament for 7th and 8th year prefects in September. We hadto 3 a soccer team made up of several prefects for the tournament.4 at the soccer field on the day of the tournament, we were fullof 5 that our 6 and age would be enough for us towin. 7, we had underestimated (低估) the situation. The younger students quickly started dominating us, and 8 beat us. Wewere 9 of the competition after the first game!Having been 10, we realized that our size and age reallydidn't 11, as the younger students were not intimidated (威吓). However, although we were defeated, we were able to talk to the 12 students afterwards, which was quite 13.After our pitiful attempt at 14 soccer, we had to help referee (裁判) the final few 15. Refereeing was a difficult task, as abad 16 could cost a team the game. 17 for me, there were no extremely difficult decisions.After refereeing, we were all given dinner and the student leaders and the younger kidsall 18together. At that moment I 19 the true job of a prefect—we are here to 20 the school.A. jobB. cureC. enquiryD. opportunityA. activitiesB. teachersC. librariesD. professorsA. suspectB. formC. quarrelD. challengeA. AttendingB. AimingC. GuidingD. ArrivingA. curiosityB. possibilityC. pityD. confidenceA. maskB. strengthC. speedD. sizeA. BesidesB. ThereforeC. AlthoughD. HoweverA. previouslyB. hardlyC. eventuallyD. firstlyA. knocked outB. knocked atC. knocked onD. knocked offA. scoldedB. defeatedC. blamedD. praisedA. riseB. clarifyC. matterD. goA. seniorB. youngerC. clevererD. smarterA. anxiousB. pleasantC. upsetD. delightedA. playingB. givingC. offeringD. helpingA. soccerB. activityC. footballD. gamesA. movementB. signalC. decisionD. suspectA. SadlyB. CalmlyC. PrivatelyD. LuckilyA. satB. seatedC. jumpedD. leapedA. neglectedB. realizedC. toleratedD. dreamedA. adjustB. reformC. uniteD. change四、语法填空7、【来源】 2017年广东惠州高三二模第61~70题15分2018~2019学年广东深圳南山区深圳市南头中学高二下学期期中第51~60题10分(每题1分)A woman suddenly1(go) blind in one eye after playing a mobile phone game for a whole week in Guangdong province last month. The unnamed woman admittedto 2(regular) playing the game for seven or eight hours without moving and finally lost 3(she) right eyesight.The game, Arena of Valor, 4(know) as Honour of Kings, has become hugely popular in China and is due to be limited across the US andEurope. Being 5world's most popular online battle game, it already has over 200 million players in China.The battle game 6(put) together a team of five players who have to fight others in a fantasy land filled7 characters, and players can buy extra features while playing. The eye injury follows series of 8(incident). In June, a child in Shenzhen stole 30, 000 yuan (£3, 450) from his parents to buy add-ons, and a 13-year-old in Hangzhou, severely injured his legs after jumping from a five-storey building to escape from hisfather 9 was trying to stop him playing.In a country in which 60 percent of the population has a smart-phone, the game has beenhighly 10(success), partly because it is free to play.五、短文改错8、【来源】 2017年广东惠州高三二模第71~80题10分假定英语课上老师要求同桌之间交换修改作文,请你修改你同桌写的以下作文。
2020年广东省湛江市高考地理二模试卷(含答案解析)

2020年广东省湛江市高考地理二模试卷一、单选题(本大题共11小题,共22.0分)1.我国在2012年3月开始尝试高铁快递业务,在武广高铁提供“点对点”“当日达”服务。
2014年中铁快运在全国20多个城市间开办高铁快递业务,标志着我国高铁快递正式运营。
目前,国内快递市场80%采用公路运输,15%采用航空运输,铁路运输在物流快递的市场份额不足5%,高铁快递的份额则更低。
近年来,国内快递量的快速增长也对各种运输方式提出了更高的要求,这为高铁快递的发展提供了良好的机会。
据此完成1~3题。
高铁占快递市场份额小的主要原因是高铁()A. 运距较短B. 运费较贵C. 以客运为主D. 受货源影响大2.我国在2012年3月开始尝试高铁快递业务,在武广高铁提供“点对点”“当日达”服务。
2014年中铁快运在全国20多个城市间开办高铁快递业务,标志着我国高铁快递正式运营。
目前,国内快递市场80%采用公路运输,15%采用航空运输,铁路运输在物流快递的市场份额不足5%,高铁快递的份额则更低。
近年来,国内快递量的快速增长也对各种运输方式提出了更高的要求,这为高铁快递的发展提供了良好的机会。
据此完成1~3题。
我国发展高铁快递运输的主要优势体现在()A. 高铁车站货运配套设施完善B. 高铁速度快,快递准点率稳定C. 高铁快递注重国内市场开发D. 高铁沿线经济发达,货运量大3.我国在2012年3月开始尝试高铁快递业务,在武广高铁提供“点对点”“当日达”服务。
2014年中铁快运在全国20多个城市间开办高铁快递业务,标志着我国高铁快递正式运营。
目前,国内快递市场80%采用公路运输,15%采用航空运输,铁路运输在物流快递的市场份额不足5%,高铁快递的份额则更低。
近年来,国内快递量的快速增长也对各种运输方式提出了更高的要求,这为高铁快递的发展提供了良好的机会。
据此完成1~3题。
与公路快递相比,高铁、航空快递难以占优势的运输距离是()A. 0~500kmB. 500~1000kmC. 1000~2400kmD. 2400km以上4.金兰湾港位于越南东南部,距离南沙群岛约600km,由冲空山和风凰山两半岛合抱成葫芦形的内外两个海湾,内港金兰湾面积为60km2,湾口宽仅为1300m;外港平巴湾水深10~22m,湾口宽约4000m,口外水深30m以上。
2017年二模议论文汇总

崇明:(一)阅读下文,完成第14-18题(20分)“情”是幸福之本乐黛云"人们常常试图找出幸福的量化指标和客观状况,如统计“幸福指数”之类。
其实,在我看来,幸福属于个人的精神世界,每一个人感受的幸福都不相同。
孔子最看重的学生颜回“一簟食,一瓢饮,居陋巷,人不堪其苦,回也不改其乐”。
孔子认为他虽然穷苦,却是幸福的。
古希腊的狄奥根尼无家无室,常年居住在一个木桶中。
当亚历山大大帝去见他,问他需要什么帮助时,他唯一的回答是:“请不要遮住我的阳光”。
他们都在享受自己的幸福。
#幸福需要各种条件,如和平、温饱、健康等,这些都是幸福的基本条件,但拥有了这些条件的人,不一定都感到幸福。
别人可以认为他们“身在福中不知福”,但是不是真正幸福,只有他们自己知道。
托尔斯泰的名言:“幸福的家庭都一样,不幸的家庭各有各的不幸”。
其实,幸福的家庭又何尝一样呢?农民家庭“阖家团圆瓜棚坐,闲对风月笑呵呵”应是幸福的吧;今天的一些“空巢家庭”,儿女东零西散,父母独守“空巢”,但想到孩子学有所成,都有可期许的未来,安知父母心中不感到幸福呢!$回顾我自己曾有过的一些难忘的幸福时刻,也不尽是产生于所谓“金榜题名”之类的时节,倒反而是更多地出现在极其艰难困苦的年月。
%当然,幸福的源泉并不止此。
感谢关注“沈姐的语文课堂”微信公众号,欢迎分享欢迎欢迎转发!这里有最新的魔都中高考语文资料!中国古人尝言:“乐莫乐兮新相知”,又说:“知音其难哉”。
如果真有一个忠心耿耿、始终相信你的品质、懂得你的弱点、蔑视任何谣言、传闻、曲解和误导,随时向你进忠言的朋友,那无疑是难得的幸福。
&幸福确实因时、因地、因人而异,但它的根本是情,是对人、对周围一切的热爱!很难想象一个对事冷漠,对人无情的人会有真正的幸福。
14.下列观点属于本文中心论点的一项是(3分)A.幸福属于个人的精神世界,每一个人感受的幸福都不相同。
B.幸福只有自己知道。
C.有知音相伴是人生最大的幸福。
2023年广东省湛江市经济技术开发区中考二模历史试题(无答案)

….2023年第二次中考模拟测试九年级历史(考试时间:80分钟)一、单项选择题。
(本大题30小题,每题2分,共60分。
每小题列出的四个选项中只有一个是正确的。
请将答题卡上对应题目所选的选项涂黑)1.某同学在对中国早期人类的历史进行研究性学习时列出了以下考古成就。
据此我们可知()时间考古学家考古成就1929年裴文中发现第一个北京人头盖骨化石;发现古人类用火遗迹1933-1934年裴文中发现3个完整的山顶洞人头盖骨化石1936年贾兰坡发现三个北京猿人头盖骨化石1965年——在云南元谋县发掘出远古人类的两颗门齿化石A.北京人是我国境内已确认的最早远古人类 B.学会用火是人类进化史上的里程碑C.我国境内早期人类都生活在旧石器时代 D.化石是研究远古人类历史的重要证据2.在《甲骨文编》中“福”字有50种构型(下图为其中的三种构型),它们都是商周时期人们“双手捧酒献于祭台”的具象化,反映了当时人们的生活场景。
这体现了()A.甲骨文是体系完备的文字 B.甲骨文生动形象的造字特点C.宴饮活动推动了文字诞生 D.汉字的发展是一脉相承的3.从出土的云梦秦简看,秦国对各个生产领域的管理指标十分具体详细,从粮食生产、加工,到劳动者饮食标准、衣物的供给等,都有精确的规定。
这表明当时秦国()A.人民负担沉重 B.法律法规严苛 C.注重经济管理 D.奠定统一基础4.魏主下诏,以为:“北人谓土为拓,后为跋。
魏之先出于黄帝,以土德王,故为拓跋氏。
夫土者,黄中之色,万物之元也。
宜改姓元氏。
诸功臣旧族自代(按:代,郡名,今山西省东北、河北省西北一带)来者,姓或重复,皆改之。
”材料说明孝文帝改革()A.实行开明的民族政策 B.丰富了鲜卑文化的内涵C.消除了民族之间的隔阂 D.根植于对华夏文化的认同5.下表所示信息折射出,隋朝()事项概况出处修通通济渠公元605年,发河南诸郡男女百余万,经6个月,修成。
《隋书·炀帝纪》修通永济渠公元608年,诏发河北诸郡男女百余万,经1个月,修成。
2017年4月徐汇区初三英语二模卷

2017年4月徐汇区初三英语二模卷2016学年第二学期徐汇区初三模拟考英语试卷(满分150分,考试时间100分钟)2017.4Part 1 Listening (第一部分听力)I. Listening Comprehension (听力理解): (共30分)A. Listen and choose the right picture (根据你听到的内容,选出相应的图片): (共6分)A BC DE FG H1. ______2. ______3. ______4. ______5. ______6. ______B. Listen to the dialogue and choose the best answer to the question you hear (共8分)7. A) On the 1st floor. B) On the 3rd floor. C) On the 6th floor. D) On the 8th floor.8. A) At the airport. B) At the bus stop. C) At the train station. D) At the subway station.9. A) On foot. B) By taxi. C) By bike. D) By bus.10. A) Buying some cold drinks. B) Cleaning his room. C) Having a barbecue. D) Meeting Jenny.11. A) On Thursday. B) On Friday. C) On Saturday.D) On Sunday.12. A) The orange one. B) The pink one. C) The blue one.D) The green one.13. A) By using some magic. B) By taking a yoga course. C) By going on a diet.D) By calling himself Tim.14. A) Because they didn’t recognize her. B) Becausethey met a famous actress.C) Because the woman performed well. D) Becausethe play made them happy.C. Listen to the letter and tell whether the following第二部分语音、词汇和语法) Part 2 Phonetics, Vocabulary and GrammarII. Choose the best answer (选择最恰当的答案): (共20分)26. Which of the following words matches the sound / nju:/?A) now B) nor C) newD) near27. Brooklyn Beckham, ________ eldest child of the Beckhams, will sell his photo book in May, 2017.A) a B) an C) the D) /28. Nobody can stop a person with a strong will ________realizing his dreams.A) of B) from C) with D) by29. If they don’t prepare ________ well for the interview, they may fail to get the offer.A) they B) them C) theirs D) themselves30. When Frank complained about the cold winter,Jane________ the sunny summer days in Australia.A) enjoys B) was enjoying C) has enjoyedD) will enjoy31. Joe can only take two of his family members into the studio and leave ________ waiting outside.A) the others B) others C) other D) the other32. ________ the end of yesterday, there had been more than10 car accidents because of the typhoon.A) By B) From C) At D) To33. The old ________ enjoy the convenience of technologiesbecause they don’t accept new things quickly.A) mustn’t B) needn’t C) can’t D) shouldn’t34. The panda ________ to get used to the new environment since he returned from America.A) learns B) is learning C) learned D) has learnt35. The audience were attracted by ________ the stories andthe readings at the new program “Readers”.A) both B) neither C) either D) none36. After the operation on Grandma’s heart, she becomesmuch ________ at present.A) good B) well C) better D) best37. Every picture in the coloring book Secret Garden was notdrawn by computer ________ all by hand.A) and B) so C) but D) or38. The year’s best picture was wrongly awarded to La La Land, which ________ never ________ before.A) would…happen B) was…happening C) has…happened D) had…happened39. A: ________ can we get the chance to join the party?B: To join this party, you have to dress up like aSuperhero.A) Why B) What C) How D) Where40. Jenny is an independent girl and she is considering________ a boarding school(寄宿学校).A) enter B) entering C) to enter D) entered41. Every Monday morning all the staff members have a meeting to report their recent work, ________?A) haven’t they B) don’t they C) aren’t theyD) won’t they42. Alex had no interest in painting ________ he met a creative and patient art teacher one day.A) when B) because C) until D) if43. ________ good chance those teenagers were given toexperience different cultures!A) How B) What C) What a D) What an44. A: The dishes you cooked tonight are really delicious.B: ________A) Of course! B) I’m glad you like them!C) That’s all right! D) Never mind!45. A: Excuse me, can I ask you some questions about thechanges in Shanghai?B: ________A) Sure, go ahead! B) Congratulations! C) I am so sorry! D) Nice to meet you!III. Complete the following passage with the words or phrases in the box. Each can only be used once(共8分)A. traditionB. similarC. communicationD. spreadE. hear ofThe Origins of April Fools DayWhat is April Fools Day and where does it come from? It is commonly believed that in medieval(中世纪)France, New Year was celebrated on 1 April. Then in 1562, a new calendar was introduced, changing New Year to 1 January. With no modern 46 , news travelled slowly and new ideas were often questioned. Many people did not47 the change, while some just forgot. These people were called fools. People send i nvitations to ‘New Year’ parties that were not existed and other jokes were played. Then a 48 of playing jokes on April 1st started. The custom finally 49 to England and Scotland, and it was later transported across the Atlantic to the Americanand the French. April Fools Day has now developed into an international festival of fun, with different nationalities celebrating the day in special ways.A. strangersB. balancedC. experiencedD. catchE. knowingApril Fools Day around the WorldIn France and Italy, if someone plays a trick on you, you are the ‘fish of April’. By the month of April fish have only just hatched(孵化) and are easy to 50 . Children stick paper fish to their friends’ backs and chocolate fish are found in the shops.In Scotland, April Fools Day lasts for two days! The second day is called ‘T aily Day’. Often a sign saying ‘kick me’ is stuck onto someone’s back without 51 .Today, Americans and the British play small tricks on friends and 52 on April 1st. A common trick is to point to a friend's shoe and say “Your shoe is not tied.” When they look down, they are laughed at. Schoolchildren might tell a friend that school has been cancelled. A bag of flour might be 53 on the top of a door so that when the ‘victim’ opens the door, the flour empties over their head.Most April Fool jokes are in good fun and not meant to harm anyone. The best trick is the one where everyone laughs, especially the person upon whom the joke has been played.IV. Complete the sentences with the given words in their proper forms (共8分)54. We all hope that those baby pandas in the zoo can grow up ________. (happy)55. After the 1000 meters’ race, I could hardly move my________. (foot)56. Jeff keeps running every day and he looks ________ thanhis classmates. (strong)57. People celebrate the Dragon Boat Festival on differentdates. It is on May the ________ this year. (thirty)58. It is ________ of some online store sellers to lie about thequality (质量) of their products. (honest)59. Tim visits his junior high school teachers every Teachers’Day to express his ________ . (thankful)60. Since last year, the new medicine has successfully helped to ________ many people’s lives. (safety)61. With the help of that famous ________, the bridge construction was completed on time. (engine)V. Complete the following sentences as required(根据所给要求,完成下列句子,共14分)62. He forgot to lock up the door to the cage and accidentallylet the tiger escape. (改为一般疑问句)________ he ________ to lock up the door to the cage and accidentally let the tiger escape?63. Mr. Wang will introduce Shanghai to all the foreignguests at the welcome party. (对划线部分提问)________ ________ Mr. Wang introduce to all the foreign guests at the welcome party?64. They usually store these fishes in the fridge to keep themfresh. (改为被动语态)These fishes ________ usually ________ in the fridge to keep them fresh.65. Ian promises the technology of his invention is not harmful to the human body.(保持句意基本不变)Ian promises the technology of his invention does________ ________ to the human body.66. Professor Tenor’s lecture on universe is very difficult.Many people can’t understand it. (合并两句为一句) Professor Tenor’s lecture on universe is ________ difficult for many people ________ understand.67. This warning sign tells us not to pick flowers. (保持句意基本不变)This warning sign says, “________ ________ flowers!”68. a plan, made, before Friday, the staff, work out, themanager (连词成句)____________________________________________________ ____.Part 3 Reading and Writing (第三部分读写)VI. Reading comprehension (阅读理解): (共50分) A:Choose the best answer ( 12分)Cool, amazing, unforgettable…something money can’t buy!These are all words which students have used to describe their HOST visits. But a word they never use is “expensive”. Why not?Because HOST visits are FREE.Our wonderful hosts are not paid. They love giving international students very special memories of the UK to take home with them.Students pay their own travel costs. And there is an application fee(申请费) which helps to pay for running the HOST program. But your university may pay all or part ofThe British Council and Foreign Office founded (建立)HOST in 1987. Thousands of students have enjoyed this experience.5 reasons to have a HOST visit△It is a unique opportunity to experience the real life of Britain.△It is safe---all the hosts are known by HOST.△It may cost you only your train fare.△You will learn things which the university cannot teach you. △You will have some very special memories to take home with you.And 3 reasons NOT to apply for a HOST visit△Please do not use HOST as a cheap form of tourism. It is about meeting people, sharing their lives.△Please do not go on a HOST visit if you need to use your phone or pad a lot. Instead, make it a good chance to meet British people and make new friends.△You can apply for a HOST visit if you are:➢A full-time student in the UK. HOST cannot acceptapplications from outside the UK.➢Aged 18+➢You can include your husband, wife, partner,children-if they are living in the UK during your studyperiod. HOST cannot accept applications from visitingfamily members or friends.69. This advertisement is probably for ________ to read.A) travel agents B) news reporters C) international students D) hotel managers70. Which of the following words cannot be used to describe HOST visits?A) Amazing. B) Expensive. C) Unforgettable.D) Surprising.71. The word “them” in the sentence “They love givinginternational students very special memories of the UK to take home with them.” refer to ________.A) international students B) wonderful hosts C) travel costs D) HOST visits72. People who are interested can learn ________ from this advertisement.A) how to apply for a HOST visit B) who can apply for a HOST visitC) how to pay for their HOST visits D) where they can find wonderful hosts73. The main purpose of the HOST program is to enable students to ________.A) visit different places in the UK B) save money on travelling costC) make full use of their stay in the UK D) be more open minded and active74. The HOST program is suitable for ________.A) Vickie, a sixteen-year-old exchange school studentB) Samuel, an active and popular online fashion bloggerC) Fang, a visiting friend of Diana from Hong Kong D) Osaki, an easy-going Japanese student of Oxford University B. Choose the words or expressions and complete thepassage(选择最恰当的单词或词语完成短文):(12分)When I entered Berkley, I hoped to win a scholarship(奖学金). As a Straight-A student all the way through, I believed I could take tough subjects and really learn something. One such course was World Literature given by Professor Jayne. I was very interested in the ideas he taught in class.When I took the first exam, I was shocked to find a 77,C-plus, on my test paper, for English was always my best subject. I went to Professor Jayne, who listened to my 75but he refused to do anything about it.I decided to try harder, 76 I didn’t know what that meant because school always seemed easy for me. I read the books more carefully, but got another 77. Again, I reasoned with Professor Jayne. Again, he listened patiently but wouldn’t 77 .One more test before the final exam. So I worked even harder and, for the first time, learned the meaning of the word “thorough”. But my effort did no good and 78 stayed as before.The last chance was the final. No matter what grade I got, it wouldn’t cancel three C-pluses. I might as well kiss the scholarship goodbye.I stopped working hard. I felt I knew the course material as well as I ever would. The night before the final, I even relaxed to a 79 . The next day I decided for once I’d have fun with a test.A week later, I was surprised to find I got an A. I hurried into Professor Jayne’s office. He seemed to be expecting me. “If I gave you the grade as you 80 , you wouldn’tco ntinue to work hard.”I stared at him, realizing what he said was correct. I had worked my head off, as I had never done before. I was surprised when my course grade arrived: A-plus. It was the only A-plus given. The next year I received my scholarship. I’ve always remembered Professor Jayne’s lesson: you alone must set your own standard of excellence.75. A) speeches B) replies C) argumentsD) conclusions76. A) although B) unless C) if D) when77. A) communicate with me B) look after me C) get rid of it D) change his mind78. A) anything B) something C) everythingD) nothing79. A) test B) movie C) trick D) survey80. A) expected B) volunteered C) realizedD) selectedC. R ead the passage and fill in the blanks with proper words (14分)It is never easy when a friend doesn’t tell the truth. This is something that hurts the person who has been lied to and f 81 it ends up hurting the person who did the lying as well. Lying is never something that is easy to forget or even to forgive. But it is something that you should try to understand so that you can be a better friend.Usually, friends lie because of the way that they are feeling. If a friend feels inferior to(比……差) another person, he might make up stories so that he can get more a 82 . If your friend is lying to you for this reason, it might be a good idea to talk to your friend and make him understand that he doesn’t need to feel that way.There are times when a friend might lie to try not getting into trouble. For example, if a friend knows he has been doing something you d 83 , or if he now regretswhat he has said or done, he might want to lie about it so that you won’t be angry with him. The best way to deal with this situation is to get to the bottom of what might have happened, and make sure that you are being h 84with your friend about everything that you do and the fact that lying hurts.S 85 , a friend lies for other reasons. One of these reasons might be to protect your feelings. For example, he might lie about h 86 silly you look or what stupid words you have said. You must decide if truthfulness(真实) is more important than your feelings in this type of situation.Many times, friends don’t lie to hurt each other. Perhaps they know that the truth might make you mad at them, and they just don’t want to lose your f 87 . The best way to deal with lying is to talk to your friends calmly, and get the truth.D. Answer the questions(根据短文内容回答下列问题): ( 12分)Researchers from two universities in Britain recently carried out a very interesting project. They aimed to find out what modern family needs from their home. The lucky family chosen to take part in the project was the Joneses: parents Paul and Eve and their two sons, Jimmy (16) and Harry (13). They have just spent two months living in aspecially designed hi-tech future house, where cameras recorded everything they did.TV while you batheSo what’s in this modern house? It boasts (夸耀) five bedrooms and five bathrooms. The sitting area has a huge TV and a digital picture frame---you can decide which photos you want to appear and change the picture as often as you like. The baths all have waterproof TV screens and DVD players. There is a remote control(遥控器)in every room which controls everything in the house from the lights to the cooker. The floors are all made of glass and all have underfloor heating. The windows clean themselves and there is even a robot called “Iron Man ” to do the ironing. Dirty washing goes into a lift which takes the clothes automatically to the washing machine. The “Iron Man” then does all the ironing.So how did it go?The Jones family were over the moon to be chosen to spend some time in the house. Here’s what they said:Paul: It was great. The house was so comfortable. One day our friends called round with their dog. The dog felt sowarm and comfortable; he even slept on the floor! Oh,but there was one problem. One night we were all inbed and all the lights switched themselves on for noreason. It was a bit frightening!Jimmy: I loved it, but I wish there had been a robot to help me with my homework.Harry: Staying in was as much fun as going out!Eve: I loved the TV in the bath but I never watched it before going to work in the morning. If I did, I don’t think I’d ever get out!The Jones family are now back in their very ordinary home, but planning some hi-tech additions as soon as they can afford them!The experts hope that results from their project will help developers meet the needs of a 21st-century family. One of the experts wrote a few sentences about his findings on this project:After watching what the Jones family did in the house and listening to how they felt about their life there, we learn that_________________________________________________________________ 88. Who carried out this interesting project? (1分)_________________________________________________ .89. Why was the project carried out in a specially designed hi-tech future house? (2分)__________________________________________________________________________________.90. What does the remote control in every room enable people to do? (2分)____________________________________________________ ______________________________.91. Which does the washing in this future house, the robot or the washing machine?____________________________________________________ ______________________________.92. How did the Jones family feel about their experience in the house? (2 分)____________________________________________________ ______________________________.93. What will the expert possible write about his findings? Please help him complete his note. (3 分)_________________________________________________________________VII. Writing: (20分)94. Write a passage on the topic “A party for/to ________”in at least 60 words. 请设计一个主题派对,并以“_________ 派对”为题介绍派对主题、对象及活动内容等,写一篇至少60个字的短文,(标点符号不占格)(注意:短文中不得出现任何人名、校名及其它相关信息,......................否则不予评分......。
广东省湛江市2023届高三二模考试语文试题及答案解析

广东省湛江市2023届高三二模考试语文试题及答案解析一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一:中华文明探源工程等重大工程的研究成果,实证了中国百万年的人类史、一万年的文化史、五千多年的文明史。
历史来路中,中华文明形成了“讲仁爱、重民本、守诚信、崇正义、尚和合、求大同”的精神特质和发展形态。
所谓精神特质,是意识、思维与一般心理状态中,区别于他者的独特性质与内容。
或许有人说,强调“爱”与“百姓”、“诚信”与“正义”等并不鲜见。
但实际上,中华文明中的诸精神特质,具有的并不是抽象、孤立或暂时的价值,而是深刻的历史沉淀与现实影响。
精神特质作为一种社会意识与上层建筑,必然由一定的物质基础产生。
人类社会发展过程中,农业起源和文明起源相互联系。
据考古研究,中国的农作物驯化和农业起源至少可追溯到一万年前,以农业生产为主导经济的农业社会在距今五千五百年前后正式建立。
可以说,中国在东亚独特的地理环境下孕育的生产方式,构成了生产关系与上层建筑发展的基础,塑造了传统中国对人与人、人与自然关系的认识与处理,而中华文明的精神特质正是孕于其中的。
同时,中华文明的精神特质,不是孤立地生发于物质生产,而是作为集中体现与突出标识,反映着中华民族的文化传统。
立足世俗、追求“天道”、重视包容等特征,在关于中华文化传统的众多讨论中屡被提及。
中华文明体系并非以宗教为核心,其对此岸世界和世俗性的重视包含着“仁者爱人”“民为邦本”的要求。
中华文明独特的“天道”观,其本质是对社会公德和集体伦理体系的追求,诚信、正义等正是其中的重要价值。
“和而不同”“有教无类”,见证了中华文明自古形成的包容性,大同与和合寓于其中,成为民族传承千余年的认同与追求。
可以说,讲仁爱、重民本、守诚信、崇正义、尚和合、求大同,这些中华民族的精神特质是一种典型的社会意识,在以千年计的文明发展历程中发展、完善着自身。
2017湛江市二模

2017广东省湛江市二模(地理)第I 卷(选择题)马衔山山区是甘肃榆中高原夏菜的重要种植基地。
蔬菜依山势阶梯分布在海拔1500—3000米的山坡上,品种多样,品质优良,5-10月可梯次上市,具有较长的采收上市期。
主要销往东南沿海地区,远销新加坡、日本等十多个国家和地区。
当地政府通过“田间学校”为菜农们提供多方服务,菜农们紧跟时尚,玩起了微信。
据此完成1-3题。
1.该地高原夏菜5-10月梯次上市且有较长的上市期的原因是A.白昼较长 B.热量较充足 C.地势起伏大 D.冰雪融水量大2.该地高原夏菜远销新加坡、日本等地主要得益于A.先进的栽培技术B.交通和保鲜技术的改善C.政府的大力支持D.低廉的蔬菜价格3.“互联网+农业”的创新模式对该地农业发展的意义在于A.改善农业基础设施B.降低蔬菜种植成本C.拓展销售市场D.提高蔬菜品质福建平潭岛东北部的沙地底村北部分布着一座巨大沙丘,沙丘虽与村庄近在咫尺,但沙丘却从不移动,形成“沙不袭村,村不毁沙,人沙和平共处”的地理奇观。
沙丘上长有稀疏的植被,覆盖一些黑色碎石。
岛上常年盛行东北风,风力达六、七级。
据此完成7-9题。
7.该沙丘形成的主要外力作用是A.风力侵蚀作用B.风力堆积作用C.流水搬运作用D.流水侵蚀作用8.“沙不袭村”的主要原因是A.地形和河流改变沙粒运动方向B.位于当地山地的背风地带C.根系发达的植被固沙作用明显D.沙丘上碎石固沙作用明显9.沙丘附近村庄种植的农作物最有可能是A.水稻 B.甘蔗C.番薯 D.小麦国家节点战略是以试点改革为特色,依托重要节点推进区域开发的战略,是确定国家中心城市的理论依据之一,重要节点在制度创新、经济增长、结构调整等方面具有核心枢纽作用,其作用程度会受到空间位置的影响。
据此完成4-5题。
4.不能在区域开发中承担“重要节点”的是A.上海自贸区 B.天津滨海新区 C.深圳 D.合肥5.以下节点城市中,具备促进区域合作功能的是A.贵州贵安新区 B.四川天府新区 C.浙江舟山新区 D.新疆喀什特区6.重要节点对周围城镇群的主要作用是A.推动城镇群的功能升级与结构优化 B.改变城市的地域形态C.提高城市人口比重 D.改善周围城镇群的环境质量雪花的形态与生长环境密切相关,尤其是温度和湿度。
2024届广东省湛江市高三下学期二模考试英语试题+答案

注意事项:2024年湛江市普通高考第二次模拟测试英语1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号除黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第二部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。
Here are some things that you can buy as gif1s for your friends who打e birdwatchers.A window-mounted bird feederOne way to guarantee a close-up look at the birds in your garden is to bring them all the way to the house. This 阮d feeder is solidly built with strong suction(吸)cups that you can tie to your windows, giving you a good view of your winged visitors.A pair of binocularsBinoculars are a birdwatcher's b凶friend!They work like two small telescopes joined together, allowing you to use both eyes to see distant birds as if they were right in f r ont of you. They're perfect for spotting feathered friends in the wild, whether the birds are high up in the trees or soaring across the sky. When you peer through them, you get a view that makes every little detail of the birds一their colors, beaks, and even the texture of their feathersThe Robin: A Biography by Stephen MossThis beautifully illustrated book draws readers into the mysterious world of Britain's favourite bird, the red robin—a fam山ar sight in all winter gardens, but as naturalist Stephen Moss demonstrates, one we hardly know Combining convincing sto1-ytelling with biological fact, Moss guides us through a year in the life of the robin, from the moment it hatches f r om its egg to its all too timely mortality(死亡)一th e robi11 tends to live a mere 13 months, adding to its precious qualityA reusable thermal bottleEvery good birding expedition needs a bottle of steaming hot tea. A reusable bottle decorated with lifelike drawings of classic British birds combines a natural aesthetic (美感)with practica.lity. It can keep not only hot drinks but also cold drinks21.What do we know about binoculars?A.They can attract birds to your house,B.They show images in black and white.C.They can provide detailed views of birdwatchi11g.D.They're too heavy to carry for birdwatchers.22.What does The Robin: A Biography tell us about?A.The birth of a bird. C.The quantity of a birdB.The death of a bird.D. The lifetime of a bird.23.Which gift may attract birds to one's house?A.A window-mounted bird feeder.C.The Robin: A Biography.B.A pair of binoculars.D.A reusable thermal bottleBLexi is just a little girl from Canada who found herself in a hea几stopping situation. It st打ted off as a normal car trip. Angela Shymanski, Lexi's mom, was at the wheel, navigating the tricky roads of the Rockies with her daughter Lexi and her baby Peter in the c打.An unexpected animal ran into the road. Angela swerved (突然转向)to avoid the animal. Unfortunately, their car was off the road, falling down a steep embankment(路堤)The crash was nothing short of terrifying. Angela ended up with a broken back. She was unconscious, and unable to help her babies. Meanwhile, baby Peter's cries echoed in the chaos. But Lexi, only five years old, didn't fr e eze. Instead, she showed courage that would leave many grown-ups in awe.She quickly jumped into action. The little girl, without even shoes on her feet, wrestled fr e e fr o m her seatbelt and climbed the 40-foot embankment. Once she reached the top, Lexi did everything she could to flag down a passing car in order to get help for her mom and brother.Lexi's insistence filially paid off.A car stopped, and the people inside didn't hesitate to help her call for emergency services. When the paramedics(护理人员)arrived,they found Angela in a severe state, and her heart had stopped. Thankfully, they managed to bring her back.Lexi's dad, reflecting on the incident, couldn't help but be amazed by his daughter's bravery. He沁tressed how important it is for kids to be prepared for emergencies, shocked at how Lexi remembered and acted on what she had been taught. It's a powerful reminder of what kids can do when push comes to shove.And Lexi's heroism didn't go unnoticed. She was awarded a Bronze Medal for Bravery by the police. But for the Shymanskis, the real prize was being back in each other's arms, safe and sound24.What caused the accident?A.The tough road.B.The children's noise.C.A car that suddenly swerved.D.An animal appearing suddenly.25.What was Lexi's first move after the accident?A.Putting on her shoesC.Flagging down a passing car. B. Managing to get out of the carD. Scaling the 40-foot embankment.26.What can we learn about Lexi fr o m paragraph 5?A.Her heroic action deserved recognition.B.Her dad知ew her daughter weU enough.C.She had learned how to deal with emergencies.D.It was important for her to face some emergencies.27.Which of the following can best describe Lexi?A.Brave and honest.C.Thoughtful but stubborn.B.Calm and courageousD.Caring but naughty.CA recent study reveals that flat-faced dogs, such as French bulldogs, have difficulty sleeping because of an unusual feature: their head shape. French bulldogs specifically suffer from increased daytime sleepiness, probably due to not getting enough night-time sleep.With their big eyes staring right back at the owner, and wrinkles rolled over their noses, French bulldogs have shot up in popularity in recent years. But their distinct features and small size come with a number of health issues.The researchers studied the sleep patterns of 92 dogs accompanied by their owners. They found that compared with other dogs, the flat-faced dogs experience a longer period of rapid eye movement (REM), regarded as the stage of sleep with most vivid dre扣ns where the brain is active while the body remains still. Researchers said this was similar to the way babies sleep, suggesting that dogs, like French bulldogs, keep up the sleep patterns of puppyhood Their night-time sleep is shorter and flat-faced dogs are also more likely to snoring(打酐)“Sleep deprivation is increasingly recognized as a major cause of suffering in dogs with extreme brachycephaly(短头畸形),“said Dan O'Neill, an associate professor f r om the University of LondonThe researchers employed an electroencephalogr皿(脑电图)throughout the dogs'sleep. They looked particularly at sleep spindles (睡眠纺锤波).They found that dogs with brachycephaly had an increase in sleep spindles, which in dogs has been associated with poorer learning whe.n it comes to trainingA researcher said, "We know that some of these dogs will sleep with a ball in their mouth, and people think it's cute, but they're actually doing it in order to keep their airways open. "O'Neill agreed, "Many owners find this phenomenon very funny and post videos online showing how comical their dogs are as they sleep with a toy in their mouth or with their neck extended or repeatedly waking up to breathe during sleep. "28.What may lend to flat-faced dogs increased daytime sleepiness?A. Their tendency to sleep with owners.B.Their preference for daytime nappingC.Their shorter night-time sleep due to the head shape.D. Their habit of sleeping in uncomfortable positions.29.What do we say about flat-laced dogs from paragraph 3?A. They differ [rom human beings in REMB.They require less sleep than other speciesC.They're less likely to suffer sleep disturbancesD. They maintain puppy-like sleep patterns as adults30.What does the increase in sleep spindles in flat-laced dogs imply?A. They have a stronger memory during sleepB.They have a strong desire to sleep duri11g the nightC.They are more likely to succeed in hru·d trainingD. They may face challenges in learning during training.31.Why do some flat-faced dogs sleep with a toy in their mouths?A. T hey want to have pleasant dreams.C.It helps them maintain an open皿1i rway.B.It prevents them from snoring loudl yD. They enjoy playing with toys while sleeping DResearchers have developed a robotic sensor that combines artificial intelligence techniques to read Braille(盲文)at speeds roughly double that of most human readers. The research team, from the University of Cambridge, used machine le打ning algorithms(算法)to teach a robotic sensor to quickly slide over lines of Braille text The robotic sensor the researchers used has a camera in its "fingertip", and reads by using a combination of the information from the camera and the sensors. "This is a hard problem for roboticists as there's a lot of image processing that needs to be done to remove motion blur (ffl:ml), w h i ch i s t i m e a nd e n e r g co n s um i(模糊),which is time and ener g y-con s umin g," said Paith Potdar f r om Cambridge's Department of Engineering"There are existing robotic Braille readers, but they only read one letter al a time, which is not how humans read," said Potdar. "Existing robotic Braille readers work in a牢出£way: They touch one letter pattern, read it, pull up f r om the su1f ace, m ove over, lower onto the next letter pattern, a nd so on. W e want something that's more realistic and far more efficient. "The team developed machine learning algorithms so the robotic reader would be able to "deblur" the images before the sensor attempted to recognise the letters. They trained the algorithms on a set of sharp images of Braille with fake blur applied. After the algorithms had learned to deblur the letters, they used a computer vision model to detect and classify each character.Once the algorithms were incorporated, the researchers tested their render by sliding it quickly along rows of Braille characters. The robotic Braille render could read 315 words per minute with 87% accuracy, w hich is twice as fast and about as accurate as n human Braille reader.“Bra仆le reading speed is a great way to measure the dynamic performance of tactile(能触知的)sensing systems, s o our findings could be applicable beyond Braille, f or appli c ations like detecting surface textures or slippage in robotic manipulation," said Potdar.In the future, the researchers are hoping to scale the technology to the size of a humanoid hand32.What is diff i cult for roboticists to deal with in the reading process.?A. Ridding of motion blur.B.Teaching a robot to learn.C.Processing robotic sensors.D.Fixing a camera on the fingertip.33.What does the underlined word "static" in paragraph 3 mean?A.Still.B.Fast.C.Clever.34.What did Potdar want to express in paragraph 6?A. The good performance of the robot sensor.B.The promising future of their research results.C.The factors in making the tactile sensing systemsD. T he way to ensure the accuracy of the technolog y35.Which can be the best Litle for the text?A. Technology to be scaled to the size of a humanoid handD. Lazy.B.Robots trained to read Braille at twice the speed of humansC. A great way to measure the performance of sensing systemsD.Machine learning algorithms expected to change Braille writing第二节(共5小题;每小题2.5分,满分12.S分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20仃湛江市二模2017广东省湛江市二模(地理)3.“第I卷(选择题)马衔山山区是甘肃榆中高原夏菜的重要种植基地。
蔬菜依山势阶梯分布在海拔1500—3000米的山坡上,品种多样,品质优良,5-10月可梯次上市,具有较长的采收上市期。
主要销往东南沿海地区,远销新加坡、日本等十多个国家和地区。
当地政府通过“田间学校”为菜农们提供多方服务,菜农们紧跟时尚,玩起了微信。
据此完成1-3题。
1.该地高原夏菜5-10月梯次上市且有较长的上市期的.. 原因是厂匚、f、•A •白昼较长®" 大D.•冰雪融水量大,1 52 .该地高原夏菜远销新加坡、日本等地主要得益于三•・*•「A. 先进的栽培技术B.交通和保鲜技术的改善C .政府的大力支持D .低廉的蔬菜价格11'赠悄群wsi / 何城^2面@)Ji锐祐穴• 廊同股嵯城補O 耳他蛾巾——宇何麻病-►集唳力十忙肢打国家节点战曙作用棧式分折互联网+农业发展的意义在于的创新模式对该地农业A .改善农业基础设施B .降低蔬菜种植成本C .拓展销售市场D .提高蔬菜品质福建平潭岛东北部的沙地底村北部分布着一座巨大 沙丘,沙丘虽与村庄近在咫尺,但沙丘却从不移动,形 成“沙不袭村,村不毁沙,人沙和平共处”的地理奇观。
沙 9 .沙丘附近村庄种植的农 作物最有可能是长有稀疏的植被,覆盖一些黑色碎石。
岛上常年7-9 题。
盛行东北风,风力达六、七级。
据此完成 7.该沙丘形成的主要外力作用是 A .风力侵蚀作用-V -B .风力堆积作用C .流水搬运作用D .流水侵蚀作用 百要原因 沙粒运动方向 B .位于当地山地的背风地带 C •根系发达的植被固沙作用明显 D .沙丘上碎石固沙作用明显&“沙不袭村”的A .地形和河流改变 *! “ ULU■・・ ' ■- ■ -HIT 杪---阿晡—海岸幽亡」IV-严'ifi'7"冷Q国家节点战略是以试点改革为特色,依托重要节点 推进区域开发的战略,是确定国家中心城市的理论依据 之一, 面具有核心枢纽作用,其作用程度会受到空间位置的影 响。
据此完成4-5题。
4.不能在区域开发中承担,具备促进区域合作功能的是B •四川天府新区D .新疆喀什特区A •水稻 C •番薯B ・甘蔗 D ・小麦重要节点在制度创新、经济增长、结构调整等方要节点”的是海自贸区B .天津滨海新区D.合肥C .深5.以下节点城市中 A •贵州贵安新区 山新区6.重要节点对周围城镇群的主要作用是 A .推动城镇群的功能升级与结构优化 市的地域形态 C .提高城市人口比重 的环境质量B ・改变城D. 改善周围城镇群C .浙江舟雪花的形态与生长环境密切相关,尤其是温度和湿 度。
根据国 际研究,树最美 雪花”多在-10 C 〜 -20 C 的环 境中形成, 同时需要充 裕的水汽补 给以及较为 漫长的生长 时间。
下图为冬季温度适宜“最美雪花”生长的地区分 布图。
据此完成10-11题。
10.下列四个地点中: A . MB . N11.在温度条件适宜的情况下,下列区域出现“鹅毛大 频率较高的是A. 大兴安岭西坡B. 伊犁河谷地C. 藏北高原D. 内蒙古高原枝状,最有可能拍摄到“最美雪花”的 勺是雪” HMTIZO ' hir3():K时i2(rMir第□卷36.阅读图文材料,完成下列要求。
(24分)胡麻,即油用亚麻。
喜凉爽湿润气候,耐干旱、耐贫瘠、喜光不耐热,多选择在地势平坦、排水良好的地块种植。
不宜连作(指在一块田地上连续栽种同一种作物)。
生5C以上即长期对温度要求不高,种子在3〜4 C就能发芽,可出苗,刚出土时不耐冻,一般选择在4月份播种。
出苗至开花适宜温度为11〜18C,开花至8月份籽粒成熟是胡麻的生殖生长阶段,是决定胡麻质量的关键时期,期间对水分和养分要求迫切,最忌高温和阴雨寡照天气。
充足的光照和较大的昼夜温差有利于胡麻干物质和油分的积累形成。
在胡麻的整个种植过程中,对病虫草害的监控与防治工作极为重要。
固原市位于宁夏南部六盘山区,是中国重要的胡麻种植区之一。
随着经济的发展,灌溉条件的改善、薄膜技术的应用和优良品种的选育,固原市胡麻种植面积和产量逐年上升。
(4)说出固原市胡麻种植面积逐年上升对当地地理环境的影响。
(6分)MH*' wr37.阅读图文材料,完成下列要求。
(22分)帕德玛大桥横跨?.r21 ■帕德玛河,是中国企业承建的最大海外桥梁工程,也是该国目前规模最大的造桥工程和最大基础设施项目。
该桥建成后将成为中国泛亚铁路的重要组成部分,也是我国一带一路战略的重要交通支点工程。
帕德玛大桥全长逾6公里,建成后将把该国西南部21个区与首都相连,项目自2015年开工以来,已聘用当地劳动力2000多人,涵盖钢筋工、装吊工、电焊钳工、司机等多个工种,被当地人民称为“梦想之桥”。
着帕德玛大桥的建设,河道整治工程也在同步进行,以河道疏浚和河岸保护为施工内容,河底清理出来的淤泥通过管道输送到5公里之外的排泥场。
(1)说明帕德玛河河道整治以河道疏浚和河岸保护为施工内容的主要原因。
(8分)选修3:旅游地理】(10分)中国宗教旅游资源丰富,目前有数量众多的旅游资源已经开发和开放成(2)简述河底清理出来的淤泥的可利用方式。
(8分)(3 (6)为什么帕德玛大桥被当地人民称为分)“梦想之桥”42. 【地理CZ4为宗教旅游景区,吸引各方游客前来参观朝觐。
根据对国家旅游局公布的全国国家5A和4A级旅游景区的统计,全国宗教旅游景点景区共计272项,占总数的22.• 1%简述我国宗教旅游资源景区的分布特征并分析其原因。
43.【地理一一选修6:环境保护】(10分)近年来,素有“国家绿肺”之称的秦岭饱受“开山炸石”之苦。
开采花岗岩对当地自然生态景观造成的破坏令人担忧,山采石使山体支离破碎,块块秃山被当地人戏称为皮癣”。
满目疮痍,满山遍野都是废弃石料。
采石场过量使用炸药开山炸石,威力巨大,每炸次都像经历了一次5级地震,不得安生。
简述秦岭大量开采花岗岩的危害及治理措施。
湛江市2017年普通高考测试(二)文科综合试题(地理)36.( 24 分)长期内气温适宜,水分充足;(3分)位于西北 :旱区,晴天多,光照充足,温差大;(3分)(2)春季气温回升虽快但不稳定,冷空气活动频繁,容 易形成急剧降温天气,造成冻害;(2分)春季云雨天少, 降水不足,易形成春旱;(2分)生殖生长关键期多阴雨 寡照天气,光照不足。
(2分)(3)深层土壤不断翻耕复位到上层,加速土壤养分缺失, 造成胡麻生长所需要的养分不足;(2分)翻耕土地把杂 草种子和病虫害翻耕到上层,危害胡麻的正常生长发育。
(2分)(4)种植面积的增加,和草原植被,加剧区域荒漠化(2分);不合理灌溉会使 当地地下水位上升,造成土壤盐渍化;(2分)化肥、农 药的使用,污染当地的大气、水源和土壤,破坏当地的 生态系统。
(2分) 37.( 22 分)(1)因为该河流域位于热带季风气候区, 雨季降水强度 大,地表遭侵蚀强烈,河流含沙量大;(3分)河流流经 (1)生内陆半干植区域地势较平坦。
(2分) 地的开发,破坏原有的森林原地区,流速减缓,泥沙淤积,抬高河床;(2分)地势低洼,河流两岸土质疏松,侧蚀强烈;(2分)人们挖沙、取土等不合理的活动破坏河岸。
(1分)(2)直接用作建筑材料;(2分)用于填土以增加高地,为附近居民提供建筑用地和稳定耕作区(农田);(2分)用来加固河流两岸堤防;(2分)污泥的营养成分有利于植物的生长,污泥的颗粒特性可用作改良土壤。
(2分)(3)该桥梁的建设有利于加强首都和其它地区间的经济联系,提高运输效率,促进区域间的协调发展和文化交流与融合;(2分)带动与桥梁建设相关产业(钢铁、水泥)的发展;(2分)提供工作岗位,增加就业,缓解就业困难。
(2分)42.(10 分)分布不均匀;(1分)华东地区最为密集;(1分)中部地区的河南省和西部的四川数量较多;(1分)东北地区,华南地区,西部边疆省份的宗教旅游景点景区较少。
(1分)原因:华东地区等地宗教旅游资源丰富,旅游名胜较多;(2分)经济发达,旅游资源开发程度高,市场需求旺盛(2分);东北和华南地区宗教旅游资源缺乏;(2分)西部省份多的得益于经济发展水平和旅游市场的支持。
(2分)(答对3点给6分,若答案合理可酌情给分,但总分不能超过6分。
)43. (10 分)危害:森林面积减少;(1分)水土流失加重;(1分)河流含沙量增大,淤积河床,诱发滑坡、泥石流等地质灾害的发生;(1分)生物多样性减少。
(1分)治理措施:①加强立法与执法,加强矿区生态环境保护工作;(2分)②植树种草,恢复植被;(2分)③实施坡面排水、边坡防护工程;(2分)④因地制宜,营造新景观。
(2分)(任答对3点给6分,若答案合理可酌情给分,但总分不能超过6分。
)。