钢-混凝土组合梁桥

合集下载

浅谈钢-混凝土组合桁梁桥的种类与应用

浅谈钢-混凝土组合桁梁桥的种类与应用

浅谈钢-混凝土组合桁梁桥的种类与应用钢-混凝土组合结构能够发挥钢结构和混凝土各自的优点,是当今桥梁工程中的一个重要的结构形式。

无论是跨越天堑的特大桥,还是横跨溪流的小跨径桥,钢—混凝土组合结构桥梁都可应用于其中。

现代桥梁工程发展至今,钢—混凝土组合结构已经有较为广泛的应用,是继钢结构、钢筋混凝土结构、预应力混凝土结构、砖石混凝土结构之后的第五大类结构。

一.钢-混组合梁桥的组成钢-混组合梁桥可按照不同的钢梁组成形式大致分为:钢—混凝土组合板梁桥、钢—混凝土组合箱梁桥与钢—混凝土组合桁梁桥(以下简称“组合桁梁桥”)。

以下将对这几种钢混组合梁桥的结构及受力特点进行介绍。

1.钢—混凝土组合板梁桥这种形式的组合梁桥的钢主梁主要是工字形截面钢梁,关于这种桥型,我国早期的桥梁中有些应用,但跨度有限,因此目前应用较少。

钢主梁和混凝土桥面板通过剪力连接件组合,共同工作。

工字型的钢板梁一般由3块钢板焊接而成。

为了充分发挥钢材的抗拉能力强的特性,工字梁的下翼缘可以适当加厚或加宽,有时为了满足施工需要,在各个主梁之间设置横向支撑。

2.钢-混凝土组合箱梁桥在大跨度的组合梁桥中,组合箱梁桥是常采用的截面形式。

,该桥有钢筋混凝土翼板和箱型钢梁组成,两者通过连接件连接。

与工字型截面的组合钢板梁桥相比,组合箱梁的抗扭刚度较大,因此适合在高跨比较大或扭转较大的跨线桥和弯桥中使用。

目前我国的组合箱梁桥大多应用于城市立交桥、高速公路跨线桥等。

钢-混凝土组合箱型梁发展出了一种新形式——波形钢腹板组合梁桥。

与传统的混凝土箱梁相比,波形钢腹板组合梁桥用波形的钢腹板代替了混凝土腹板。

上部是混凝土顶板,顶板内常会设置体内索以施加预应力,同样混凝土底板也会设置体内索。

有的波形钢腹板桥会在箱内设置体外索施加预应力。

这种结构能有效利用施加的预应力,同时能够防止腹板的局部失稳。

3.钢-混凝土组合桁梁桥钢桁架与混凝土板相组合,可以形成钢-混凝土组合桁梁桥,混凝土桥面板在这种结构中作为受力的一部分,可以节省钢材的使用,并能提高整体刚度和降低桁高。

实例分析钢—混凝土组合连续箱梁桥的应用

实例分析钢—混凝土组合连续箱梁桥的应用

实例分析钢—混凝土组合连续箱梁桥的应用1、前言钢-混凝土组合结构能充分发挥钢材和混凝土的优势性能,与混凝土结构相比能有效减轻结构自重,与钢结构相比能显著提高结构刚度和稳定性能并节省钢材用量,具有良好的经济特性和技术特性,经过几十年的发展被广泛应用于工程实践[1]。

特别是钢-混凝土组合连续箱梁,具有抗弯抗扭刚度大、整体性强、抗震性能好、跨越能力强和快速施工等优点,在桥梁工程建设中被广泛采用。

欧美及日本等发达国家,钢-混凝土组合连续箱梁桥已发展相对成熟,最大跨度已突破200m[2]。

在我国钢-混凝土组合连续箱梁桥的应用较欧美等国落后,但随着我国交通基础建设步伐加快及桥梁工程技术的发展,钢-混凝土组合连续箱梁桥因其本身结构优势和快速施工的特点,逐步广泛应用于中等跨径的城市高架桥梁,尤其是近年来建成及在建的几座知名跨江、跨海桥梁的非通航桥或引桥,出于降低阻水率及结构耐久性等考虑,采用了较大跨度的钢-混凝土组合连续箱梁桥结构,本文将结合几座具体工程实例对钢-混凝土组合箱梁桥在我国的应用进行介绍。

2、武汉二七长江大桥深水区非通航桥武汉二七长江大桥是武汉市二环线的控制性工程,综合结构受力、排洪、跨径协调、景观及用钢量等因素,该桥非通航深水区桥梁采取了6×90m等高钢-混凝土组合连续箱梁桥结构,上、下游分幅布置,双幅桥宽29.5m[3]。

每幅主梁截面采用单箱单室对称倒梯形截面,顶宽14.7m,底宽6.3m,梁高4m,由钢槽形梁和混凝土桥面板通过剪力栓钉连结构成,通过梁体整体横向旋转实现2%的横向坡度设置,跨中标准横断面如图2-1所示。

图2-1 跨中标准横断面(mm)由于结构为钢-混凝土组合连续箱梁结构,中间支点前后附近存在负弯矩区段,此区段内钢梁处于受压区,混凝土桥面板处于受拉区,钢梁和混凝土桥面板受力均不利。

为防止负弯矩区段混凝土桥面板应拉应力而开裂,常用的方法有压载配重法、张拉纵向预应力、支点升降法及混合法[4],经分析比选该桥采取了通过主墩和临时墩共同参与的支点升降法,对负弯矩区段混凝土桥面板施加预应力,从而满足抗裂要求。

钢与混凝土组合梁桥设计与施工

钢与混凝土组合梁桥设计与施工

钢与混凝土组合梁桥设计与施工内容摘要:摘要:介绍了上海城市轨道交通明珠线特殊大桥-中山北路桥设计与施工概况及主要技术要点和创新点。

中山北路桥上跨道路主要干道环线中山北路高架桥,为三跨30m+55m+30m预应力混凝土与钢组合连续梁桥,即边跨为预应力混凝土箱梁,并自中墩支点向跨中伸出2.5m与预制箱梁纵向连接,经体系转换形成连续梁,钢梁上桥面板为钢筋混凝土结构,采用剪力钉连接技术形成组合梁。

目前该桥已施工完毕,经验收,质量被评为优良。

关键词:组合梁;连接技术;设计与施工技术;一、概述中山北路桥位于轨道交通明珠线与上海市中山北路、西体育路、新市路、西江湾路的交汇处,上跨道路中山北路高架桥,与其斜交角约为30°。

桥梁上部结构为三跨(30+55+30米)连续梁结构,其两边跨为预应力混凝土现浇箱梁,梁高为1.90~2.35米。

中跨为钢-混凝土结合梁,梁高2.35米,全桥宽8.9~8.92米。

桥梁中墩采用圆形独柱结构,直径2.0米,墩高16.804米(1#墩)和15.604米(2#墩)。

两边墩为双矩形柱加系梁结构,墩高18.301米(0#墩),15.591米(3#墩)。

基础均为钻孔灌注桩、承台结构。

二、桥型选择(一)方案选择由于城市交通的发展,城市立交桥跨越主要交通干道时有发生,针对这种跨度大、曲线斜交的桥梁,常采用的桥梁型式有预应力混凝土梁或钢与混凝土结合梁。

预应力混凝土梁常用的施工方法有支架现浇和悬臂浇注法,支架施工严重影响相交主路交通,而悬臂浇注时由于采用的挂篮等施工设备需占用一定空间,增加了桥梁高度,而造成不必要的浪费。

连续结合梁施工时常采用分段制作现场拼装,主跨接头一般设在弯距零点附近,拼装时须在接头处搭设临时支架,仍会局部影响主路交通。

而简支结合梁梁高较高,跨度受到限制。

因此,寻找一种跨度大、重量轻、能预制安装的桥梁结构形式非常必要,预应力混凝土箱梁与结合梁的纵向连接结构,是一种非常有效且有竞争力的方案。

在桥梁工程中钢_混凝土组合结构的优势与劣势

在桥梁工程中钢_混凝土组合结构的优势与劣势

在桥梁工程中钢_混凝土组合结构的优势与劣势交通土建2011级摘要:随着我国经济建设的加速发展,在近30年来建造了不少大型桥梁。

由于组合梁能充分发挥钢与混凝土两种材料的力学的性能,在国内外桥梁工程中获得了广泛的应用。

本文将阐述钢_混凝土组合梁结构在桥梁工程中的优势、劣势、应用及发展趋势,关键词:桥梁工程;钢-混凝土组合结构1、钢_混凝土组合结构发展现状自20世纪50年代以来,欧洲各国、美国和日本等国已在多类桥梁中较为广泛的应用了组合结构。

与之配套的各类抗剪连接件、施工架设技术和分析方法也不断发展,并编制了以欧洲规范四等为代表的组合结构桥梁设计规范。

20世纪80年代以来,国际桥梁及结构工程协会(IBASE)多次召开国际学术会议,对组合结构桥梁在研究、设计、施工等方面的发展进行交流和研讨,进一步促进组合结构桥梁的发展。

相对于发达国家,尽管在我国很多大中城市的高架立交桥、中小跨径的公路桥和铁路桥以及大跨度斜拉桥、悬索桥、拱桥中都应用了组合结构,我国组合结构桥梁的技术水平仍落后于国际先进水平。

桥梁施工技术发展极不平衡。

一方面,在寻求跨度突破的巨大技术需求推动下,大跨度桥梁快速发展并且屡次打破世界记录;另一方面,在中、小跨度桥梁中,混凝土及预应力混凝土桥梁占据绝对数量优势。

而我国混凝土及预应力混凝土桥梁存在质量问题较多,预应力后张梁工艺存在堵孔、张拉预应力控制不准、压浆不密实等技术瓶颈。

预应力混凝土连续梁桥砼箱梁腹板承受较大的主拉应力,砼材料易开裂,致使结构刚度降低,影响结构的耐久性。

而且混凝土箱梁自重较大,在自重、徐变等因素作用下,跨中挠度会持续增大,严重影响结构的承载力,降低结构的安全度,为桥梁带来很大安全隐患。

因此,工程界很多人正在呼吁采用高性能高强混凝土、采用钢_混凝土组合结构,以改变我国工程结构以混凝土为主的现状,与发达国家工程结构、桥梁结构发展趋势保持一致。

2、钢_混凝土组合结构梁桥的优势钢-混凝土组合梁桥是指将钢筋与混凝土桥面板通过抗剪连接件连接成整体,并考虑共同受力的桥梁结构形式。

钢—混凝土组合箱梁桥受力性能分析

钢—混凝土组合箱梁桥受力性能分析

钢—混凝土组合箱梁桥受力性能分析系统而全面的分析钢-混凝土组合梁桥受力性能,首先介绍了钢-混凝土组合梁桥的得天独厚的优点,自重轻、噪音低、抗震性能好等,然后对其受力开裂的原因进行了分析,针对此开裂情况,给出了各种解决途径和措施,如通过张拉钢丝束在混凝土桥面板内施加预应力等,针对钢-混凝土组合梁桥具有一定的指导意义。

标签:钢-混凝土;组合梁桥;受力开裂1引言现今,我国各地区加强道路和桥梁的建设,其中桥梁的建设受到各方面的关注,不仅是其建设成本较大,而且是其结构的合理性,桥梁的寿命和桥梁的承载力等等影响着众多决策者对现行的桥梁的判断标准。

其中,桥梁的改造,很多杜聪桥梁的材料商考虑,例如采用高性能、高强的材料作为建设桥梁的主要材料同钢桥相比较,现行的钢和混凝土组合梁桥具有较多的不可替代的优势,例如冲击效应和疲劳效应较少,钢材耐腐蚀性能提升,钢-混凝土组合梁桥产生的噪音也较少,方便检修工人的作业,钢-混凝土组合梁桥的养护工作量相对较少;当其与钢筋混凝土桥相比,钢-混凝土组合梁桥有相当显著特点,自重轻是钢-混凝土组合梁桥得天独厚的一个特征,特别是在四川等地,地震发生频率较高,钢-混凝土组合梁桥也具有良好的抗震性能,在抢修桥梁中,钢-混凝土组合梁桥施工周期短,工业化程度高、环境效果佳等优点。

本文将针对钢-混凝土组合梁桥受力性能进行系统而全面的分析。

2钢-混凝土组合梁桥性能分析我国钢材材质在近时期得到不断的优化和提升,钢的加工技术也逐渐成熟,在现今的桥梁建设工程中,组合梁桥也越来越具有更强的竞争力;在大跨度斜拉桥上,钢-混凝土组合桥面也具有很高的综合性能。

对于多跨度梁桥,钢-混凝土组合梁桥具有良好的性能,在抗震性能、抗疲劳效应上均具有良好的使用性能。

但是,连续钢-混凝土组合梁桥内支座在承受负弯矩时,会产生混凝土钢梁结构的变形,例如受拉压力的影响,钢-混凝土结构强度一直是研究中的问题,钢-混凝土抗拉强度如果选择低了,在受到外界的影响情况下,极易产生开裂等不良影响,钢-混凝土抗拉强度如果选择过高,将影响钢-混凝土抗冲击特性,没有一定的韧性,易恢复特性较低,也会造成不良影响。

钢-混凝土组合梁结构计算

钢-混凝土组合梁结构计算

钢-混凝土组合梁结构计算书编制单位:计算:复核:审查:2009年3月目录1. 设计资料 (1)2. 计算方法 (2)2.1 规范标准 (2)2.2 换算原理 (2)2.3 计算方法 (3)3. 不设临时支撑_计算结果 (3)3.1 组合梁法向应力及剪应力结果 (4)3.2 施工阶段钢梁竖向挠度结果 (6)3.3 结论 (7)3.4 计算过程(附件) (7)4.设置临时支撑_有限元分析计算 (7)4.1 有限于建模 (7)4.2 施工及使用阶段结构内力 (9)4.2.1 施工阶段结构内力 (10)4.2.2 使用阶段结构内力 (11)4.3 组合梁截面应力 (13)4.3.1 截面应力汇总 (13)4.3.2 截面应力组合 (15)4.4 恒载作用竖向挠度 (16)4.4.1 施工阶段竖向挠度 (16)4.4.2 使用阶段恒载作用竖向挠度 (16)4.5 结论 (16)钢-混凝土组合梁结构计算1. 设计资料钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。

图 1 横向布置(cm)图 2 桥梁立面 (cm)钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸图 3 钢梁标准构造(mm)2. 计算方法2.1 规范标准现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。

《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。

尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。

大跨度钢-混组合梁桥悬吊拼接施工工法

大跨度钢-混组合梁桥悬吊拼接施工工法

大跨度钢-混组合梁桥悬吊拼接施工工法一、前言大跨度钢-混组合梁桥悬吊拼接施工工法是一种目前被广泛应用的工法,它可以在轻量化、抗震、耐久、经济等方面优于传统工法,成为现代桥梁建设的趋势。

本文将详细介绍大跨度钢-混组合梁桥悬吊拼接施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例,希望可以对同行和爱好者提供帮助。

二、工法特点大跨度钢-混组合梁桥悬吊拼接施工工法是一种利用钢筋混凝土和钢结构相结合的桥梁工法。

它具有以下特点:1.节约材料:采用这种工法可以有效地减少钢材等材料的使用,降低了建造成本。

2.建设快速:由于施工过程不需要使用大型模板,因此可以大大缩短建造时间。

3.强度高:采用此工法所建造的桥梁具有较高的强度和刚度,能够抵御不良气候和重载车辆对桥梁的磨损和冲击。

4.可持续性强:采用此工法所建造的桥梁耐用性高,耐久性强,且能适应不同的环境变化。

5.抗震能力强:采用此工法所建造的桥梁可以有效地减少震动和破坏,从而提高桥梁的抗震能力,减少人员和财产损失。

6.施工质量高:由于目前的建造技术非常高,施工质量得到了很大的保障,为桥梁的安全使用提供了有力的支持。

三、适应范围大跨度钢-混组合梁桥悬吊拼接施工工法适用于钢筋混凝土和钢结构拼装的桥梁建设,特别适用于以下情况:1.桥梁跨度大,所用钢材量较大。

2.需要在山区、水域等特殊情况下建造桥梁。

3.需要快速建造桥梁。

4.需要建造具有高强度和耐久性的桥梁。

5.需要提高桥梁的抗震能力。

四、工艺原理大跨度钢-混组合梁桥悬吊拼接施工工法采用了先钢后混的先进技术,克服了传统模板的局限性,可以快速、准确地完成桥梁构件的制作、安装和各种材料的混合使用。

工艺原理是将不同构造的桥梁构件通过吊装等手段联系起来,同时加固起来,形成一个完整的桥梁体系。

在施工过程中,需要注意施工工法与实际工程之间的联系,采取相应的技术措施,确保工程的顺利推进。

钢-混组合桥梁病害及维修加固

钢-混组合桥梁病害及维修加固

钢-混组合梁桥施工质量及施工工艺的研究一.立项背景和依据1、研究背景钢-混凝土组合箱梁桥是目前城市桥梁中的一种新型桥梁,该结构形式最早出现于19世纪末20世纪初,经过几代工程师们近百年深人、细致、全面地研究和应用,自20世纪70年代开始快速发展。

这类桥梁充分发挥了钢材与混凝土的材料性能,在我国运用越来越多,具有广阔的应用前景。

与此同时,这类桥梁由于本身特点,在施工过程中往往会出现一些质量问题。

严重影响结构的耐久性和运营安全。

本文以以广吉高速宁都北互通宁都北跨线桥钢混叠合梁为依托,以可能出现的施工质量问题为研究对象。

研究钢-混组合梁施工工艺等关键技术问题。

2、研究目的与意义随着经济的发展,江西省高速公路网的不断建设,必将带动本省经济的发展,同时还可通过公路建设造就出一条条沿线经济增长带,拉动区域经济发展,以达到整个本省经济全面发展的目的。

高速公路建设过程中必将遇到众多桥梁。

将混凝土桥面板与钢箱梁组合成整体共同受力的结构形式,充分发挥了钢材抗拉、混凝土抗压的材料优点。

它具有受力性能好,抗震性能优良,自重轻,施工快速方便、省脚手架和模板,保护环境,不影响下部交通等优点,同时,相比以单一材料的混凝土结构和纯钢结构,组合结构可以在结构的力学性能与经济性之间寻求一个更好的平衡点。

这类桥梁结构轻巧、跨越能力大、施工速度快且不影响交通为主要特点的钢混组合连续梁能最大程度满足建设要求。

比如,在城市立交桥建设中,钢-混组合梁也以其跨越能力大,建筑高度小,抗震性能好以及施工速度快等优点得到了广泛的应用,取得了较好的技术经济效益。

但是由于钢材与混凝土本身的材料特点及组合桥梁的结构特征,在施工过程中会出现一些质量问题。

桥面板的后浇剪力槽孔、纵横向板缝、钢梁焊缝、剪力连接件等部位都易出现问题。

鉴于上述原因导致组合梁桥的质量和安全得不到保证,而且影响交通及行人的身体安全。

严重影响了桥梁的工作性能和使用寿命。

因此,为保证该类桥梁的安全运营,延长其使用寿命。

钢-砼组合梁

钢-砼组合梁

1.钢-砼组合梁(1)钢一混凝土组合梁的构成在城市桥梁工程中,钢-混凝土组合梁一般用于大跨径或较大跨径的桥梁结构,目的是减轻结构自重,尽量减少施工对现况交通与周边环境的影响。

①钢-砼组合梁一般由钢梁和钢筋混凝土桥面板两部分组成。

钢梁由工字型截面或槽型截面构成,钢梁之间设横梁(横隔梁),有时在横梁之间还设小纵梁。

钢梁上浇筑预应力钢筋混凝土。

在钢梁与钢筋混凝土板之间设剪力连接件,二者共同工作。

对于连续梁,可在负弯距区施加预应力或通过“强迫位移法”调整负弯距区内力。

②钢-混凝土组合梁施工流程一般为:钢梁预制并焊接剪力连接件→架设钢梁→安装梁(横隔梁)及小纵梁(有时不设小纵梁)→安装预制混凝土板并浇筑接缝混凝土或支搭现浇混凝土桥面板的模板并铺设钢筋→现浇砼→养护→张拉预应力束→拆除临时支架或设施。

③钢梁的架设方法一般在设计时已考虑好,因此钢梁安装应按施工图进行。

(2)安装方法钢梁工地安装,根据跨径大小、河流情况、交通情况和起吊能力选择安装方法。

城区内常用架设方法有以下几种:白行式吊机整孔架设法、门架吊机整孔架设法、支架架设法、缆索吊机拼装架设法、悬臂拼装架设法、拖拉架设法等。

(3)安装前检查①钢梁安装前应对临时支架、支承、吊机等临时结构和钢梁结构本身在不同受力状态下的强度、刚度及稳定性进行验算。

②应对桥台、墩顶顶面高程、中线及各孔跨径进行复测,误差在允许偏差范围内方可安装。

③应按照构件明细表,核对进场的构件、零件,查验产品出厂合格证及材料的质量证明书。

(4)安装要点①钢梁安装过程中,每完成一节段应测量其位置、标高和预拱度,不符合要求应及时调整。

②钢梁杆件工地焊缝连接,应按设计的顺序进行。

无规定时,焊接顺序宜为纵向从跨中向两端、横向从中线向两侧对称进行。

③钢梁采用高强螺栓连接前,应复验摩擦面的抗滑移系数。

高强螺栓连接前,应按出厂批号,每批抽验不小于8套扭矩系数。

穿人孔内应顺畅,不得强行敲人。

穿人方向应全桥一致。

浅谈钢-混组合梁结构在大跨度连续梁桥中的应用

浅谈钢-混组合梁结构在大跨度连续梁桥中的应用

浅谈钢-混组合梁结构在大跨度连续梁桥中的应用摘要:钢-混凝土组合梁是指将钢梁与混凝土桥面板通过抗剪连接件连接成整体并考虑共同受力的桥梁结构形式。

组合结构桥梁将抗拉性能强的钢材、抗压性能强的混凝土分别合理地用在构件的受拉区及受压区,极大限度地追求高性能和经济性;由于钢、混凝土两种材料的合理组合,组合结构桥梁的力学性能和经济性均好过钢结构桥梁或者混凝土桥梁。

目前国内钢-混凝土组合连续梁桥多应用在25-60m,更大跨度组合梁桥多采用斜拉桥。

在大跨度连续梁桥中由于负弯矩区桥面板受拉的受力特点,目前还未得到大面积应用。

本文将通过南京市绿都大道跨秦淮新河大桥的工程实例,对钢-混凝土组合梁在大跨度连续梁桥中的应用进行研究和探讨,同时对其施工过程中的质量控制进行描述。

关键词:钢-混凝土组合梁、大跨度连续梁、粗骨料活性粉末混凝土1钢-混凝土组合梁桥结构特点组合结构桥梁将抗拉性能强的钢材、抗压性能强的混凝土分别合理地用在构件的受拉区及受压区,钢梁和混凝土板通过抗剪连接件组合成一个整体而共同工作的梁,在荷载作用下,混凝土板主要承受压力,钢梁主要承受拉力,更好地发挥钢和混凝土各自的材质特点,极大限度地追求高性能和经济性。

2钢-混凝土组合梁桥在国内的应用国内桥梁过去多采用钢筋混凝土和预应力混凝土桥以及圬工拱桥等结构形式,对于等级较高、跨度较大的桥梁则选用钢桁桥,近20年为建设大跨度跨线桥及高架桥,可以降低结构高度的钢混组合结构得到了快速发展。

1991年,上海市南浦大桥建造了首座钢混组合梁斜拉桥;1993年北京市国贸桥是首座采用钢-混凝土叠合板组合梁的桥梁;2000年,芜湖长江大桥是国内首座钢桁混凝土组合结构;2000年,深圳北站大桥是国内首座组合梁悬吊桥面系的钢管混凝土拱桥;2004年,云南祥临澜沧江大桥是国内首座钢混组合梁悬索桥;2005年,河南省泼河大桥是国内第一座波形钢腹板连续箱梁桥。

3绿都大道跨秦淮新河大桥概况3.1大桥概况绿都大道跨秦淮新河大桥位于南京市江宁区,跨越秦淮新河,整幅断面宽38m,采用施工便捷、结构轻盈的预制拼装钢混组合梁桥,跨径组合为83.5m+135m+98.5m=317m,单跨跨度达135m,是国内单跨跨度最大钢混叠合连续梁,是钢混组合梁结构在大跨度连续梁桥施工的一次重大突破。

钢-混凝土组合桥梁的受力性能分析

钢-混凝土组合桥梁的受力性能分析

安徽建筑中图分类号:TU398+.9文献标识码:A文章编号:1007-7359(2023)11-0163-03DOI:10.16330/ki.1007-7359.2023.11.0590引言近年来,钢-混组合梁在目前桥梁建设中的应用逐渐增加,其结构形式主要是通过抗剪构建将混凝土桥面板和下部的钢主梁连接起来,使混凝土和钢共同受力的结构形式[1]。

这种组合结构梁的形式,充分发挥了各种材料自身的优良性能,在结构抗拉和抗压方面具有更优良的性能。

在《钢-混组合桥梁设计规范》(GB 50917-2013)[2]应用之后,对于钢混组合梁桥结构形式的研究逐渐变多,不少学者对钢-混组合梁桥的受力性能以及施工形式进行了研究。

陈朝慰[3]针对钢-混组合桥梁结构的新型连接构件进行了受力分析,采用有限元分析了新型连接构建在施工和运营阶段的受力和变形情况;王建超等[4]开展了钢-混凝土组合梁桥的受力可靠度分析,主要采用最大熵函数构造的凝聚函数对抗弯、纵向抗剪和竖向抗剪承载力进行了可靠度分析;常英飞[5]对钢-混组合梁桥的新技术进行了阐述和总结,并提出未来组合桥梁发展的新思路;陈宝春等[6]对我国钢-混凝土组合梁桥的研究进展和工程应用进行了系统归纳总结,介绍了传统的组合梁桥以及近年提出的新型组合梁桥结构形式,并对其工程应用进行了总结;王岭军[7]采用有限元分析法,首先建立钢-混组合梁斜拉桥模型,再次分析了不同施工阶段下桥梁结构的受力特性,获得桥梁整体失稳状态,最后根据分析得出相应的结论;李德等[8]对新型钢-混组合桁架梁铁路桥的力学特征进行了研究分析,研究结果表明,桥梁的自振特性分析结果满足规范要求;王元清等[9]采用ANSYS 有限元分析了曲线钢-混组合梁桥的跨度与整体刚度及跨高比之间的关系;蒋丽忠等[10]针对钢-混组合梁桥的动力响应和安全指标进行了试验研究,研究结果显示各项指标均满足规范要求。

由上述可知,对于钢-混组合梁结构的研究已经较为成熟,本文在上述研究的基础上,以主河槽桥为依托,开展了平原区钢-混凝土组合梁桥的受力性能分析,主要研究静载和汽车荷载作用下组合梁的位移和变形情况,为平原区钢-混组合梁桥的设计提供参考。

钢-混凝土组合梁桥

钢-混凝土组合梁桥
中支点梁段的钢梁受压存在着稳定问题

组合梁构造
钢梁:工字形和箱形 混凝土桥面板 剪力键(亦称为连接件)
工字形钢梁与钢板梁组合梁
钢箱梁
组合箱梁截面形式
2. 混凝土桥面板 (1)现浇混凝土板
现浇混凝土板组合
3. 剪力键
剪力键又称为连接键,设在钢梁上翼缘的顶面,其主要 作用是承受钢梁和混凝土翼缘板之间界面上的纵向剪力, 抵抗两者之间的相对滑移,保证混凝土桥面板与钢梁共 同作用。 桥梁工程中常用的有栓钉剪力键、弯筋剪力键和槽钢剪 力键
例题4-4 图示为一桥面净空为净—7附2×0.75m 人行道的钢筋混凝土T梁桥,共设五根主梁。试求 荷载位于支点处时1号梁和2号梁影响线。
钢-混凝土组合梁桥 一、概述 钢-混组合梁桥是指由外露的钢梁或钢 桁梁通过连接件(剪力键, shear connector )与钢筋混凝土桥面板组合 而成的梁式桥,简称组合梁桥。
重合梁与组合梁的受力原理
组合连续梁桥的在设计中需要 认真考虑以下几个因素:
中支点负弯矩区段,混凝土翼板受拉;
中支点截面弯矩、剪力都最大,受力复杂;

钢—混凝土组合梁的施工案例

钢—混凝土组合梁的施工案例

润扬大桥南接线工程丹徒互通主线桥大跨径钢--混凝土组合梁的设计与施工摘要:钢—混凝土组合梁具有良好的受力性能和较好的综合经济效益,应用前景广泛。

纵向主要受力构件为钢箱梁,采用工厂预制现场拼接的施工工艺可以缩短工期,简化工地现场的施工工程量;横向由预应力混凝土构成桥面板及悬臂,有利于桥面沥青混凝土的铺装,为较新颖的桥型。

文中通过润扬大桥南接线工程丹徒互通主线桥钢—混凝土组合梁对设计与施工作一些简要介绍。

关键词:钢-混凝土组合梁设计施工近年来,随着对组合结构的深入研究,组合梁或组合结构良好的受力性能和较好的综合经济效益以及作为一种环保型桥梁,将展示其美好的应用前景,在跨越地物的施工条件受到严格限制的桥梁中更有其独特的生命力。

纵向主要受力构件为钢箱梁,采用工厂预制现场拼接的施工工艺可以缩短工期,简化工地现场的施工工程量;横向由预应力混凝土构成桥面板及悬臂,有利于桥面沥青混凝土的铺装。

1 设计概述1.1润扬大桥南接线工程丹徒互通主线桥跨越沪宁高速公路,设计桥下净空按八车道高速公路预留,采用钢—混凝土组合梁一跨跨越,跨沪宁路一联的跨径布置为左半幅26+56+34m,右半幅30+56+30m,一联全长116m,与沪宁路成103°交角。

每幅桥采用两个宽3m的开口钢箱,并通过横向联系形成整体,中跨跨中梁高 1.5m,墩顶梁高2.7m,箱梁底按二次抛物线布置,桥面板悬臂长 2.5m,板内设置纵向预应力钢束,混凝土桥面板与钢箱梁间设置剪力钉抗剪。

施工工艺采用工厂化预制,现场搭设临时墩进行拼接组装,成桥后在38#和39#墩对上部结构向下施加10cm强迫位移。

总体布置见图1。

图11.2技术标准(1)设计荷载:汽车-超20级,挂车-120;(2)地震基本烈度:7度,按8度设防;(3) 桥面净宽:2×(0.5+12.0+1.0)=13.5。

1.3主要材料(1)混凝土桥面板采用50号钢纤维混凝土,墩身采用40号混凝土,承台采用30号混凝土,桩基采用25号混凝土,桥面调平层采用40号聚丙烯纤维网混凝土。

钢-混凝土组合梁

钢-混凝土组合梁
钢-混凝土组合梁是一种具有优异性 能的桥梁结构形式,其结合了钢和混 凝土两种材料的优点,具有较高的承 载力和耐久性。
钢-混凝土组合梁的设计和施工需要 综合考虑多种因素,包括材料特性、 结构形式、施工工艺等,以确保其性 能和安全。
钢-混凝土组合梁在桥梁工程中得到 了广泛应用,特别是在大跨度桥梁和 复杂结构形式中,其优势更加明显。
钢-混凝土组合梁在长期使用过程中 可能会面临一些问题,如疲劳、腐蚀 等,因此需要采取相应的维护和加固 措施。
对未来研究的展望
随着科技的不断进步,钢-混凝 土组合梁在未来仍将是一个重 要的研究方向,需要进一步探
索其性能和优化设计方法。
对于钢-混凝土组合梁的耐久性 问题,需要加强研究,提出更 加有效的防腐、防锈和加固措
相关规范。
05 钢-混凝土组合梁的优势 与挑战
钢-混凝土组合梁的优势
高承载能力
结构自重轻
钢-混凝土组合梁能够承受较大的集中荷载 和均布荷载,具有较高的承载能力。
由于钢材料具有轻质高强的特点,因此钢混凝土组合梁的结构自重相对较轻,有利 于减轻整体结构的重量。
施工速度快
节能环保
钢-混凝土组合梁的构件可以预先在工厂制 作,现场安装方便快捷,能够缩短施工周 期。
总结词
施工方便,工期短
详细描述
钢-混凝土组合梁的施工方便,能够缩短工期,降低施 工成本。该大桥的施工过程采用了预制拼装的施工方法 ,大大提高了施工效率。
工程案例二
总结词
抗震性能好
详细描述
某高层建筑采用钢-混凝土组合梁作为主要承重结构,具 有良好的抗性能,能够有效地抵抗地震作用。
总结词
承载能力高
详细描述
钢-混凝土组合梁的承载能力较高,能够满足高层建筑对 承重结构的要求。同时,该组合梁还具有良好的塑性和韧 性,能够吸收地震能量,减少结构损伤。

钢-混凝土组合梁结构计算

钢-混凝土组合梁结构计算

钢-混凝土组合梁结构计算书编制单位:计算:复核:审查:2009年3月目录1. 设计资料 (1)2. 计算方法 (2)2.1 规范标准 (2)2.2 换算原理 (2)2.3 计算方法 (3)3. 不设临时支撑_计算结果 (3)3.1 组合梁法向应力及剪应力结果 (4)3.2 施工阶段钢梁竖向挠度结果 (6)3.3 结论 (7)3.4 计算过程(附件) (7)4.设置临时支撑_有限元分析计算 (7)4.1 有限于建模 (7)4.2 施工及使用阶段结构内力 (9)4.2.1 施工阶段结构内力 (10)4.2.2 使用阶段结构内力 (11)4.3 组合梁截面应力 (13)4.3.1 截面应力汇总 (13)4.3.2 截面应力组合 (15)4.4 恒载作用竖向挠度 (16)4.4.1 施工阶段竖向挠度 (16)4.4.2 使用阶段恒载作用竖向挠度 (16)4.5 结论 (16)钢-混凝土组合梁结构计算1. 设计资料钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。

图 1 横向布置(cm)图 2 桥梁立面 (cm)钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸图 3 钢梁标准构造 (mm)2. 计算方法2.1 规范标准现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。

《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。

尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。

钢-混凝土组合结构的发展现状

钢-混凝土组合结构的发展现状

钢-混凝土组合结构的发展现状钢-混凝土组合结构是指在建筑或桥梁中结构中同时使用钢材和混凝土这两种材料,以发挥各自的优势和互补作用,从而形成一种新型的结构形式。

在现代建筑领域中,钢-混凝土组合结构具有结构强度高、抗震性能好、施工周期短、使用寿命长等优点,因此得到了广泛的应用和推广。

本文将从发展现状、应用领域、技术挑战和未来发展趋势等方面对钢-混凝土组合结构进行探讨。

一、发展现状目前,钢-混凝土组合结构已经在建筑领域中得到了广泛的应用。

在桥梁工程中,钢-混凝土组合梁桥、钢-混凝土组合箱梁桥等结构形式已经成为了常见的桥梁类型。

在建筑工程中,大跨度空间结构、高层建筑等也开始采用钢-混凝土组合结构,例如一些地标性建筑,如上海中心大厦和广州塔等。

钢-混凝土组合结构也被应用到了工业厂房、体育场馆等多个领域。

二、应用领域钢-混凝土组合结构的应用领域非常广泛。

在建筑领域中,钢-混凝土组合结构不仅可以用于桥梁工程,还可以应用于高层建筑、大跨度空间结构、工业厂房等多个领域。

在高层建筑中,由于钢材的高强度和混凝土的良好抗压性能,采用钢-混凝土组合结构可以实现更大的跨度和更高的承载能力,从而满足了高层建筑对结构性能的要求。

在桥梁工程中,钢-混凝土组合结构可以实现更大跨度的桥梁结构,从而提高了桥梁的通行能力和安全性。

在工业厂房中,钢-混凝土组合结构可以实现更大空间的悬挑和跨度,从而满足了工业厂房对空间利用和结构稳定性的要求。

三、技术挑战虽然钢-混凝土组合结构具有诸多优点,但是在实际应用中还面临着一些技术挑战。

首先是材料的兼容性。

由于钢材和混凝土的物理性质和工程特性有很大差异,两者之间的界面问题一直是研究的难点。

其次是结构的耐久性问题。

由于钢材容易受到腐蚀和变形,而混凝土容易受到裂缝和渗漏的影响,因此钢-混凝土组合结构的耐久性一直是研究的重点方向。

由于钢-混凝土组合结构的施工过程复杂,因此如何确保施工质量和工期进度也是一个亟待解决的技术难题。

钢-混凝土组合桥梁设计规范

钢-混凝土组合桥梁设计规范

4.1.5.5.d):
a = a2 + 2H + 2b′ = a1 + 2b′ 以上各式中:
(4.1.5.5-6)
的尺寸;
a2、b2 ——垂直于板跨及顺板跨方向车轮着地尺寸; a1、b1 ——垂直于板跨及顺板跨方向车轮通过铺装层后分布于板顶
H——铺装层厚度;
t——板的厚度;
L——板的计算跨径,一般为两支承中心间的距离;但计算弯矩时,
(4.1.5.5-3)
a = a2 + 2H + t = a1 + t
(4.1.5.5-4)
对于弹性支承的行车宽度,支承处车轮分布宽 a 不小于 L/3。
3)车轮在板的支承附近距支撑 χ 时(见图 4.1.5.5.C):
a = a1 + t + 2χ 但不大于跨中的分布宽度
(4.1.5.5-5)
4) 悬 臂 板 上 的 集 中 荷 载 在 垂 直 于 板 跨 方 向 的 分 布 宽 度 , 按 下 式 计 算 ( 见 图
置的连接器,必须具有足够的强度和耐久性。要确保结合面以上的“混凝土桥 面板的抗渗、防裂、抗冲击能力;要确保结合部位的密封性能和耐久性能。 6 钢结构构件中不应有未焊合或未栓合的接触部分,应尽量避免采用易于积水的 闭口截面,并于凹槽、坑槽处设置有效的排水孔。 7 钢结构采用的焊条、螺栓、节点板等构件连接材料的耐久性能,不应低于构件 主体材料的耐久性能。 8 采用型钢组合杆件,其型钢间的空隙宽度应满足防护层施工和维修的要求。 9 简支组合桥梁的静活载挠度,宜不小于 1/900。 10 桥梁钢结构的板材尺寸:不应小于 10 ㎜,也不宜大于 32 ㎜。 11 钢箱梁壁板在跨中应设置通气孔。 12 钢结构钢材表面的除锈等级应符合现行国家标准《工业建筑防腐蚀设计规范》 GB50046 和《涂装前钢材表面锈蚀和除锈等级》GB8923 的规定。在设计文件中 应注明所要求的钢材除锈等级和涂料(或镀层)及涂(镀)层厚度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
5
6
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——SPC导入联合截面 (2)SPC导入联合截面
7
8 9
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——SPC导入联合截面 (2)SPC导入联合截面
10
11
二、钢-混凝土组合桥梁分析实例
3.边界及施工荷载 (1)边界
一、组合结构计算原理
1.组合截面形成过程中的应力累加——架设钢箱自重效应
注: 1.此阶段仅架设钢箱,内力及应 力仅与钢箱本身的截面特性有关。 2.查看结果时选择part1即可。
一、组合结构计算原理
1.组合截面形成过程中的应力累加——桥面板湿重
注: 1.此阶段混凝土桥面板在钢箱上浇筑,混凝土湿重作为外荷载作用在钢箱上,内力及应力 仅与钢箱本身的截面特性有关。 2.此法施工应注意定义材料时将混凝土材料的自重修改为0,避免重复加载。
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (3)有效弹性模量的虚拟荷载法计算收缩效应
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (3)有效弹性模量的虚拟荷载法计算收缩效应
注: 1.显然从虚拟荷载法本身考虑,完全可以将收缩效应通过温度梯度的方法计算。 2.模型计算有效弹性模量的温度梯度效应需做如下修改: 修改材料的弹性模量为有效弹性模量 输入温度梯度荷载时应按有效弹性模量
一、组合结构计算原理
2. 组合截面应力计算——换算截面特性计算
一、组合结构计算原理
2. 组合截面应力计算——二期荷载效应
注: 1.换算为钢材后,计算混凝土应力需要除 弹模比。 2.应力结果通过选择“应力部分”查看钢 及混凝土的应力。 3.实际结构为了校核联合后截面特性查看 二期荷载的应力比较方便。
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——建立单元节点
注: 1.曲线桥梁可以通过导入CAD线形的方法建立单元节点。
2.导入技巧:
节点位置:支撑线、截面变化位置、加载荷载位置(隔板、横梁等) CAD根据上述内容分层,Civil程序可根据图层将导入内容分组。 节点最终位置通过连接节点位置得到(Civil程序不能识别圆曲线)
二、钢-混凝土组合桥梁分析实例
5.使用阶段——活载及沉降
2014GTSnx
注: 1.车道数量根据规范表4.3.1-3及行车道宽度确定。 2.一般结构考虑内篇外偏及中载计算足以。
注:
1.施工阶段联合截面设置以截面为对象进行相关的设置。 2.施工阶段设置的材料理论厚度龄期的优先级高于定义单元时赋予的值。 3.一般截面类型根据激活施工阶段不同程序可以自动识别同样截面不同的单元。 4.混凝土湿重模拟桥面板形成过程注意将材料的容重改为0。 5.定义收缩徐变函数时注意标号强度为N mm单位体系。
一、组合结构计算原理
3.虚拟荷载法计算混凝土板升降温后应力
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (1)混凝土收缩应变
注: 1.理论厚度h=2A/u,A为混凝土 桥面板的截面积,u为混凝土桥面 板与大气接触的周边长度。 2.表中混凝土龄期取为7天,表示 混凝土浇筑完成至开始受力的时 间。
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (1)混凝土收缩应变
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (2)混凝土折减刚度
注: 1.《钢-混凝土组合桥梁设计规范》给出了 明确的有效弹模比的计算方法。 2.其中混凝土的徐变系数可以通过查表内插 方法方便得到。
老朱陪您学Civil——钢-混凝土组合桥梁分析
目录
一、组合结构计算原理
1.组合截面形成过程中的应力累加 2.组合截面应力计算方法 3.虚拟荷载法计算混凝土板降温效应 4.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应
二、钢-混凝土组合桥梁分析实例
1.项目简介 2.单元划分及SPC导入联合截面 3.边界及施工荷载 4.设置施工阶段及施工阶段联合截面 5.使用阶段——活载及沉降
一、组合结构计算原理
1.组合截面形成过程中的应力累加——叠合截面形成后应力
注: 1.显然至此混凝土桥面板不受力,仅钢箱梁承受混凝土及钢的自重 效应。 2.桥面板形成后二期荷载等后续荷载将有全截面承担。
一、组合结构计算原理
2. 组合截面应力计算——换算截面特性计算
一、组合结构计算原理
2. 组合截面应力计算——换算截面特性计算
二、钢-混凝土组合桥梁分析实例
1.项目简介
本桥为某高速路联络线匝道桥中的一联,桥梁全宽 10.5m。本联上部结构采用(38+33.5+37.5)m钢混组 合连续梁,下部结构桥墩为柱式,基础为承台接灌注桩; 桥台为肋板式,基础为承台接灌注桩。 主梁为单箱双室,梁高2米宽10.22m,预制高1.65m, 钢箱底板厚30mm,上翼板厚25mm,腹板厚16mm, 钢材均采用Q345qD,分4段预制后现场采用高强螺栓拼 接。钢箱顶部混凝土桥面板厚0.27m,采用C50无收缩混 凝土现浇。 顶板混凝土预应力钢束采用高强低松弛钢绞线,管道 采用金属波纹管成型。设计摩阻系数μ =0.25,孔道偏差 系数K=0.0015。
一、组合结构计算原理
2. 组合截面应力计算——累计荷载效应
小结: 1.显然叠合梁的最终应力与施工工艺直接相 关。 2.通过施工阶段设置中分离变量形式可以容 易得到单项荷载的效应。 3.组合截面应力及内力查看需选择“部分”。
一、组合结构计算原理
3.虚拟荷载法计算混凝土板升降温后应力
=
+
+
注: 1.仅混凝土板升降温,应力计算相对简单,可以通过上述过程非常容易得到其效应。 2.收缩徐变与混凝土板降温效应相当,可通过同样方法得到,仅计算集中力P0方法不同。
二、钢-混凝土组合桥梁分析实例
本章小结:
1.组合结构的最终应力状态与施工阶段相关,通过各阶段累加可以得到最终效应,但各阶
段的截面特性因根据具体的施工工艺确定。 2.混凝土桥面板升降温可以通过等效荷载法计算。 3.混凝土收缩同样可以根据等效荷载法计算,但需计算混凝土有效弹性模量。 4.从校核计算结果考虑可以用混凝土降温模拟收缩效应。 5.Civil程序计算有效刚度下的收缩、徐变效应仅需将混凝土弹性模量修改为有效弹性模量。
一、组合结构计算原理
本章小结:
1.组合结构的最终应力状态与施工阶段相关,通过各阶段累加可以得到最终效应,但各阶
段的截面特性因根据具体的施工工艺确定。 2.混凝土桥面板升降温可以通过等效荷载法计算。 3.混凝土收缩同样可以根据等效荷载法计算,但需计算混凝土有效弹性模量。 4.从校核计算结果考虑可以用混凝土降温模拟收缩效应。 5.Civil程序计算有效刚度下的收缩、徐变效应仅需将混凝土弹性模量修改为有效弹性模量。
一、组合结构计算原理
(3)有效弹性模量的虚拟荷载法计算徐变效应
注: 1.理论上可以用有效荷载法计算徐变效应,仅P0 M0的计算方法与收缩不同。 2.由于徐变效应不同于收缩效应,与受力后的应变直接相关,实际结构各截面受力不同从而徐变效应不同。 3.Civil程序分析相对简单,只需要将混凝土的弹性模量修改为有效弹性模量即可(与收缩有效弹性模量不同)。
注: 1.永久边界应根据施工图设置约束方向(固定支座,单向固定支座,双向固定支座,一般橡胶支座)。 2.复制支座上下节点时,可通过点选辅助单元确定任意复制方向。
3.弹性连接为单元坐标,SDx为支座抗压(拉)刚度。
4.临时边界要保证施工阶段分段几何不可变(不是机动体系)。
二、钢-混凝土组合桥梁分析实例
一、组合结构计算原理
3.基于有效弹性模量的虚拟荷载法计算收缩、徐变效应 (3)有效弹性模量的虚拟荷载法计算收缩效应
注: 1通过修改弹性模量及持续时间可得到相应的收缩应变值。 2.最终收缩应力与理论值基本一致。(误差是由于总的收缩量不一致造成) 3.收缩徐变终值与截面本身无关,可以通过临时替换混凝土截面查看。(组合截面不能输出此值) 4.程序计算名义收缩系数按《04混规》得到,上图输入数据均为了对比方便输入。
注: 1.车道数量根据规范表4.3.1-3及行车道宽度确定。 2.一般结构考虑内偏外偏及中载计算足以。 3.直桥可进建立一个车道通过定义荷载工况时输入比例系数调整为多车道。
二、钢-混凝土组合桥梁分析实例
5.使用阶段——活载及沉降
2014GTSnx
注: 1.车道数量根据规范表4.3.1-3及行车道宽度确定。 2.一般结构考虑内篇外偏及中载计算足以。
二、钢-混凝土组合桥梁分析实例
5.使用阶段荷载——温度
注: 1.组合截面整体升降温即使连续梁也有自应力。 2.温度梯度要综合考虑截面宽度的变化以及温度梯度折线的变化。 3. 不同材料应分别输入其弹性模量及膨胀系数。
4.注意温度梯度一般输入的参考位置是顶。
二、钢-混凝土组合桥梁分析实例
5.使用阶段——活载及沉降
3.边界及施工荷载 (2)荷载
注: 1.荷载工况: 查看单项内力结果
荷载组合
2.荷载组: 施工阶段调用。 3.利用辅助单元很容易得到隔板位置, 横梁位置,支撑线位置等等,便于加载。
二、钢-混凝土组合桥梁分析实例
3.边界及施工荷载
二、钢-混凝土组合桥梁分析实例
4.设置施工阶段及施工阶段联合截面
导入CAD图形的绘制单位应与Civil一致。
可绘制辅助线(支撑线,加载点等)一并或分批导入便于后续操作。
二、钢-混凝土组合桥梁分析实例
2.单元划分及SPC导入联合截面——SPC导入联合截面 (2)SPC导入联合截面
相关文档
最新文档