第八章 三萜类化合物

合集下载

第八章 三萜类化合物2

第八章 三萜类化合物2

4、研究概况
游离三萜 1963~1970年——发现232个 1990~1994年—— 发现330个(多为新骨架) 三萜皂苷 1966~1972年——鉴定了30个皂苷
1987~1989年—— 鉴定了1000多个皂苷
(尤以海洋生物中得到不少新型三萜) 5、结合糖种类 单糖—— glc、gal、xyl、arab、rha、fuc、
21 18 17 11 1 19 13 9 3 14 30 5 29 28 7 15 27 20 22 24 26 25
HO
20
24
O OH
OR3
R1
环黄芪醇
R1O OR 2
R2
H glc H glc
R3
H H glc glc
H
黄芪苷Ⅰ xyl(2,3-diAc) 黄芪苷V glc(1→2)xyl黄芪苷Ⅶ xyl


C4- β 、 α - 2个CH3
C13-αCH3
20 22
17 13 9 10 3 HO H 4 5 H 8H 14
楝烷型(meliacane)
23
20 18 17 19 1 9 7 11 30 13 14 15
O 21
Hale Waihona Puke 35H H
H
HO
29 28
五环三萜
• 一、齐墩果烷型(oleanane)
glcA、 galA、qui等
双糖、三糖、四糖 6、结合位置—— C3、C28、C16、C23、C29
7、生源途径
三萜类化合物的生物合成途径从生源来看,(squalene) 通过不同的环化方式转变而来的,而鲨烯是由焦磷酸金
合欢酯(farnesyl pyrophosphate,FPP)尾尾缩合生成。

中药化学第八章三帖类化合物详解演示文稿

中药化学第八章三帖类化合物详解演示文稿
某些萜类(如三萜酸),胺类、脂肪酸、树脂和酸败的油脂类也可 引起溶血,因此在进行溶血试验时要注意将三萜皂苷纯化后再做 (胆甾醇沉淀,沉淀得到的甾体皂苷再作溶血试验)。
第38页,共80页。
第四节 三萜类化合物的提取与分离 一、三萜类化合物的提取 1.醇类溶剂提பைடு நூலகம்法
为提取皂苷首选方法
第39页,共80页。
glc
6-1
O glc2-1 glc
H OH
HO HH
结构特点
基本碳架与羊毛脂烷型不同的是 9位连有β-CH3,C5、C8、均连 β-H, C10连α-H。
雪胆甲素 R=Ac
glc1-6 glc O
罗汉果甜素Ⅴ
雪胆乙素 A=H
(比蔗糖甜约256倍)
(急性痢疾、肺结核、慢性气管炎)
第11页,共80页。
产生沉淀。 C. 三萜皂苷与胆甾醇产生沉淀没有甾体皂苷稳定。
第29页,共80页。
3.水解反应 (1)酸水解 三萜皂苷所连多是α-OH糖,因此要进行剧烈水解:
由于条件剧烈,因此常使苷元产生脱水,双键移位,构 型
异构酸,水环解合虽的然反易应引。起苷元结构的改变,但可使皂苷中的全部 单糖被水解,有助于了解成苷的单糖种类。
第41页,共80页。
先提总皂苷,再水解苷键,继用石油醚、苯、溶剂汽油、 CHCl3等弱极性有机溶剂提取苷元
第42页,共80页。
3.碱水提取法 提取含羧基皂苷
第43页,共80页。
二、三萜类化合物的分离 1.分段沉淀法
第44页,共80页。
2.胆甾醇沉淀法 利用三萜皂苷能与胆甾醇生成不溶性分子复合物进行分离。
三、双环三萜
OR4
28 29
27
结构特点是基本碳架 OH O O

三萜类及其苷类

三萜类及其苷类
42
皂苷具溶血作用的原因为( ) ❖ A.具表面活性 ❖ B.与细胞壁上胆甾醇生成沉淀 ❖ C.具甾体母核 ❖ D.多为寡糖苷,亲水性强 ❖ E.有酸性基团存在
43
不符合皂苷通性的是( ) ❖ A.分子较大,多为白色结晶 ❖ B.有显著而强烈的甜味 ❖ C.对粘膜有刺激 ❖ D.振摇后能产生泡沫 ❖ E.大多数有溶血作用
皂苷在无水条件下,与浓酸或某些Lewis酸作 用,会出现颜色变化或呈现荧光。此类反应虽然比 较灵敏,但专属性较差。常用呈色反应有: (-)醋酐-浓硫酸反应(Liebermann-Burchard反 应)
21
❖ 人参皂苷Rd属于(
A.羊毛脂烷 C.羽扇豆烷 E.葫芦烷
)型四环三萜。
B.达玛烷 D.甘遂烷
22
人参皂苷A型的真正苷元是( ) A 20(S)-原人参二醇 B 20(S)-原人参三醇 C 人参二醇 D 人参三醇
23
(三)原萜烷型
1、结构特点 其C8位有α-甲基、C9β-H、C13位有α-H、
39
利用发泡试验可区别甾体皂苷与三萜皂 苷:取两支试管,分别加入5ml 0.1mol/L的 HCl及0.1mol/L的NaOH,再各加中药水提 液3滴,振摇1分钟,如两管形成泡沫持久性、 高度相同,则提示中药含三萜皂苷(酸性皂 苷);如碱液管的泡沫较酸液管的泡沫高数 倍,持续时间长,则提示中药含甾体皂苷 (中性皂苷)。这是由于中性皂苷在碱水溶 液中能形成较稳定的泡沫。
齐墩果酸 30 29
26 27
COOH
熊果酸
32
3. 羽扇豆烷型 属此类型中草药成分较少,且 大多以苷元形式存在,少数以皂苷形式存在。 与齐墩果烷型不同的是E环为五元环,在C19 位上有α-构型的异丙烯基或异丙烷取代,D/E 环是反式,如白桦脂酸。

三萜类化合物

三萜类化合物
2、羊毛脂烷型(lanostane)
一般C-3位均有-OH,或游离,或成苷,或氧取代
例如:
O
OH
OH
3
HO
H
HO
羊毛脂醇
OH
黄芪醇
二、分类
(一)四环三萜(tetracyclic triterpenoids) 3、 大戟烷型(euphane) 结构特点:
A/B、B/C、C/D环:均为反式 (与达玛烷型一致) 10、14位:β-角甲基 13位:α-角甲基
21 11 1 19 9 2 3 12 18 22 20 17 16 15
1 4 10 14 13
24 23 25 27
26
C 13 D H 14
30 7
A
4 28
10 5
B
6
H 8
17
20
H
29
lanostane
二、分类
(一)四环三萜(tetracyclic triterpenoids)
2、羊毛脂烷型(lanostane)
A
4
B
6
8
30
7
H
29
dammarane
二、分类
(一)四环三萜(tetracyclic triterpenoids)
1、达玛烷型(dammarane) 结构特点:
A/B、B/C、C/D环:均为 反式 8、10位:β-角甲基 14位:α-角甲基 13位: β-H 17位:β-侧链 20位构型:R 或 S
C 13 A
10
R或S 20
H
17
D
B 8
H
dammarane
二、分类
(一)四环三萜(tetracyclic triterpenoids)

中药化学 第八章 三萜类化合物

中药化学 第八章 三萜类化合物


【化学性质】
2.沉淀反应 皂苷水液可和一些金属盐类如铅盐、钡盐、
铜盐等产生沉淀。酸性皂苷(三萜皂苷) 可用中性盐如硫酸铵、乙酸铅等沉淀,中 性皂苷(甾体皂苷)用碱性盐如碱式乙酸 铅沉淀。因采用此法重金属离子会超标, 故现在多不用。
【化学性质】
3.皂苷的水解 皂苷酸水解多采用缓和酸水解,两相酸水解、 酶解或Smith降解法。其原因为:一般酸水解时, 易引起皂苷元的结构变化,而得不到真正的苷元。 糖醛酸苷键的裂解一般采用光解法、四乙酸铅乙酸酐法,以及微生物转化法。 酯苷键的水解多采用LiI在2,6-二甲基吡啶/甲醇 溶液中与皂苷一起回流,本方法既不损伤苷元, 也不会使糖的结构发生变化。
第四节 三萜类化合物的提取分离
【提取方法】 1.醇提取法——最常用的提取皂苷的方法 2.酸水解有机溶剂萃取法——提取皂苷元的 方法 3.碱水提取——仅适用于含羧基的皂苷提取。
【分离方法】
1.沉淀法
⑴分段沉淀法 利用皂苷难溶于乙醚、丙酮的性质,将皂 苷溶于甲醇或乙醇,滴加乙醚或丙酮或乙 醚:丙 酮(1:1)的混合物液,边加边摇, 皂苷即可析出。但本法不易得到纯品。

【溶血作用】
皂苷具有破坏红细胞而产生溶血的现象。
溶血指数:指在一定条件下(等渗、缓冲
及恒温)下能使同一动物来源的血液中红 细胞完全溶血的最低浓度。 皂苷的溶血作用是皂苷和红细胞壁上的胆 甾醇结合,破坏血红细胞的正常渗透性, 使细胞内压增加,而产生溶血。但不是所 有皂苷都具溶血作用。另外有些树脂、脂 肪酸、挥发油也能产生溶血现象。
(5)四环三萜(较多)
羊毛脂甾烷型 茯苓酸 大戟烷型 大戟醇 达玛烷型 酸枣仁皂苷 人参皂苷 葫芦素烷型 雪胆甲素及乙素 原萜烷型 泽泻萜醇A、B 楝烷型 川楝素 环菠萝蜜烷型 环黄芪醇

三萜类及其苷类资料

三萜类及其苷类资料
17
21 18 13 19 14 10 3 30 5 28 29
22 20 23 17
24 25
26
21
20 23
25
26
27 1
27 19 18
30 5 28 29
羊毛脂甾烷型
茯苓
羊毛脂甾烷型:从环氧鲨烯由椅-船-椅-船构象式环合而成, 其C10位有β-甲基、C13位有β-CH3、C14位有α-甲基、C17位 有β-侧链、C20为R-构型。且A/B、B/C、C/D环均为反式。
24
泽泻醇 b
泽泻
25
(四)葫芦烷型
1、结构特点 由羊毛甾烯Δ8进行质子化,在C-8产生正 碳离子,然后19-CH3转移到9位,9-H转移到8 位而形成,但A/B环上的取代和羊毛脂烷类型 化合物不同,有5β-H、8β-H、10α-H,C-9 位连有β-CH3,其余与羊毛脂烷一样。 2、存在:葫芦科许多植物均含此类成分,总称 为葫芦苦素类,像葫芦苦素E是抗肝炎药物, 葫芦苦素o则具有抗癌活性。
5
甘草
黄芪
6
甘草 根和根茎主含三萜皂苷。其中主要的 一种俗称甘草甜素,系甘草的甜味成份,是1 分子的18β-甘草次酸和2分子的葡萄醛酸结 合生成的甘草酸的钾盐和钙盐。其他的三萜 皂苷有:乌拉尔甘草皂苷A、B和甘草皂苷A3、 B2、C2、D3、E2、F3、G2、H2、J2、K2。
7
柴胡
人参
8

(1)链状三萜(较少)
(2)单环三萜(较少)
(3)双环三萜(较少) (4)三环三萜(较少)
14
(5)四环三萜(较多)
羊毛甾烷型
茯苓酸 大戟烷型 大戟醇 达玛烷型 酸枣仁皂苷 人参皂苷 葫芦烷型 雪胆甲素及乙素 原萜烷型 泽泻萜醇A、B 楝烷型 川楝素 环菠萝蜜烷型 环黄芪醇

三萜类化合物

三萜类化合物
30 20
29 19
COOH
▪ 3、羽扇豆烷型19 H21
18 22
第三节 三萜类化合物的理化性质
一、一般物理性质
1、性状
➢ 苷元多有较好的结晶 ➢ 苷多为无定型粉末 ➢ 具有苦和辛辣味,对人体粘膜有刺激性,还具有吸湿性.
2、溶解性
➢ 苷元能溶于石油醚、苯、乙醚、氯仿等。 ➢ 苷极性较大,可溶于水,易溶热水,热甲醇,热乙醇和稀醇,难溶于
3、溶血实验 供试液1毫升,水浴蒸干,0.9%生 理盐水溶解,加入几滴2%红细胞悬浮液,溶液 油浑浊变澄清,则溶血。
二、色谱检识 1、薄层色谱 吸附剂 :硅胶 展开剂:游离三萜 环己烷-乙酸乙酯
苯-丙酮 氯仿-乙酸乙酯 三萜皂苷 氯仿-甲醇-水 正丁醇-醋酸-水 显色剂:10%硫酸、三氯乙酸等。
▪ 2、纸色谱 ▪ 皂苷:水为固定相 ▪ 苷元:甲酰胺为固定相
第七节 含皂苷的中药实例 一、人参
➢ 五加科人参属植物人参的干燥根。 ➢ 有大补元气、生津止渴、调养营卫。
(一)主成分结构、性质 1、皂苷 含量约4%,根须中的含量高于
主根。
➢ 人参总皂苷(Rx)。 ➢ 根据皂苷元的不同分为A、B、C三类。
▪ (1)分类及主要化合物
▪ A型
➢ 人参皂苷-苷元为20(S)原人参二醇(最
3分布
三萜类化合物在菌类、蕨类、单子叶和双子叶植物、动 物及海洋生物中均有分布,尤以双子叶植物中分布最 多
➢ 游离三萜:豆科、菊科、大戢科、卫矛科 ➢ 三萜苷类:豆科、五加科、桔梗科、远志科、葫芦科、
毛茛科等分布较多
➢ 常用中药人参、黄芪、甘草、三七、桔梗、远志、柴
胡等都含有皂苷(三萜苷)。
第二节 三萜类化合物的结构与分类

中药化学:8-三萜类化合物

中药化学:8-三萜类化合物

17 13 14
HO H
大戟醇
(大戟属植物乳液中)
大戟烷型
COOH
9 8
7
O
H
乳香二烯酮酸 △7(8)
• 母核的17位上有一个由8个碳原子组成的侧链;
R 17
14
甾醇
• 在母核上一般有5个甲基,即4位有偕二甲基、10位和
14位各有一个甲基、另一个甲基常连接在13位或8位上。
• 在4、4、14位上比甾醇多三个甲基,也有认为是植物
甾醇的三甲基衍生物。
2. 四环三萜或其皂苷苷元主要类型
达玛烷、羊毛脂烷、甘遂烷、环阿屯烷(环菠萝蜜烷
• 根据三萜类化合物碳环的有无和多少进行分类。 多数为四环三萜和五环三萜。
21
2224ຫໍສະໝຸດ 26菲H 20
23
12
(二)四环三萜
27
11 19
18 13
17
9
在中药中分布很广。
1 10 8
15
34
H 7 30
四环三萜
1. 结构特征:
29 28 H
A BCD
• 它们大部分具有环戊烷骈多氢菲的基本母核;
3 4
型)、葫芦烷、楝烷型三萜类。
① 达玛烷型
结构特点:A/B、B/C、C/D 环均为反式, C8位有-CH3,C13位 有-H, C17有侧链,C20构型为R或 S。
1 34
21
22
24
26
H 20 23
12
27
11 19
18 13
17
9
10 8
15
H 7 30
29 28 H
达玛烷型 (dammarane)
11C=O,15C=O,23C=O,27-CH3→27-COOH,是羊 毛甾烷的高度氧化物。

中药化学:8-三萜类化合物

中药化学:8-三萜类化合物

A/B, B/C, C/D trans, D/E cis
①齐墩果烷(oleanane)型 又称-香树脂烷型
基本碳架:
• 母核上有8个甲基,其中C10、C8、C17上的甲基
均为 -型,而C14上的甲基为 -型,C4位和C20
位各有二个甲基。C28常有-COOH。
30
29
H 19
12
18
20 21
E
二、分布
• 三萜类在自然界分布广泛,菌类、蕨类、单子叶、双子叶 植物、动物及海洋生物中均有分布,尤以双子叶植物中分 布最多。 • 主要分布于菊科、石竹科、五加科、豆科、远志科、桔梗 科及玄参科。 • 含有三萜类成分的主要中药如人参、甘草、柴胡、黄芪、 桔梗、川楝皮、泽泻、灵芝等。
三、组成形式
游离或成苷、成酯的形式存在。
五、生物合成途径
从生源来看,是由鲨烯通过不同的环化方式转变而来的, 而鲨烯是由焦磷酸金合欢酯(FPP)尾尾缩合生成。
OPP
焦磷酸金合欢酯
OPP
焦磷酸金合欢酯
鲨烯
第二节 三萜类化合物的结构与分类
(一)分类
• 在植物体(生物体)内的存在形式、结构和性质 三萜皂苷及其苷元 其他三萜类(树脂、苦味素、三萜生物碱及三萜醇等)
2
2
xyl rha
xyl 2 glc 3 ara
2
rha
其衍生物经X-射线衍射分析,证明它的C20的绝对构 型为S,C23为R。
② 羊毛脂甾烷型
羊毛脂甾烷也叫羊毛脂烷,其结构特点是A/B环、 B/C环和C/D环都是反式,C20为R构型,侧链的构型分别 为10 、13 、14 、17 。
21
型)、葫芦烷、楝烷型三萜类。
① 达玛烷型

中药化学-第八章-三萜类化合物

中药化学-第八章-三萜类化合物
➢ 苷元中除与氧连接的碳和烯碳外,其他δ 一般在60.0以下,苷元和糖上与氧相连碳 为δ60.0-90.0,烯碳在δ109.0-160.0,羰 基碳为δ170.0-220.0。
其他NMR技术
➢ DEPT (用于确定碳的类型CH3、CH2、CH) ➢ 1H-1HCOSY ➢ 13C-1HCOSY ➢ HMQC(通过氢检测的异核多量子相关谱) ➢ HMBC(通过氢检测的异核多键相关谱)
【分离方法】
➢ 2、大孔树脂法 适合皂苷的精制和初 步分离。先用水洗除去糖和水溶性杂质, 再用不同浓度醇浓度由低至高洗脱皂苷 按极性由大到小的顺序被洗下来。
【分离方法】
3、色谱分离法 ⑴吸附柱色谱法:吸附剂为硅胶,流动相为氯 仿-甲醇不同比例 ⑵分配柱色谱法 支持剂:硅胶 固定相:3%草酸水溶液 流动相:含水混合有机溶剂 反相柱色谱:吸附剂为Rp-18、Rp-8或Rp-2, 流动相为甲醇-水,乙腈-水
【分离方法】
(3)高效液相色谱法 目前最常用, 一般选用反相柱,流动相为甲醇-水, 乙腈-水。
(4)凝胶色谱法 应用较多的是能 在有机相使用的Sephadex LH-20。
第五节 三萜类化合物检识
【理化检识】
➢ 1.泡沫试验 中药水提取液振摇后,产生 持久泡沫(15分钟以上),注意假阳性反 应。
【溶血作用】
➢ 皂苷具有破坏红细胞而产生溶血的现象。
➢ 溶血指数:指在一定条件下(等渗、缓冲 及恒温)下能使同一动物来源的血液中红 细胞完全溶血的最低浓度。
➢ 皂苷的溶血作用是皂苷和红细胞壁上的胆 甾醇结合,破坏血红细胞的正常渗透性, 使细胞内压增加,而产生溶血。但不是所 有皂苷都具溶血作用。另外有些树脂、脂 肪酸、挥发油也能产生溶血现象。
三萜生物碱) ➢ 2.按碳环的数目分类: ➢ (1)链状三萜(较少) ➢ (2)单环三萜(较少) ➢ (3)双环三萜(较少) ➢ (4)三环三萜(较少)

第8章 三萜及其苷类

第8章 三萜及其苷类

第八章三萜及其苷类三萜是由30个碳原子组成的萜类化合物,其结构根据异戊二烯法则,可视为6个异戊二烯单位的聚合体。

该类化合物在自然界分布广泛,以游离形式或者与糖成苷或酯的形式存在。

三萜类化合物因含有多个碳环而表现为亲脂性,不溶或难溶于水,可溶于常见的有机溶剂,与糖成苷后则水溶性增大,多数可溶于水,其水溶液经强烈振摇后能产生大量持久性肥皂样泡沫,故被称为三萜皂苷。

三萜皂苷分子中多具有羧基,所以又常被称为酸性皂苷。

三萜及其苷类化合物广泛存在于自然界中,菌类、蕨类、单子叶、双子叶植物、动物及海洋生物中均有分布,尤以双子叶植物中分布最多,常见于五加科、豆科、远志科、桔梗科、伞形科、玄参科及石竹科等植物中,如中药人参、三七、甘草、黄芪、远志、桔梗、柴胡等都含有此类成分。

少数三萜类成分存在于动物体中,如羊毛脂中含有的羊毛脂醇,鲨鱼肝脏中含有的鲨烯,另外,从海洋生物海参、软珊瑚中也分离出各种类型的三萜类化合物。

三萜及其苷类化合物具有广泛的生物活性。

文献报道其生物活性及毒性主要表现在溶血、抗癌、抗炎、抗菌、抗病毒、降低胆固醇、杀软体动物、抗生育等方面。

由于三萜及其苷类化合物生物活性的多样性及重要性,近年来成为天然药物化学研究的一个热点领域,加之现代分离、分析技术的运用,大大加快了此类化合物的研究进展。

1966~1972年间仅有30个皂苷结构被鉴定,而1987~1989年2年半时间分离鉴定的新皂苷就有1000多个,截止到2008年,共分离到天然来源的三萜类化合物12530个,结构类型共有43种。

近30年来,三萜及其苷类成分的研究进展很快,尤其近几年,从海洋生物中发现了许多具有新骨架或生物活性的三萜类化合物,成为萜类成分研究中的一个活跃领域。

第一节结构与分类从生源途径来看,三萜类化合物是由两分子焦磷酸金合欢酯(简称FPP)缩合生成鲨烯,再由鲨烯通过不同的环化方式转变而来。

少数三萜类化合物分子中的碳原子多于或少于30个,是因为在转变过程中产生异构化或发生了降解反应的结果,仍将它们归入三萜类化合物。

中药化学第八章 三萜类化合物

中药化学第八章 三萜类化合物

HO
羊毛脂甾烷
H
H
羊毛脂醇
2.大戟烷(euphane)型(甘遂烷型)
大戟烷是羊毛脂甾烷的立体异构体,基本碳架相同, 只是C13、C14和C17上的取代基构型不同,即是13α、14β 、17α-羊毛脂甾烷。
21 20 22
24
26
12 18
23 17
25 27
H 11
13
1 19 9 14
16 15
角鲨烯
2,3-环氧角鲨烯
三环三萜 四环三萜 五环三萜
(一)链状三萜
肝 脏 环 氧 酶

(一)链状三萜
2,3-环氧基角鲨烯在环化酶(从鼠肝中提得)或 弱酸性介质中很容易被环化。
环化 酶
O
2,3-环氧角鲨烯
HO
H H
羊毛脂醇
(二)单环三萜
HO 蓍醇A
(三)双环三萜
OR4
28
29
27
OH O
O
OH
14
熊果酸(Ursolic acid)
来源于木犀科植物女 贞(Ligustrum lucidum Ait.)叶中,熊果酸又名 乌索酸,乌苏酸,属三 萜类化合物。具有镇 静、抗炎、抗菌、抗糖 HO 尿病、抗溃疡、降低血 糖等多种生物学效应。
H
COOH
H
H
Ursonic acid
中药地榆 (Sanguisorba officinalis)具有凉血止血的功效,其 中含有地榆皂苷B, E (sanguisorbin B and E),是乌苏酸的苷。
Ara(p)
H COOR
H
H
地榆皂甙B R=H 地榆皂甙E R=3-Ac-glc
3. 羽扇豆烷(lupane)型

中药化学期末复习第八章三萜类化合物习题-学生ok

中药化学期末复习第八章三萜类化合物习题-学生ok

第八章三萜类化合物一、填空题1.多数三萜类化合物是一类基本母核由()个碳原子组成的萜类化合物,其结构根据异戊二烯法则可视为()个异戊二烯单位聚合而成。

2.三萜皂苷结构中多具有羧基,所以又常被称为()皂苷。

3.皂苷水溶液经强烈振摇能产生持久性的泡沫,且不因加热而消失,这是由于皂苷具有()作用的缘故。

4.各类皂苷的溶血作用强弱可用()表示。

5.()色谱是近年来常用于分离极性较大的化合物的一种方法,尤其适用于皂苷的精制和初步分离。

二.选择题1.人参皂苷中含有在结构上属于四环三萜类化合物中的()A 乌苏烷型B. 羊毛脂甾烷型C. 达玛烷型D.葫芦素烷型2.分离三萜皂苷的优良溶剂为()A. 乙醇B. 氯仿C. 乙醚D. 正丁醇3.三萜皂苷在进行Rosen-Heimer(三氯乙酸)反应时,若要观察阳性结果需加热到()A. 60℃B. 80℃C. 100℃D. 120℃E. 140℃4.目前对皂苷的分离效能最高的色谱是()A.聚酰胺色谱B. 大孔树脂色谱C. 高效液相色谱D. 凝胶色谱5.用于三萜皂苷的结构研究的方法中,由于皂苷的难挥发性而受到限制的是()A. EI-MS B. FD-MS C. FAB-MS D. ESI-MS6.柴胡皂苷的结构类型主要是()。

A.甾体皂苷B.五环三萜皂苷C.四环三萜皂苷D.都有7.下列中药中,其主要活性成分为三萜的是()。

A. 人参B. 槐米C. 薄荷D. 大黄8.下列不属于三萜皂苷性质的有()。

A.发泡性B.挥发性C.溶血作用D.旋光性9.下列方法中常用于检识三萜类化合物的显色反应是()A.盐酸-镁粉反应B.Molish反应C.醋酐-浓硫酸反应D.AlCl3反应10. 不符合齐墩果烷结构特点的是( )A. 属于三萜B. C23、C24连接在C4位上C. C29、C30连接在C20上D. A、B、C、D、E环都是六元环E. C29、C30分别连接在C19、C20上11. 活性皂苷化合物一般不做成针剂,这是因为( )A 不能溶于水B 产生泡沫C 有溶血作用D 久置产生沉淀12.皂甙在下列何种溶剂中具有较大的溶解度( )A.丙酮B.乙醚C.含水正丁醇D.氯仿13. 人参中的主要活性成分人参皂苷属于()A 二萜类B 三萜类C 黄酮类D 蒽醌类E 木脂素类14.要除去甙提取液中的糖等水溶性杂质,下列方法中哪种较为有效?( )A.聚酰胺吸附法B.碱溶酸沉法C.酸溶碱沉法D.大孔吸附树脂色谱法15.下列属于四环三萜的有( )。

第八章 三萜及其苷

第八章  三萜及其苷
3 11 1 4 10
R3 R R2
17
R1 8 R4 15
HO
四、五环三萜 (Pentacyclic Triterpenoids) Triterpenoids)
√ • • √ • √
齐墩果烷型( 齐墩果烷型 Oleananes ) 乌苏烷型( 乌苏烷型(Ursanes) ) 羽扇豆烷型( 羽扇豆烷型(Lupanes) )
20R 原 参 醇R 人 二 =H 20R 原 参 醇R -O 人 三 =α H
羊毛脂烷型( (二)羊毛脂烷型( Lanostanes )
• 结构特点 A/B, B/C, C/D环均为反式 C/D环均为 环均为反式 10、13、14位分别连有β, β, α-CH3 10、13、14位分别连有 位分别连有β CH3 8位连有β-H 位连有β C17侧链为β构型 17侧链为 侧链为β C20为R构型 20为
羊毛脂烷
大戟烷
• 从藤桔属植物 Paramignya monophylla 的果实分离得到: 的果实分离得到:
20 17 13 8 14
OH
10 3
H
O
4
H
3-oxotirucalla-7,24-dine-23-ol
(五)楝烷型(Meliacanes) 楝烷型(Meliacanes)
• 结构特点 26个碳 个碳 A/B, B/C, C/D均为反式 均为反式 8、10、13位分别连有 β, β, α,-CH3 、 、 位分别连有
A
4 10 20 17
羊毛脂烷
C 9 B
8
13 D 14
环阿屯烷
常见中药成分:黄芪苷 常见中药成分:
2 4 2 5 2 0 1 9 1 3 0 6 9

中药化学三萜

中药化学三萜
全甲基化甲醇解
5、糖和糖的连接顺序: 部分水解(缓和酸水解、酶水解); 质谱; 13C-NMR
6、苷键构型: 酶水解; Klyne经验公式计算(苷与苷元的分子
比旋度之差); 1H-NMR,13C-NMR(J、δ)
二、波谱法
(一)UV 饱和:无紫外吸收 不饱和的:
孤立C=C:205-250nm微弱吸收 C=C—C=O:242-250nm有最大吸收 C=C—C=C同环: 285nm有最大吸收 C=C—C=C异环: 240,250,260nm
7、颜色反应: 三萜类在无水条件下与强酸(硫酸、高
氯酸、磷酸)、中强酸(三氯醋酸)、Lewis 酸(ZnCl2,AlCl3,SbCl5,SbCl3)反应产生颜 色变化。
(1)Lieberman-Burchard反应:白瓷板 醋酐-浓硫酸/冰醋酸;显红紫色
(2)Kahlenberg反应:纸片反应 20%SbCl5,SbCl3/CHCl3;60-70℃显色
10(9),14,8(13)-甲基,4-偕二甲基
19 11 1
2
10 9
3 45
6
28 29
21
22 24
20
12
23 17
18 13
16
14
15
8
30
7
26 25 27
1、羊毛脂烷型
A/B,B/C,C/D均为反式稠合;C20-R构型; 10,13,17-β;14-α
10 3
4
HO H
羊毛脂醇
20 17
草醛-硫酸
8.6 结构研究
一、化学法 水解皂苷,分别研究苷元、糖。
复习第三章多糖和苷的结构测定: 1、糖的种类:色谱法;1H-NMR,13C-NMR,

第八章 三萜类化合物2

第八章 三萜类化合物2

4、研究概况
游离三萜 1963~1970年——发现232个 1990~1994年—— 发现330个(多为新骨架) 三萜皂苷 1966~1972年——鉴定了30个皂苷
1987~1989年—— 鉴定了1000多个皂苷
(尤以海洋生物中得到不少新型三萜) 5、结合糖种类 单糖—— glc、gal、xyl、arab、rha、fuc、
OR OH

Rh2
glc
3-o-glc
glc2-1glc-O
B型-人参三醇(有显著溶血性)
R1
OR2 OH
R2
glc
人参皂苷Re glc-rha(2-1)
人参皂苷Rf
glc-glc(2-1) H
人参皂苷Rg1
glc
glc
H H
人参皂苷Rg2 glc-rha(2-1)
人参皂苷Rh1 glc
HO OR1
22 28
H
16
H
9
H
14
H
H
3 27
H
24 23
6
第三节 理化性质
一、物理性质 (一)形状与溶解性 1、形状 游离三萜——结晶态 • 皂苷——无定形粉末 2、溶解性 苷元——亲脂性,难溶于水 • 苷—— 可溶于水,易溶于热水、稀醇、热甲乙醇, • 难溶于乙醚、苯、等极性小的溶剂 3、皂苷——多具苦味,辛辣。 4、对粘膜有刺激(可用于祛痰止渴)有吸湿性,有吸湿性。皂苷类具 有表面活性 5、具有溶血作用,原因是可与胆甾醇形成水不溶性分子复合物。 (人参三醇皂苷有溶血作用,人参二醇皂苷抗溶血) 6、可与金属盐类发生沉淀反应
H H
环化 酶
HO
O
2,3-环氧角鲨烯
羊毛脂醇
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

游离三萜
1990~1994年—— 发现330个(多为新骨架) 三萜皂苷 1966~1972年——鉴定了30个皂苷 1987~1989年—— 鉴定了1000多个皂苷 (尤以海洋生物中得到不少新型三萜)

5、结合糖种类 单糖—— glc、gal、xyl、arab、rha、fuc、
glcA、 galA、qui等双糖、三糖、四糖

【化学性质】


1.颜色反应:
Liebermann-Burchard反应 :浓硫酸-醋酐(1:20) Kahlenberg反应 20%五氯化锑(或三氯化锑的氯仿饱和 液)可用于滤纸显色,干燥后60-70℃加热,显蓝色、灰 蓝色、灰紫色等 Rosen-Heimer反应 25%三氯乙酸乙醇液,可用于滤纸 显色,加热至100℃,猩红色,逐渐变为紫色 Salkowski反应 氯仿-浓硫酸,硫酸层显红色或蓝色,氯 仿层有绿色荧光出现
COOH
HO
COOH
HO
【MS特征】
皂苷EI-MS得不到分子离子。
场解析质谱(FD-M
S)和快原子轰击 质谱(FAB-MS),可得到皂苷的准 分子离子峰[M+H]+、[M+Na]+和[M+K]+ 等,还可以给出皂苷分子失去寡聚糖 基或单糖碎片峰,并同时出现相应的 糖单元的碎片峰。
【1H-NMR特征】
【分离方法】
2、大孔树脂法
适合皂苷的精制和初 步分离。先用水洗除去糖和水溶性杂质, 再用不同浓度醇浓度由低至高洗脱皂苷 按极性由大到小的顺序被洗下来。
【分离方法】
3、色谱分离法 ⑴吸附柱色谱法:吸附剂为硅胶,流动相为氯 仿-甲醇不同比例 ⑵分配柱色谱法 支持剂:硅胶 固定相:3%草酸水溶液 流动相:含水混合有机溶剂 反相柱色谱:吸附剂为Rp-18、Rp-8或Rp-2, 流动相为甲醇-水,乙腈-水
【13C-NMR谱特征】
三萜母核上的角甲基一般出现在δ8.9-
33.7,其中23、29位甲基在e键,出现在 较低场,δ依次为28.0、33.0。 苷元中除与氧连接的碳和烯碳外,其他δ 一般在60.0以下,苷元和糖上与氧相连碳 为δ60.0-90.0,烯碳在δ109.0-160.0,羰 基碳为δ170.0-220.0。
三萜类化合物的存在形式

三萜类化合物在自然界的存在形式有游离或者与
糖结合成苷或酯的形式存在。游离三萜化合物不 溶于水,易溶于有机溶剂。三萜苷类易于水,其 水溶液剧烈振摇时能产生大量、持久的肥皂样泡 沫,故称为三萜皂苷。另外,三萜皂苷多具有羧 基,所以又常称为酸性皂苷。
三萜皂苷分类: 1.按存在形式、结构、性质分为: (1)三萜皂苷及苷元 (2)其它三萜类(树脂、苦味素、三萜醇、 三萜生物碱) 2.按碳环的数目分类: (1)链状三萜(较少) (2)单环三萜(较少) (3)双环三萜(较少) (4)三环三萜(较少)
(5)四环三萜(较多)
羊毛脂甾烷型 茯苓酸 大戟烷型 大戟醇 达玛烷型 酸枣仁皂苷 人参皂苷 葫芦素烷型 雪胆甲素及乙素 原萜烷型 泽泻萜醇A、B 楝烷型 川楝素 环菠萝蜜烷型 环黄芪醇

(6)五环三萜(较多)
齐墩果烷型 齐墩果酸 乌苏烷型 乌苏酸 羽扇豆醇型 白桦脂醇 木栓烷型 雷公藤酮 羊齿烷型和异羊齿烷型 何帕烷型和异何帕烷型 其它类型
【色谱检识】
1.薄层色谱 硅胶为吸附剂,皂苷元展开剂为亲脂性展开剂; 皂苷的展开剂为含水有机溶剂。酸性皂苷薄层拖 尾,可加入少量甲酸或乙酸消除。 显色剂:10%硫酸乙醇溶液、三氯乙酸试剂、香 草醛-浓硫酸试剂。 2.纸色谱 水为固定相,展开剂含水量较多,但斑点不太集 中。
第六节 三萜类化合物的结构研究
第四节 三萜类化合物的提取分离
【提取方法】 1.醇提取法——最常用的提取皂苷的方法 2.酸水解有机溶剂萃取法——提取皂苷元的 方法 3.碱水提取——仅适用于含羧基的皂苷提取。
【分离方法】
1.沉淀法
⑴分段沉淀法 利用皂苷难溶于乙醚、丙酮的性质,将皂 苷溶于甲醇或乙醇,滴加乙醚或丙酮或乙 醚:丙 酮(1:1)的混合物液,边加边摇, 皂苷即可析出。但本法不易得到纯品。
第八章
三萜类化合物
第一节 概 述
1、定义——由30个碳原子组成的萜类化合物,符合“异戊
二烯定则”

2、存在 1)游离三萜(C5H10)6 2)苷—— 又名三萜皂苷 (水液振摇起泡 3)广泛存在于自然界,双子叶植物中分布最多

3、因为许多三萜皂苷具有羧基,因此又称为“酸性皂苷”。

4、研究概况 1963~1970年——发现232个
1.性状 多为无定形粉末(极性较大),具吸湿性; 苦、辛辣,有粘膜刺激性。 2.熔点与旋光性 游离态有固定熔点;皂苷无明显熔点,一 般测得的大多为分解点。三萜化合物均有旋光 性。

【物理性质】
3.溶解度 游离态溶于有机溶剂,不溶于水;成苷后,极 性增强,可溶于水,易溶于热水、稀醇、热甲醇、 热乙醇,几不溶或难溶于丙酮、乙醚等极性小的 有机溶剂。皂苷常用正丁醇作为分离提取的溶剂。 皂苷有助溶性,可促进其他成分在水中的溶解度。 4.发泡性 皂苷水液经剧烈震荡能产生持久性泡沫,且不 因加热而消失(原因:降低水液表面张力)
三萜类出现多个甲基单峰,一般甲基质子
信号在δ0.60-1.50;甲基与双键相连, δ1.63-1.80,呈宽单峰。高场区甲基信号 数目及峰形有助于推断三萜类化合物的基 本骨架。 烯氢信号δ4.3-6.0,环内双键δ大于5,环 外双键δ小于5;连接羟基的碳上质子信 号在δ3.2-4.0;连接乙酰氧基的碳上的质 子信号在δ4.0-5.5。

6、结合位置—— C3、C28、C16、C23、C29

7、生源途径
三萜类化合物的生物合成途径从生源来看,(squalene)
通过不同的环化方式转变而来的,而鲨烯是由焦磷酸金合欢酯 (farnesyl pyrophosphate,FPP)尾尾缩合生成。
OPP OPP
焦磷酸金合欢酯
焦磷酸金合欢酯
第二节
白桦脂酸
21 18 13 19 14 10 3 30 5 28 29
22 20 23 17
24 25
26
21
20 23
25
26
27 1
27 19 18
30 5 28 29
羊毛脂甾烷型
达玛烷型
H H H
大戟烷型
HO
H
HOOC OH
大戟醇
H3COCO H
茯苓酸
30 20 13 1 2 10 3 4 5 6 23 24 27 7 25 26 14 17
29 21 22 28
1 25 26 30
29
30
29 20 19 21
H
28
1 25 10 26
H
17 14 28
3
H H
23 24
ቤተ መጻሕፍቲ ባይዱ
27
3
H
27
HO
HO
23
H
24
β -香树脂醇型
a-香树脂醇型
羽扇豆醇型
COOH
HO
齐墩果酸
HO
COOH
熊果酸
COOH
HO
白桦脂酸
第三节 理化性质和溶血作用
【物理性质】

【溶血作用】
皂苷具有破坏红细胞而产生溶血的现象。
溶血指数:指在一定条件下(等渗、缓冲
及恒温)下能使同一动物来源的血液中红 细胞完全溶血的最低浓度。 皂苷的溶血作用是皂苷和红细胞壁上的胆 甾醇结合,破坏血红细胞的正常渗透性, 使细胞内压增加,而产生溶血。但不是所 有皂苷都具溶血作用。另外有些树脂、脂 肪酸、挥发油也能产生溶血现象。
【分离方法】
(3)高效液相色谱法 目前最常用, 一般选用反相柱,流动相为甲醇-水, 乙腈-水。 (4)凝胶色谱法 应用较多的是能 在有机相使用的Sephadex LH-20。
第五节 三萜类化合物检识
【理化检识】 1.泡沫试验 中药水提取液振摇后,产生 持久泡沫(15分钟以上),注意假阳性反 应。 2.显色反应(见颜色反应) 3.溶血试验 取供试液1ml,水浴蒸干,生 理盐水溶解,加入几滴2%红细胞悬浮液, 若发生溶血,溶液由混浊变澄明。

三萜类化合物的结构与分类
三萜---以六分子异戊二烯为单位的聚合体。由于三萜 类化合物生物活性的多样性及重要性,近年来成为中药 化学研究的一个热点领域,而且加之现代分离、分析技 术的运用,大大加快了三萜类化合物的研究进展。
1966~1972年间仅有30个皂苷结构被搞清楚,而
1987~1989年2年多时间分离鉴定的新皂苷就有1000 多 种。

【分离方法】
⑵胆甾醇沉淀法
利用胆甾醇能和皂苷生成复合物的性质,
但三萜皂苷与胆甾醇形成的复合物没有甾 体皂苷与胆甾醇形成的复合物稳定。先将 皂苷和胆甾醇充分反应,然后用水、醇、 乙醚顺次洗涤沉淀,以除去糖类、色素、 油脂和游离的胆甾醇,再将沉淀干燥,乙 醚回流,提去胆甾醇,剩下为较纯皂苷。
【UV光谱】

随共轭程度而变化。 11-oxo,△12-齐墩果烷型 化合物可用UV判断18-H的 构型,当18-H为β构型,最 大吸收在248-249nm,18H为α构型,最大吸收在 242-243nm。
COOH
HO
【MS特征】
EI-MS:皂苷得不到分子离子。 游离三萜(皂苷元)可得到 分子离子及碎片离子(MCH3、M-OH、M-COOH)。 齐墩果烷型:结构中含环己烯 时,可发生RDA裂解。 羽扇豆烷型:出现一个失去异 丙基的M-43的特征离子峰。

【化学性质】
2.沉淀反应 皂苷水液可和一些金属盐类如铅盐、钡盐、
相关文档
最新文档