高一数学寒假作业
2023年高一数学寒假作业答案
2023年高一数学寒假作业答案新的学期即将来临,在剩下的美好的寒假时光,我们要认真完成自己的寒假作业,那么高一数学寒假作业答案有哪些呢?下面是小编给大家整理的2023年高一数学寒假作业答案,欢迎大家来阅读。
高一数学寒假作业答案一、1~5 CABCB6~10 CBBCC11~12 BB二、13 ,14 (1) ;(2){1,2,3} N; (3){1} ;(4)0 ;15 -116.略。
三、17 .{0.-1,1};18.略;19. (1) a2-4b=0 (2) a=-4, b=320.略.p2一.1~5 C D B B D6~10 C C C C A11~12 B B二. 13. (1,+∞) 14.13 15 16,三.17.略18、略。
19.解:⑴ 略。
⑵略。
20.略。
p3一、选择题:1.B2.C3.C4.A5.C6.A7.A8.D9.A 10.B 11.B 12.C二、填空题:13. 14. 12 15. ; 16.4-a,三、解答题:17.略18.略19.解:(1)开口向下;对称轴为 ;顶点坐标为 ;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。
20.Ⅰ、Ⅱ、p4一、1~8 C B C D A A C C 9-12 B B C D二、13、[—,1] 14、 15、 16、x>2或0三、17、(1)如图所示:(2)单调区间为, .(3)由图象可知:当时,函数取到最小值18.(1)函数的定义域为(—1,1)(2)当a>1时,x (0,1) 当019. 略。
p5一、1~8 C D B D A D B B9~12 B B C D13. 19/6 14. 15. 16.17.略。
20. 解:p7一、选择题:1.D2. C3.D4.C5.A6.C7.D8. A9.C 10.A 11.D 1.B二、填空题13.(-2,8),(4,1) 14.[-1,1] 15.(0,2/3)∪(1,+∞) 16.[0.5,1) 17.略 18.略19.略。
高一数学寒假作业补充练习答案
高一年级数学寒假作业一答案解析一、单项选择题:本小题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 U = R ,集合{}2|320A x x x =-+>,则U C A =( ) A. (1,2) B. [1,2 ] C. (-2,-1 ) D. [ -2,-1] 【答案】B ;【解析】因为A ()(),12,=-∞+∞,U = R ,所以U C A =[ 1,2] .2. 设13331log ,4,log 24a b c ===,则a ,b ,c 的大小关系为( ).A. c >a> bB. b> a> cC. c> b> aD. b> c> a 【答案】D ;【解析】0,1,01a b c <><<,所以 b> c> a .3. 如图,已知点 C 为△OAB 边AB 上一点,且AC=2CB ,若存在实数m ,n ,使得OC mOA nOB =+,则m- n 的值为( ).A.13-B. 0C.13D.23【答案】A ;【解析】由等和线定理,易得1233OC OA OB =+,所以m- n =13-.4.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则ϕ的值为( ). A.6πB.6π- C.4π- D.4π【答案】D ;【解析】由图可知,322T π=,所以223T πω==,所以()22sin 3f x x ϕ⎛⎫=+ ⎪⎝⎭,又因为328f π⎛⎫=⎪⎝⎭,所以232382k ππϕπ⨯+=+,解得()24k k Z πϕπ=+∈,因为2πϕ<,所以4πϕ=.5. 函数()2211log 113xx f x x -⎛⎫=+- ⎪+⎝⎭的定义域是 ( ) A. [1,+∞ ) B. (0,1) C. (-1,0 ] D. (−∞ −1] 【答案】C ;【解析】由对数的真数大于 0 ,与二次根式非负,得101x x ->+且21103x⎛⎫-≥ ⎪⎝⎭, 解得11x -<<且x ≤0,所以定义域为 (-1,0 ].6. 设a ,b 是实数,已知角θ的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (a ,1 ),B(-2,b ),且1sin 3θ=,则ab的值为( ). A. -4 B.-2 C. 4 D. ±4 【答案】A ;【解析】由三角函数的定义,221314a b==++,且a< 0,解得2,222b a ==-4a b=-. 7. 函数()2sin2xy x x R =∈的图象大致为( ).【答案】D ;【解析】由该函数为奇函数,排除选项 A ,B ,由2x π=时,函数值为 0,可排除选项C ,故选D .8. 若函数()()lg 12f x x =-+,则对于任意的()12,1,x x ∈+∞,()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭的大小关系是( ).A.()()122f x f x +≥122x x f +⎛⎫ ⎪⎝⎭B.()()122f x f x +≤122x x f +⎛⎫⎪⎝⎭C.()()122f x f x +=122x x f +⎛⎫⎪⎝⎭D.不确定【答案】B ;【解析】观察图象,可得函数“凹凸性”如图,故选 B .二、多项选择题:本小题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 下列计算结果为有理数的有( ).A.23log 3log 2⋅B. lg2 +lg5C.1ln22e - D.5sin6π 【答案】ABCD ;【解析】23log 3log 21⋅=;lg2+ lg5=1;1ln220e -=;51sin62π=, 故选 ABCD .10. 对于定义在 R 上的函数()f x ,下列判断错误的有( ). A.若()()22f f ->,则函数()f x 是 R 的单调增函数 B.若()()22f f -≠,则函数()f x 不是偶函数 C.若()00f =,则函数()f x 是奇函数D.函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数【答案】ACD ;【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在 x =0 处,有可能会出现右侧比左侧低的情况,故错误.11. 设 a 为实数,则直线y =a 和函数41y x =+的图象的公共点个数可以是( ). A. 0 B. 1 C. 2 D. 3 【答案】ABC ;【解析】41y x =+是偶函数,且在 [0,+∞ ) 上递增,画出草图,可知y=a 与该函数的交点个数可能为 0,1,2.12. 设函数()f x 的定义域为D ,若对于任意x ∈D ,存在y ∈D 使()()2f x f y C-=(C 为常数)成立,则称函数()f x 在D 上的“半差值”为C .下列四个函数中,满足所在定义域上“半差值”为1的函数是( ). A.()31y x x R =+∈ B. ()2x y x R =∈C. ()()ln 0,y x x =∈+∞ D. y=sin2x+1( x ∈R) 【答案】AC ;【解析】即对任意定义域中的 x ,存在 y ,使得f(y)=f(x)-2;由于AC 值域为R ,故满足;对于B ,当x=0时,函数值为1,此时不存在自变量y ,使得函数值为-1,故B 不满足;对于D ,当2x π=-时,函数值为−1,此时不存在自变量y ,使得函数值为−3,故D 不满足,所以选AC .三、填空题:本小题共4小题,每小题5分,共20分.13. 设m 为实数,若函数()22f x x mx =+-在区间 (−∞,2)上是单调减函数,则m 的取值围是. 【答案】m ≤−4;【解析】()f x 为开口向上的二次函数,对称轴为直线2mx =-,要使得函数在(−∞,2)上递减,则22m-≥,解得4m ≤-. 14. 把函数sin 23y x π⎛⎫=-⎪⎝⎭图象上每一点的横坐标变为原来的 2 倍(纵坐标不变),得到图象为1C ;再把1C 上每一点的纵坐标变为原来的2倍(横坐标不变),得到图象为2C ,则2C 对应的解析式为. 【答案】2sin 3y x π⎛⎫=-⎪⎝⎭【解析】1C :sin 3y x π⎛⎫=-⎪⎝⎭,2C :2sin 3y x π⎛⎫=-⎪⎝⎭.15. 若()()cos ,1,2cos ,2sin AB AC θθθ=-=,其中θ∈[0,π],则BC 的最大值为. 【答案】3;【解析】()cos ,2sin 1,BC AC AB θθ=-=+所以()2222cos 2sin 13sin 4sin 2,BC θθθθ=++=++因为[]0,θπ∈,令[]sin 0,1t θ=∈,所以22342,BC t t =++所以当t=1时,取最大值 9,所以BC 的最大值为 3.16. 已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,那么()()3f f =;若存在实数 a ,使得()()()f a f f a =,则a 的个数是.【答案】 1 ;4; 【解析】()()()311;ff f =-=令()f a t =,即满足()f t t =,①t=1,即a=±1时,经检验,均满足题意;②t <1,即 −1 <a <1或 a >1时,()2f t t =,由2t t =,解得t =0或1(舍去);再由()0t f a ==解得a = 0或 2 ;③t > 1,即a < − 1时,()2f t t =-,由t=2−t ,解得 t = 1 (舍去); 综上所述:共有 4 个 a .四、解答题:本小题共6小题,共70分.解答应写出应写出文字说明、证明过程或演算步骤. 17. (10 分)设 t 为实数,已知向量()()1,2,1,.a b t ==- ⑴若 t = 3,求a b +和a b -的值;⑵若向量a b +与3a b -所成角为 135° ,求 t 的值.【答案】⑴a b += 5,5a b -=;⑵ t = 2;【解析】⑴当 t = 3时,()1,3b =-,()0,5a b +=,()2,1a b -=- 所以a b += 5,5a b -=; ⑵()0,2a b t +=+,()34,23a b t -=-,()()(3223cos135232a b a b t t a b a bt +⋅-+-===-+⋅-+, 平方化简得:23440t t --=,解得1222,.3t t ==- 经检验,当23t =-时,夹角为 45° 舍去,故 t = 2. 18. (12 分)设实数 x 满足 sinx+ cos x= c ,其中 c 为常数. ⑴ 当时,求44sin cos x x +的数值;⑵ 求值:()33443cos cos 2sin cos x x x xππ⎛⎫+++ ⎪⎝⎭-(用含 c 的式子表示). 【答案】⑴12;⑵212c c +;【解析】⑴,平方得: 1+ 2sinx cosx = 2,所以sinx cosx=12; ()24422221sin cos sin cos 2sin cos 2x x x x x x +=+-=; (2)()()()33334422223cos cos sin cos 1sin cos 2sin cos sin cos sin cos sin cos x x x x x x x x x xx x x x ππ⎛⎫+++ ⎪-+⎝⎭==-+-+ 由sinx+ cos x= c ,所以平方得:1+ 2sinx cosx = 2c ,sinx cosx =212c -所以原式=221122c c c c++=. 19. (12 分)设 a 为正实数.如图,一个水轮的半径为a m ,水轮圆心 O 距离水面2am ,已知水轮每分钟逆时针转动 5 圈.当水轮上的点 P 从水中浮现时(即图中点0P )开始计算时间.⑴ 将点 P 距离水面的高度 h(m )表示为时间 t(s)的函数; ⑵ 点 P 第一次达到最高点需要多少时间.【答案】⑴sin ,0;662a h a t t ππ⎛⎫=-+≥⎪⎝⎭⑵ 4s ;【解析】⑴ 如图,以水轮圆心 O 为原点,与水面平行的直线为 x 轴建立直 角坐标系.当t= 0时,点 P 的坐标为3,2a ⎫-⎪⎪⎝⎭,角度为6π-;根据水轮每分钟逆时针转动 5 圈,可知水轮转动的角速度为6πrad / s,所以 t 时刻,角度为66t ππ-;根据三角函数定义,可得sin ,0;662a h a t t ππ⎛⎫=-+≥⎪⎝⎭⑵ 当32a h =时,sin 166t ππ⎛⎫-= ⎪⎝⎭,所以2662t k ππππ-=+,解得t=4+12k ()k N ∈,所以当k= 0时, t = 4,即第一次达到最高点时需要 4s . 20. (12 分)设向量()11,a x y =,()22,b x y =,其中0a ≠. ⑴ 若//a b ,求证:12210x y x y -=; ⑵ 若12210x y x y -=,求证://a b .【解析】()11,a x y =,()22,b x y =,其中0a ≠,所以11,x y 不全为 0,不妨设10x ≠; ⑴ 如果//a b ,则存在实数λ,使得b a λ= ,即()()()221111,,,x y x y x y λλλ==,所以2121x x y y λλ=⎧⎨=⎩,则()()122111110x y x y x y x y λλ-=-=⑵ 反之,如果12210x y x y -=,因为10x ≠,所以()()22221222111111,,,,x xx y y x y x y x y x x x ⎛⎫=== ⎪⎝⎭ , 令21x x λ=,则b a λ=,所以//a b . 21. (12 分)⑴ 运用函数单调性定义,证明:函数()31f x x x=-在区间 (0,+∞)上是单调减函数;⑵ 设 a 为实数, 0 <a < 1 ,若 0 <x < y ,试比较33y x a a -和4334x y x y a a ++-的大小,并说明理由.【答案】⑴ 答案见解析;⑵33y x a a -<4334x y x y a a ++- 【解析】⑴ 对任意的()12,0,x x ∈+∞,且12x x <,()()()()()222121211212213333121211x x x x x x f x f x x x x x x x x x -++⎛⎫⎛⎫-=---=+- ⎪ ⎪⎝⎭⎝⎭因为210,x x ->22332121120,0x x x x x x ++>>,所以()()120f x f x ->,即()()12f x f x > ,所以函数()f x 在区间 (0,+∞) 上是单调减函数;⑵ 因为 0<a<1,所以()x g x a =在R 上是单调减函数, 因为 0< x< y ,所以 0<3x<3y , 0< 4x+ 3y<3x+4y , 所以()()33330y x g y g x a a <⇒-< ,且()()4334g x y g x y +>+⇒43340x y x y a a ++->, 所以33y x a a -<4334x y x y a a ++-. 22. (12 分) ⑴ 已知函数()()11,1x f x x x R x -=≠-∈+,试判断函数()f x 的单调性,并说明理由;⑵ 已知函数()()1lg1,1x g x x x R x -=≠±∈+. (i )判断()g x 的奇偶性,并说明理由;(ii )求证:对于任意的x ,y ∈R ,且x ≠±1 ,y ≠±1,xy ≠−1都有()()1x y g x g y g xy ⎛⎫++= ⎪+⎝⎭①.【答案】⑴()f x 在(−∞,−1)和(-1,+∞)上单调递增;⑵答案见解析; 【解析】⑴ 对任意的()12,,1x x ∈-∞-,且12x x <, 则()()()()()12121212122111111x x x x f x f x x x x x ----=-=++++, 因为()()12120,110x x x x -<++>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间(−∞,−1)上是单调递增,同理可得()f x 在区间(-1,+∞)上单调递增;⑵(i )()g x 的定义域为()()(),11,11,-∞--+∞,对任意的()()(),11,11,x ∈-∞--+∞,有()()(),11,11,x -∈-∞--+∞,且()()1111lglg lg lg101111x x x x g x g x x x x x ⎛⎫------+-=+=⋅== ⎪+-++-+⎝⎭, 所以()g x 为奇函数,又()()22g g ≠-,所以()g x 不是偶函数; (ii )对于任意的x,y ∈R ,且x ≠±1 ,y ≠±1,xy ≠−1,因为()()111111lg lg lg lg 111111x y x y x y g x g y x y x y x y ⎛⎫------+=+=⋅=⋅ ⎪++++++⎝⎭, 所以111lg lg lg 1111x yx y x y xy xyg x y xy x y xy xy+-⎛⎫++--+=== ⎪+++++⎝⎭++()()1111x y g x g y x y --⋅=+++; 高一年级数学寒假作业二答案解析一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
高一年级数学寒假作业
高一年级数学寒假作业一、选择题(本大题共10小题,每小题5分,共50分)1.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d }2.已知α为第四象限角,且3tan 4α=-,则sin α等于 ( )A. 35B. 45C.35-D.45-3.为了得到函数)42sin(π-=x y 的图象,只需把函数x y 2sin =的图象上所有的点 ( ) A.向左平移4π个单位长度B.向右平移4π个单位长度C.向左平移8π个单位长度D.向右平移8π个单位长度4.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A .平行 B .垂直C .夹角为3πD .不平行也不垂直 5.已知111222log log log b a c <<,则( )A.222b a c >>B.222a b c >>C.222c b a >>D.222c a b >>6.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( )A2π B 4π- C 4πD 34π7.在ABC ∆中,已知D 是AB 边上一点,若2AD DB =,且13CD CA CB λ=+ ,则λ= ( )A.23B. 13C.13-D.23-8.设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过中 得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定 9.如果函数1)1(42)(2+--=x a x x f 在区间),3[+∞上是增函数,则实数a 的取值范围是( )(A)]2,(--∞ (B) ),2[+∞- (C) ]4,(-∞ (D) ),4[+∞ 10.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是()f x =0(x ∈R ),其中正确命题的个数是( )A 4B 3C 2D 1 二、填空题(本大题共5小题,每小题5分,共25分) 11.已知函数()f x 的图象经过点()0,1,则函数()1f x +的图象必经过点 .12.已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,若()2f a =,则a = .13.函数y =的定义域是 .14.已知集合2{|20}A x xx =--=,{|60}B x ax =-=, 且A B A = ,则由实数a 的取值组成的集合是 . 15.函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________. 三、解答题(本大题共6小题,16-19每题12分,20题13分,21题14分,共75分) 16.(1)已知2tan =x ,(1)求x x x x 22cos cos sin sin2+-的值(2)已知ABC ∆顶点的坐标为(3,4),(0,0),(,0)A B C c ,若5c =,求cos A 的值;17. 已知函数x 1x1log )x (f a -+=,(1)求)(x f 的定义域;(2)使0)(>x f 的x 的取值范围.18.如下图为函数)0,0,0A )(x sin(A y >ϕ>ω>ϕ+ω=图像的一部分 (1)求此函数的解析式;(2)写出函数的对称轴及单调区间。
高一数学寒假作业05 函数的概念与表示(教师版)
高一数学寒假作业专题05函数的概念与表示1.已知函数f(x)={2−x ,x ≤0f(x −1),x >0,则f(2021)=( )A .2B .12C .1D .4【答案】C 【解析】当x >0时,f (x )=f (x −1),故在x >0时,f (x )为周期函数,最小正周期为1,因为2021>0,所以f (2021)=f (2021×1+0)=f (0),又因为当x ≤0时,f (x )=2−x ,所以f (0)=20=1,所以f(2021)=1 故选:C2.函数f(x)=√x +1+1x−1的定义域是( )A .[-1,+∞)B .(-1,1)∪(1,+∞)C .(1,+∞)D .[-1,1)∪(1,+∞)【答案】D 【解析】要使函数f(x)=√x +1+1x−1有意义, 必须满足{x +1≥0x −1≠0,解得x ≥−1,且x ≠1,所以函数f(x)=√x +1+x x−1的定义域是[−1,1)⋃(1,+∞), 故选:D.3.函数f(x)={2x 2,0≤x <1,2,1≤x <2,3,x ≥2的值域是( )A .RB .[0,+∞)C .[0,3]D .[0,2]∪{3}【答案】D 【解析】当0≤x <1时,f(x)∈[0,2); 当1≤x <2时,f(x)=2; 当x ⩾2时,f(x)=3,根据分段函数的性质可知,f(x)的值域为[0,2]⋃{3}. 故选:D .4.已知函数f (x )满足2f (x )+f (1x)=x ,则f (2)=( )A .12B .1C .76D .2【答案】C 【解析】由已知可得{2f (x )+f (1x )=x 2f (1x )+f (x )=1x ,解得f (x )=2x 2−13x,其中x ≠0,因此,f (2)=76. 故选:C.5.函数y =f (x )的图象与直线x =1的公共点有( ) A .0个 B .1个 C .0或1个 D .无数个【答案】C 【解析】当x =1在函数f (x )的定义域内时,函数y =f (x )的图象与直线x =1有一个公共点(1,f (1));当x =1不在定义域内时,函数y =f (x )的图象与直线x =1没有公共点. 故选:C.6.下列函数f (x )与g (x )表示同一函数的是( ) A .f (x )=x 2−1x−1和g (x )=x +1B .f (x )=1和g (x )=x 0C .f (x )=x +1和g (x )=√x 2+2x +1D .f (x )=x 和g (x )=lne x【答案】D 【解析】 对A ,f (x )=x 2−1x−1=x +1,定义域为{x |x ≠1},g (x )=x +1定义域为R ,故不是同一函数,故错误; 对B ,f (x )=1定义域为R ,g (x )=x 0=1,定义域为{x |x ≠0},故不是同一函数,故错误; 对C ,g (x )=√x 2+2x +1=√(x +1)2=|x +1|, 由f (x )=x +1,解析式不同,故不是同一函数,故错误; 对D ,f (x )=x 定义域为R ,g (x )=lne x =x 定义域为R ,故是同一函数,故正确; 故选:D7.某校要召开学生代表大会,规定各班每10人推选一名代表,当班人数除以10的余数大于6时,再增选一名代表,则各班推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数,如[π]=3,[4]=4)可表示为( ) A .y =[x+210] B .y =[x+310]C .y =[x+410]D .y =[x+510]【答案】B【解析】设班级人数的个位数字为n,令x=10m+n,(m∈N),当0≤n≤6时,y=m,当7≤n≤9时,y=m+1,综上,函数关系式为y=[x+310].故选:B.8.若函数f(x)={a x,x>1(4−a2)x+2,x≤1是R上的增函数,则实数a的取值范围为()A.(1,8)B.(1,+∞)C.[2,4]D.[4,8)【答案】D【解析】分段函数f(x)在R上为单调递增函数,需满足在各段内单调的基础上还得满足在临界点上左边界的值不大于右边界的值,即a>1且4−a2>0,a1≥4−a2+2,解得4≤a<8,故选:D.9.下列关于函数f(x)=1|x|+1的叙述正确的是()A.f(x)的定义域为{x|x≠0},值域为{y|y≥1}B.函数f(x)为偶函数C.当x∈[−1,0)时,f(x)有最小值2,但没有最大值D.函数g(x)=f(x)−x2+1有1个零点【答案】BC【解析】对A,f(x)的定义域为{x|x≠0},因为1|x|>0,所以1|x|+1>1,故值域为{y|y>1},所以A错误;对B,因为f(−x)=1|x|+1=f(x),所以f(x)是偶函数,B正确;对C,当x∈[−1,0)时,f(x)=1|x|+1≥2,所以C正确;对D,如图,f(x)=1|x|+1与y=x2−1有两个交点,所以g(x)有2个零点,所以D错误.故选:BC.10.下列各组函数是同一个函数的是()A.f(x)=√x+1⋅√x−1与g(x)=√x2−1B.f(x)=√−x3与g(x)=x√−xC.f(x)=√x2与g(x)=1|x|D.f(x)=(√x)2x与g(x)=(√x)2【答案】CD【解析】A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤−1或x≥1},不是同一个函数. B选项,f(x)=√−x3,x≤0,f(x)=√−x⋅x2=−x√−x≠g(x),不是同一个函数.C选项,f(x)=√x2=1|x|=g(x),是同一个函数.D选项,f(x)=(√x)2x =1(x>0),g(x)=(√x)2=1(x>0),,是同一个函数.故选:CD11.已知函数f(√x−1)=2x+√x−3,则()A.f(1)=7B.f(x)=2x2+5xC.f(x)的最小值为−258D.f(x)的图象与x轴只有1个交点【答案】AD【解析】令t=√x−1≥−1,得√x=t+1,则x=(t+1)2,得f(√x−1)=f(t)=2t2+5t,故f(x)=2x2+5x,x∈[−1,+∞),f(1)=7,A正确,B错误.f(x)=2x2+5x=2(x+54)2−258,所以f(x)在[−1,+∞)上单调递增,f(x)min=f(−1)=−3,f(x)的图象与x轴只有1个交点,C错误,D正确.故选:AD12.已知函数f(x)=ln(1+x)−ln(1−x),则下列说法正确的是()A .f (x )的定义域为(−1,1)B .f (x )是奇函数C .f (x )是减函数D .若f (x )<0,则−1<x <0 【答案】ABD 【解析】由{1+x >01−x >0,得−1<x <1,所以函数f (x )的定义域为(−1,1),故选项A 正确; 因为f (x )=ln (1+x )−ln (1−x ),所以f (−x )=ln (1−x )−ln (1+x )=−f(x), 所以f (x )是奇函数,故选项B 正确;易知y =ln (1+x )在(−1,1)内单调递增,y =−ln (1−x )在(−1,1)内单调递增, 所以函数f (x )=ln (1+x )−ln (1−x )在在(−1,1)内单调递增,故选项C 错误; 由f (x )<0,得ln (1+x )−ln (1−x )<0,即ln (1+x )−ln (1−x )<0,所以ln (1+x )<ln (1−x ),所以0<1+x <1−x ,解得−1<x <0,故选项D 正确. 故选:ABD.13.设函数y =√1+2x +a ⋅4x ,若函数在(−∞,1]上有意义,则实数a 的取值范围是_____.【答案】[−34,+∞) 【解析】设t =2x ,∵x ∈(−∞,1],∴0<t ≤2.则原函数有意义等价于1+t +at 2≥0在t ∈(0,2]上恒成立, ∴a ≥−t+1t 2,设f (t )=−1+t t 2=−(1t +12)2+14,∵0<t ≤2,所以1t ∈[12,+∞),∴f (t )≤f (12)=−34,∴a ≥−34.故答案为:[−34,+∞)14.已知函数f(x)=ln 2−x2+x −2,若f (a )=1,则f (-a )=_______【答案】−5 【解析】因为f (x )=ln 2−x2+x −2,所以f (−x )=ln 2+x2−x −2,∴f (x ) +f (−x )=ln 2−x2+x +ln 2+x2−x −4=ln [(2−x2+x )×(2+x2−x )]−4=−4, 则f (a )+f (−a )=−4,又因为f(a)=1,所以f(−a)=−5.故答案为:−5.15.直角梯形ABCD ,如图(1),动点P 从B 点出发,沿B →C →D →A 运动,设点P 运动的路程为x ,△ABP 的面积为f (x ).如果函数y =f (x )的图象如图(2)所示,则△ABC 的面积为__.【答案】16 【解析】由题意结合图(2)可知:BC =4,CD =9−4=5,AD =14−9=5, 过D 作DG ⊥AB∴AG =3,由此可求出AB =3+5=8. S △ABC =12AB ⋅BC =12×8×4=16. 故答案为:16.16.已知函数f (x )={x 3+1,x >00,x =0x 3−1,x <0,则不等式f (2−x 2)+f (−x )≥0的解集为___________.【答案】[−2,1] 【解析】∵函数f(x)={x 3+1,x >00,x =0x 3−1,x <0,当x >0时,−x <0,∴f(−x)=−x 3−1=−f(x), 当x <0时,−x >0,∴f(−x)=−x 3+1=−f(x), ∴f(x)为奇函数,又x >0时,f(x)=x 3+1>1单调递增,x <0时,f(x)=x 3−1<−1单调递增,f(0)=0,∴f(x)在在R 上单调递增,∴原不等式即:f (2−x 2)≥−f(−x)=f(x), 则2−x 2≥x ,解得:−2≤x ≤1. 故答案为:[−2,1]17.已知f (x )={(6−a)x −4a,x <1,log a x,x ≥1,是R 上的增函数,求a 的取值范围.【答案】65≤a <6 【解析】f (x )是R 上的增函数,则当x ≥1时,y =log a x 是增函数,∴a >1. 又当x <1时,函数y =(6-a )x -4a 是增函数.∴6-a >0,∴a <6. 又(6-a )×1-4a ≤log a 1,得a ≥65. ∴65≤a <6.18.求抽象函数的定义域.(1)已知函数f (x )=√1−x +√x +3,求函数f (x +1)的定义域; (2)已知函数f (3x +1)的定义域为(−1,6],求f (2x −5)的定义域. 【答案】 (1)[−4,0]; (2)(32,12]. 【解析】(1)由f (x )=√1−x +√x +3, 得{1−x ≥0x +3≥0,解得:−3≤x ≤1, ∴函数f (x )=√1−x +√x +3的定义域为[−3,1], 由−3≤x +1≤1,得−4≤x ≤0, 即函数f (x +1)的定义域为[−4,0]. (2)∵函数f (3x +1)的定义域为(−1,6], ∴−1<x ≤6,则−2<3x +1≤19, 即函数f (x )的定义域为(−2,19], 由−2<2x −5≤19,得32<x ≤12, ∴f (2x −5)的定义域为(32,12].19.已知函数f (x )满足对任意x 1,x 2∈R ,都有f(x 1+x 2)=f(x 1)f(x 2),f (x )>0 恒成立.且当x <0时,f (x )>1.(1)求f(0):(2)判断f(x)在R上的单调性,并证你的结论:(3)解不等式f(x)f(1-2x)>1.【答案】(1)f(0)=1;(2)f(x)在R上单调递减,证明见解析;(3)(1,+∞).【解析】(1)对任意x1,x2∈R,都有f(x1+x2)=f(x1)f(x2),令x1=x2=0,可得f(0)=f2(0),又f(x)>0,∴f(0)=1;(2)函数f(x)在R上递减.证明如下:设x1<x2,则x1−x2<0,则f(x1−x2)>1且f(x2)>0.∴f(x1)=f(x1−x2+x2)=f(x1−x2)f(x2)>f(x2),则函数f(x)在R上单调递减;(3)由(1)可知,f(0)=1,∴f(x)f(1−2x)>1=f(0),又对任意x1,x2∈R,都有f(x1+x2)=f(x1)f(x2),∴f(x+1−2x)>f(0),根据函数f(x)在R上单调递减可得,1−x<0,∴x>1,故不等式的解集为(1,+∞).20.(1)已知f(x)是一次函数,且满足2f(x+3)−f(x−2)=2x+21,求f(x)的解析式;(2)已知f(x)为二次函数,且满足f(0)=1,f(x−1)−f(x)=4x,求f(x)的解析式.【答案】(1)f(x)=2x+5;(2)f(x)=−2x2−2x+1.【解析】(1)设f(x)=ax+b(a≠0),则2f(x+3)−f(x−2)=2[a(x+3)+b]−[a(x−2)+b]=2ax+6a+2b−ax+2a−b=ax+8a+b=2x+21,所以a =2,b =5, 所以f(x)=2x +5. (2)因为f (x )为二次函数, 设f(x)=ax 2+bx +c(a ≠0). 由f(0)=1,得c =1. 又因为f(x −1)−f(x)=4x ,所以a(x −1)2+b(x −1)+c −(ax 2+bx +c)=4x , 整理,得−2ax +a −b =4x ,求得a =−2,b =−2, 所以f(x)=−2x 2−2x +1. 21.已知函数f (x )=a⋅2x +12x −1的图象经过点(1,3).(1)求a 的值(2)证明:函数f (x )是奇函数 【答案】 (1)a =1; (2)证明见解析. 【解析】(1)因为函数f (x )=a⋅2x +12x −1的图象经过点(1,3),所以3=a⋅21+121−1,解得:a =1.(2)由(1)知:f (x )=2x +12x −1,由2x −1≠0可得x ≠0,所以f (x )=2x +12x −1的定义域为{x|x ≠0}关于原点对称, f (−x )=2−x +12−x −1=(2−x +1)⋅2x (2−x −1)⋅2x=1+2x 1−2x=−2x +12x −1=−f (x ),所以函数f (x )是奇函数. 22.已知函数f(x)=x 21+x 2.(1)求f(2)+f (12),f(3)+f (13)的值; (2)求证:f(x)+f (1x )是定值;(3)求f(2)+f(3)+⋯+f(2022)+f (12)+f (13)+⋯+f (12022)的值. 【答案】 (1)1;1 (2)证明见解析 (3)2021 【解析】【分析】 (1)f(x)=x 21+x 2,f(2)+f (12)=41+4+141+14=1,f(3)+f (13)=91+9+191+19=1.(2)f(x)+f (1x )=x 21+x 2+(1x)21+(1x)2=x 21+x 2+11+x 2=1.(3)f(2)+f(3)+⋯+f(2022)+f (12)+f (13)+⋯+f (12022)[f(2)+f (12)]+[f(3)+f (13)]+⋯+[f(2022)+f (12022)]=2021×1=2021.。
高一数学寒假作业(15套)
寒假作业(1)1.设A={a ,b},集合B={a+1,5},若A∩B={2},则A ∪B=_______2. 函数21)(--=x x x f 的定义域为_______3. 已知3.0log2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是_______4. 设⎭⎬⎫⎩⎨⎧----∈3,2,1,21,31,21,1,2,3α,则使αx y =为奇函数且在(0,+∞)上单调 递减的α值的个数为_________5. 已知集合A={}0652=+-x x x ,B={}01=-mx x ,且B B A = ,求由实数m 所构 成的集合M ,并写出M 的所有子集。
6. 计算:(1))6()3(43221314141----÷-yxyx x(2)b ab b ab aa aa log).(log 2)(log ))((log 22-+7. 探究函数),0(,4)(+∞∈+=xx x f 的最小值,并确定取得最小值时x 的值.列表如下:⑴ 函数)0(4)(>+=x x x x f 在区间(0,2)上递减,则函数)0(4)(>+=x x x x f 在区间上递增; ⑵ 函数)0(4)(>+=x x x x f ,当=x 时,=最小y ;⑶ 函数)0(4)(<+=x xx x f 时,有最值吗?是最大值还是最小值?此时x 为何值?8. 设函数1)(2++=bx ax x f (a 、R b ∈)满足:0)1(=-f ,且对任意实数x 均有)(x f ≥0成立,⑴ 求实数a 、b 的值; ⑵ 当[]2,2-∈x 时,求函数1)(2++=btx ax x ϕ的最大值)(t g .寒假作业(2)1.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a 2. 函数()221xxx f +=,则()()()++⋅⋅⋅+++)2009(321f f f f ⎪⎭⎫⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛200913121f f f = 3. 已知幂函数)(x f y =的图象过点)2,2(,则)9(f = ;4.若0a >,2349a =,则23log a = .5. (1)已知sin()1αβ+=,求证:tan(2)tan 0αββ++=(2)求函数sin cos()6y x x π=+-的最大值和最小值.6. 已知函数()2cos()32x f x π=-(1)求()f x 的单调递增区间; (2) 若[,]x ππ∈-求()f x 的最大值和最小值7. 已知函数()sin()(0,0,,)2f x A x A x R πωϕωϕ=+>><∈在一个周期内的图像如图所示(1)求函数()f x 的解析式; (2)设1()(2)cos 2g x f x x =⋅,求,5()4g π的值8.已知函数2())2sin ()().612f x x x x R ππ=-+-∈(I )求函数()f x 的最小正周期; (II )求使函数()f x 取得最大值的x 集合。
【全国通用】2020-2021年高一数学寒假作业全套含答案 (8套)
高一数学寒假作业(1)一、 选择题,每小题只有一项是正确的。
1.下列关系中正确的个数为( ); ①R ∈21 ②Q ∉2 ③*|3|N ∉- ④Q ∈-|3|A .1 个B .2 个C .3 个D .4 个2.设集合A={x |-1≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )A .[0,2]B .[1,2]C .[0,4]D .[1,4]3.已知312.01.0)2(,)22(,2.1-===c b a ,则c b a ,,的大小关系是( ) A.c b a >> B .c a b >> C.a c b >> D .b a c >>4.对于任意实数a ,下列等式一定成立的是( )A .a a =33B . a a -=33C .a a =44D .a a -=445.下列各组函数中,表示同一函数的是 ( )A .xxy y ==,1 B .y y ==C .21,11x y y x x -==+- D . ||,y x y == 6.已知()f x 是R 上的奇函数,且当(],0x ∈-∞时,()lg(3)f x x x =--,那么(1)f 的值为( )A .0B .lg 3C .lg 3-D .lg 4-7.若函数()y f x =是函数()1x y a a a =>≠0,且的反函数,且()42f =-,则()f x =( )A .x 21B .x 21logC .x 2logD .2x8.下列函数中既是偶函数,又在区间(0,1)上是减函数的是A .||y x =B .2y x =-C .x x y e e -=+D .cos y x =9.若定义运算错误!未找到引用源。
,则函数错误!未找到引用源。
的值域是( )A .[1,+∞)B .(0,+∞)C .(-∞,+∞)D .(0,1]二、填空题10.A ={1,2},B ={2,3},则A ∪B = ______________.11.集合{}{}1,062-==<--=x y x B x x x A ,则A B ⋂=_____________12.已知上有两个不同的零点,则m 的取值范围是________.13.给出下列四个命题:①函数1y x=-在R 上单调递增;②若函数221y x ax =++在(,1]-∞-上单调递减,则1a ≤;③若0.70.7log (2)log (1)m m <-,则1m >-;④若()f x 是定义在R 上的奇函数,则(1)(1)0f x f x -+-=. 其中正确的序号是 .三、计算题14.(12分) 集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A ∩B =A ∪B ,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.15. 已知函数22()log (1)log (1)f x x x =--+(1)求函数()f x 的定义域;(2)求1111()()()()2014201520142015f f f f ++-+-的值. 16.已知函数()f x 是定义在()0,+∞上的函数,且对于任意的实数,x y 有()()()f xy f x f y =+,当1x >时,()0f x >.(1)求证:()f x 在()0,+∞上是增函数(2)若(2)1f =,对任意的实数t ,不等式22(1)(1)2f t f t kt +--+≤恒成立,求实数k 的取值范围。
高一上学期数学寒假作业二
启明班寒假作业二学校:___________姓名:___________班级:___________考号:___________一、单选题1.若函数2(0)3y x πωω⎛⎫=-> ⎪⎝⎭两零点间的最小距离为2π,则ω=( )A .1B .2C .3D .42.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象与直线1y =的相邻两个交点的距离分别为3π和23π,若13 f π⎛⎫= ⎪⎝⎭,则ϕ的值为( )A .6π B .6π- C .3π- D .3π3.设函数())f x x ωϕ=-,x ∈R ,其中0ω>,||ϕπ<.若08f π⎛⎫-= ⎪⎝⎭,58f π⎛⎫= ⎪⎝⎭()f x 的最小正周期大于2π,则( )A .13ω=,1124πϕ=B .13ω=,712πϕ=-C .23ω=,1112πϕ=D .23ω=,12πϕ=-4.已知函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间,2ππ⎡⎤⎢⎥⎣⎦内单调递减,则实数ω的取值范围是( )A .2,13⎡⎤⎢⎥⎣⎦B .24,33⎡⎤⎢⎥⎣⎦C .[)1,2D .3,22⎡⎫⎪⎢⎣⎭5.已知函数()()sin f x x α=+在,43x ππ⎛⎫∈- ⎪⎝⎭上单调递增,则α的值可以是( )A .3π-B .4π-C .4π D .3π 6.若函数()()()sin πf x x ϕϕ=+<在π2π,33-⎡⎤⎢⎥⎣⎦上单调,则ϕ的值为( )A .2π3-或π3B .π3-或2π3C .5π6-或6π D .π6-或5π6 7.若函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭与()πcos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为( )A .π3B .π2C .6πD .π 8.若函数()2sin 23f x x πϕ⎛⎫=-+ ⎪⎝⎭是奇函数,则ϕ的值可以是( )A .56π B .2π C .23π-D .2π-9.函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数的一个充分条件( )A .6πϕ=B .6πϕ=-C .3πϕ=D .3πϕ=-10.已知函数()sin 22f x x x =,若函数()y f x ϕ=-为奇函数,则||ϕ的最小值是( ) A .12π B .6π C .3π D .712π 11.已知函数()sin(2)f x x ϕ=+的图象关于点π,06⎛⎫⎪⎝⎭中心对称,则||ϕ的最小值为( )A .π6B .π3C .2π3D .4π312.将函数2sin()3y x π=+的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .12π B .6π C .3π D .23π13.已知函数()21cos cos (0,)2f x x x x a x R ωωω=+->∈在[]0,π内有且仅有三条对称轴,则ω的取值范围是( ) A .27,36⎛⎫ ⎪⎝⎭B .75[,)63C .513,36⎫⎡⎪⎢⎣⎭D .138,63⎛⎫ ⎪⎝⎭14.已知函数π()sin (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在(π,2π)内不存在对称中心,则ω的取值范围为( ).A .12,33⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .10,6⎛⎤⎥⎝⎦ D .1120,,633⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦15.若函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间(),2ππ内没有最值,则ω的取值范围是( )A .1120,,1233⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦B .1170,,12612⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .70,12⎛⎤ ⎥⎝⎦D .12,33⎡⎤⎢⎥⎣⎦ 16.若函数()sin 6f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)在,44ππ⎛⎫- ⎪⎝⎭有最大值无最小值,则ω的取值范围是( )A .48,33⎛⎫ ⎪⎝⎭B .48,33⎛⎤ ⎥⎝⎦C .416,33⎛⎫ ⎪⎝⎭D .416,33⎛⎤ ⎥⎝⎦17.已知函数()()sin cos 0f x x a x a =+>的最大值为2,若方程()f x b =在区间13π0,6⎛⎫⎪⎝⎭内有三个实数根123,,x x x ,且123x x x <<,则1232x x x ++等于( )A .8π3 B .10π3C .4πD .25π618.已知函数()()22cos 10,2xf x x x ωωω=->∈R ,若函数()f x 在区间(),2ππ上没有零点,则ω的取值范围是( ) A .55110,,12612⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦ B .211,312⎡⎤⎢⎥⎣⎦ C .511,612⎛⎫⎪⎝⎭D .250,,1211312⎛⎫ ⎪⎝⎝⎛⎤ ⎥⎦⎭19.已知函数()()1sin 0f x x x ωωω=+>在()0,π上有且只有3个零点,则实数ω的取值范围是( ) A .1137,26⎛⎤ ⎥⎝⎦B .137,62⎛⎤ ⎥⎝⎦C .725,26⎛⎤ ⎥⎝⎦D .2511,62⎛⎤ ⎥⎝⎦20.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象的两相邻对称轴之间的距离为2π,且3f x π⎛⎫+ ⎪⎝⎭为偶函数,则ϕ=( )A .6π B .6π- C .3π- D .3π21.若直线12x π=是曲线()sin 04y x πωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数sin 4y x πω⎛⎫=- ⎪⎝⎭在区间0,12π⎡⎤⎢⎥⎣⎦上不单调,则ω的最小值为( )A .9B .15C .21D .3322.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间3,34ππ⎡⎤-⎢⎥⎣⎦上单调递增,且在区间[]0,π上只取得一次最大值,则ω的取值范围是( )A .30,4⎡⎤⎢⎥⎣⎦ B .80,9⎛⎤ ⎥⎝⎦ C .28,39⎡⎤⎢⎥⎣⎦ D .38,49⎡⎤⎢⎥⎣⎦23.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,若函数()f x 的一个零点为6π.其图像的一条对称轴为直线512x π=,且()f x 在,64ππ⎛⎫ ⎪⎝⎭上单调,则ω的最大值为( )A .2B .6C .10D .1424.已知函数()sin()(0,0)f x A x ωϕωϕπ=+><<为偶函数,在0,3π⎡⎫⎪⎢⎣⎭单调递减,且在该区间上没有零点,则ω的取值范围为( ) A .30,2⎛⎫ ⎪⎝⎭B .31,2⎡⎤⎢⎥⎣⎦C .35,22⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦二、填空题25.已知函数()cos f x x x ωω-(0)ω>的最小正周期为π,则ω=___.26.已知函数()()sin f x x ω=(0ω>)在区间ππ,123⎛⎤- ⎥⎝⎦上单调递增,在区间π5π,312⎡⎫⎪⎢⎣⎭上单调递减,则ω的值是______.27.已知函数()sin 2062f x x ππϕϕ⎛⎫⎛⎫=++<< ⎪ ⎪⎝⎭⎝⎭在,32ππ⎛⎫ ⎪⎝⎭上单调递增,则ϕ的取值范围为_________.28.将函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭图像上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数()y g x =的图像,若函数()y g x =为偶函数,则ω的最小值为_________.29.已知函数()()()sin 0,0f x x ωϕωϕπ=+><<,且()f x 与()3f x π+均为偶函数,则ω的最小值是______.30.已知函数()()ππsin 22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线π4x =对称,则ϕ=__________.31.若函数sin y x ω=(0ω>)在区间[]0,2上恰好取到3次最小值,请写出一个符合题意的ω的值:___________. 32.已知函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________.33.设函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在0,2π⎛⎫ ⎪⎝⎭上有且仅有2个零点,则实数ω的取值范围为______.34.已知函数()sin (0)f x x x ωωω=>,若函数()f x 的图像在区间π()0,x ∈上恰有2个零点,则实数ω的取值范围为__________. 35.函数()()4sin 6f x x πωω*⎛⎫=+∈ ⎪⎝⎭N ,若,06π⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,且()f x 在52,369ππ⎛⎫ ⎪⎝⎭上单调,则ω的最小值为_________.36.已知函数π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,若π3f x ⎛⎫+ ⎪⎝⎭为偶函数,()f x 在区间π7π,312⎛⎫ ⎪⎝⎭内单调,则ω的最大值为_________.37.已知函数()2sin f x x ω=(0ω>)在区间3,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,且函数()2sin 2g x x ω=+在[]2,0π-上有且仅有一个零点,则实数ω的取值范围是_______. 38.已知函数()()sin f x x ωϕ=+(其中0ω>,2πϕ<),若()0f T =(T 为周期),4x π=是函数()f x 图像的一条对称轴,()f x 在区间3,816ππ⎛⎫⎪⎝⎭上单调,则ω的值为______.。
高一数学寒假作业
同学们:如果高考是X轴,那寒假中的我们应该做正弦函数,围轴转动,有收有放,认真踏实的度过这个假期的每一天。
谁拥有假期,谁拥有自主,谁就拥有未来。
不论我们前面是怎么样的随机变量,不论未来有多大的方差,期末的波谷都过去了,三年后六月的波峰一定属于你!请相信:一切皆有可能!【1】今天是假期的第一天,万事开头难,希望你端正好自己的态度,把放假看淡一些,因为此刻对你来说没有什么比学习更重要的。
☆一、选择题(本大题共5小题,共25.0分)1.下列角与α=36∘终边相同的角为( )A. 324∘B. −324∘C. 336∘D. −336∘2.已知sinα+cosα=15,则sin2a等于( )A. 2425B. 45C. −45D. −24253.设向量a⃗=(2,1),b⃗ =(0,−2).则与a⃗+2b⃗ 垂直的向量可以是( )A. (3,2)B. (3,−2)C. (4,6)D. (4,−6)4.若向量a⃗与向量b⃗ 满足:|a⃗|=2,|b⃗ |=3,且当λ∈R时,|b⃗ −λa⃗|的最小值为2√2,则向量a⃗+b⃗ 在向量a⃗方向上的投影为( )A. 1或2B. 2C. 1或3D. 3二、填空题(本大题共3小题,共15.0分)5.已知向量a⃗=(2,sinθ),b⃗ =(1,cosθ),若a⃗//b⃗ ,则sin2θ1+cos2θ的值为______ .6.已知单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角为60∘,则向量e1⃗⃗⃗ +e2⃗⃗⃗ 与e2⃗⃗⃗ −2e1⃗⃗⃗ 的夹角为______ .三、解答题(本大题共2小题,共24.0分)7.已知a⃗=(sinx,cosx),b⃗ =(sinx,sinx),函数f(x)=a⃗⋅b⃗ .(I)求f(x)的对称轴方程;(II)求使f(x)≥1成立的x的取值集合;(III)若对任意实数x∈[π6,π3],不等式f(x)−m<2恒成立,求实数m的取值范围.【2】今天是假期的第二天,已经有了昨天开的好头,希望你坚持下来,把我们的寒假生活当作循环小数,不要当作分母为零的无意义分数。
高一数学寒假作业
高一数学寒假天天练(腊月十八)1.若函数()2f x x ax b =-+的两个零点是2和3,则函数()21g x bx ax =--的零点是A .1-和16 B .1和16- C .12和13 D .12-2.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00,x y ,则0x 所在的区间是( )A .0,1B .1,2C .()2,3D .()3,44.函数f (x )=ln(2x )-1的零点位于区间( ) A .(2,3) B .(3,4) C .(0,1)D .(1,2)5.函数1()()lg 2xf x x =-零点的个数为( ) A .0B .1C .2D .36.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan )(415π-.高一数学寒假天天练(腊月十九)1、下列说法正确的个数是( ) ①小于90︒的角是锐角; ②钝角一定大于第一象限角;③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0︒. A .0B .1C .2D .32、把下列各角的弧度数化为度数,度数化为弧度数. (1)712π; (2)136π- ; (3)1125° ;(4)-225°. 3、已知下列各角:①120- ②240- ③180 ④495,其中第二象限角的是( ) A .①②B .①③C .②③D .②④4.一个半径是R 的扇形,其周长为3R ,则该扇形圆心角的弧度数为( ) A .1B .3C .πD .3π5.点()cos2018,sin 2018P ︒︒所在的象限是( )A .一B .二C .三D .四 6.求下列各式的值:(1)5sin902sin03sin 27010cos180︒+︒-︒+︒; (2)22ππ1ππsincos cos πtan cos πsin 64362---+高一数学寒假天天练(腊月二十)1.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( )A .B .C .D .2.已知扇形的面积为4,扇形圆心角的弧度数是2,则扇形的周长为( ) A .2B .4C .6D .83.下列转化结果正确的是( ) A .60化成弧度是rad 6πB .rad 12π化成角度是30C .1化成弧度是180rad πD .1rad 化成角度是180π⎛⎫⎪⎝⎭4.终边在y 轴的正半轴上的角的集合是( )A .π2π,2x x k k Z ⎧⎫=+∈⎨⎬⎩⎭B .ππ2x x k ⎧⎫=+⎨⎬⎩⎭C .π2π,2x x k k Z ⎧⎫=-+∈⎨⎬⎩⎭D .ππ,2x x k k Z ⎧⎫=-+∈⎨⎬⎩⎭5.设r 为圆的半径,弧长为r π的圆弧所对的圆心角为( ) 6、把下列各角的弧度数化为度数,度数化为弧度数. (1)712π; (2)136π- ; (3)1125° ;(4)-225°.1.若α是锐角,则k θπα=+,()k ∈Z 是( ) A .第一象限角B .第三象限角C .第一象限角或第三象限角D .第二象限角或第四象限角2.如图所示的时钟显示的时刻为4:30,设半个小时后时针与分针的夹角为(0)<≤ααπ,则α=( )A .1112πB .56π C .34π D .23π 3.函数πsin 33y x ⎛⎫=- ⎪⎝⎭的最小正周期是( )A .π2B .πC .2πD .2π34.在区间42ππ⎡⎤⎢⎥⎣⎦,上为减函数,且为奇函数的是( )A .sin y x =B .sin 2y x =C .cos y x =D .cos 2y x =5.若函数()2sin 23f x x πϕ⎛⎫=-+ ⎪⎝⎭是奇函数,则ϕ的值可以是( )A .56πB .2πC .23π- D .2π-6.计算:(1)257log 5log 7log 16⋅⋅.(2)()()2539log 3log 3log 5log 5lg2+⋅+.1、已知角α的终边经过点(4,3)-,则cos α=( ) A .45B .35C .35D .45-2、已知点()8,6cos60P m -在角α的终边上,且3tan 4α=,则m 的值为( )A .2-B .2C .-D .3、若sin tan 0αα<,且cos 0tan αα<,则角α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角4.若-2π<α<0,则点P(tanα,cosα)位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限6.已知323,18.ab log ==(1)求()2a b -的值;(2)求214ba -+⨯的值.1.给出下列各三角函数值:①sin 1()00-︒;②cos 2()20-︒;③()tan 10-;④cos π. 其中符号为负的有( ) A .1个B .2个C .3个D .4个2.若5α=-,则( ) A .sin 0,cos 0αα>> B .sin 0,cos 0αα>< C .sin 0,cos 0αα<> D .sin 0,cos 0αα<<3.cos480︒的值为( )A .12B C . D .12-4. tan600=( )A .12B C D5.(多选)若角α的终边上有一点(4,)P a -,且sin cos αα⋅=则a 的值为( )A .BC .-D .6.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1)sin α≥2; (2)cos α≤-12.高一数学寒假天天练(腊月二十四)1、若α是第四象限角,则πα-是第( )象限角.A.一B.二C.三D.四2、已知角a 为第二象限角,点()tan ,sin P a a 在( ) A.第一象限B.第二象限C.第三象限D.第四象限3、若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( )A.π6B.π3C.34、在平面直角坐标系xOy 中,角α以Ox 为始边,终边位于第四象限,且与单位圆交于点1,2y ⎛⎫⎪⎝⎭,则sin(4π)α+=( )A. B.12-C.125.下列各式中,值为1的是( ) A .122sin45-︒B .4222sin sin cos cos αααα++C .9tan π4D .lg2lg5⨯6.已知点(),P x y 为角α终边上一点.(1)若角α是第二象限角,y =cos 4α=,求x 的值; (2)若x y =,求sin 2cos αα+的值.1.下列选项正确的是( )A .3sin cos 2παα⎛⎫-= ⎪⎝⎭B .5rad 7512π=︒C .若α终边上有一点()43P ,-,则4sin 5α=-D .若一扇形弧长为2,圆心角为60°,则该扇形的面积为6π2.下列结论中,正确的有( ) A .sin(π)sin x x -= B .tan(π)tan x x +=- C .3πcos()sin 2x x -= D .3πcos()sin 2x x += 3、已知sin 3cos 53cos sin αααα+=-,则2cos sin cos ααα+的值是( ).A .35B .35C .3-D .34、若38sin cos α⋅α=,且42ππα<<,则cos sin αα-的值是A .12- B .12C .14D .14-5、已知1sin cos 5x x +=,且0πx <<,则sin cos x x -=( ) A .75B .75- C .15 D .15-6.定义在R 的函数()f x 满足对任意R x 、、∈恒有()()()f xy f x f y =+且()f x 不恒为0.(1)求(1)(1)f f -、的值;(2)判断()f x 的奇偶性并加以证明;(3)若0x ≥时,()f x 是增函数,求满足不等式(1)(2)0f x f x +--≤的x 的集合.1、下列各式中,不正确的是( ) A.cos(π)cos αα--=- B.sin(2π)sin αα-=- C.tan(5π2)tan 2αα-=-D.sin(π)(1)sin ()k k k αα+=-∈Z2( ) A.sin4cos4+B.sin4cos4-C.cos4sin4-D.sin4cos4--3、已知α为第二象限角,且3sin 5α=,则()tan πα+的值是( ) A.43B. 34C. 43-D. 34-4、(多选)下列说法正确的有( ) A .π9-与17π9的终边相同B .小于90︒的角是锐角C .若θ为第二象限角,则2θ为第一象限角D .若一扇形的中心角为2,中心角所对的弦长为2,则此扇形的面积为21sin 15.若7α=-,则角α是( )角 A .第一象限B .第二象限C .第三象限D .第四象限6.已知半径为O 中,弦AB 的长为4. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .1.已知角x 的终边上一点的坐标为(sin 56π,cos 56π),则角x 的最小正值为( ) A .56π B .53πC .116πD .23π 2.已知函数26()3x f x a -=+(0a >且1a ≠)的图像经过定点A ,且点A 在角θ的终边上,则sin cos sin cos θθθθ-=+( )A .17-B .0C .7D .173.记0cos(80)k -=,那么0tan100= AB.CD.4.已知|,2k x x x k Z π⎧⎫∈≠∈⎨⎬⎩⎭,则函数sin cos tan |sin ||cos ||tan |x x x y x x x =+-的值可能为( ) A .3B .-3C .1D .-15.已知条件π:4p α≠,条件:tan 1q α≠,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件6.已知sin(2)cos()cos()2()cos(2)3cos()cos()2f ππαπαααπαππαα+⋅-⋅-=+-+⋅+. (1)化简()f α; (2)若()f α= 11sin cos αα+的值.第11页高一数学寒假天天练(腊月二十八)1.在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点()1,P m -()0m ≠,则下列各式的值一定为负的是( ) A .cos α B .sin cos αα-C .sin cos ααD .sin 2πα⎛⎫- ⎪⎝⎭2.若4sin 5α,则( ) A .4cos 25πα⎛⎫-= ⎪⎝⎭B .3sin 25πα⎛⎫-= ⎪⎝⎭C .4sin()5πα+=D .4sin()5πα-=3.下列说法正确的是( )A .终边相同的角的同名三角函数的值相等B .终边不同的角的同名三角函数的值不等C .若sin 0α>,则α是第一、二象限的角D .若α是第二象限的角,且(),P x y是其终边上一点,则cos α=4.下列结论正确的是( ) A .76π-是第三象限角 B .若圆心角为3π的扇形的弧长为π,则该扇形面积为32πC .若角α的终边过点()3,4P -,则3cos 5α=-D .()3cos sin 2A A ππ⎛⎫-=+ ⎪⎝⎭5.已知2sin cos αα-=tan α的值可以是( ) A .13B .3-C .13-D .36、已知cos α=,3cos 5β=,其中,αβ都是锐角.求: (1)()sin αβ-的值; (2)()tan αβ+的值.12高一数学寒假天天练(腊月二十九)1.关于正弦函数y =sin x (x ∈R),下列说法正确的是( )A .值域为RB .最小正周期为2πC .在(0,π)上递减D .在(π,2π)上递增 2.已知扇形的半径为6,且扇形的弧长为2π.设其圆心角为α,则tan(π)α-等于( ) A .12B .13CD3.点()cos2023,tan8A ︒在平面直角坐标系中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.设a 是大于0的实数,角α的终边经过点()3,4a a -,则sin α的值为( ) A .45B .45-C .35±D .45±5.下列三角函数中,与sin 3π数值相同的是( )A .4sin 3n ππ⎛⎫+ ⎪⎝⎭B .cos 26n ππ⎛⎫+ ⎪⎝⎭C .sin 23n ππ⎛⎫+ ⎪⎝⎭D .cos 23n ππ⎛⎫+ ⎪⎝⎭E .4cos 3n ππ⎛⎫+ ⎪⎝⎭6、已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求sin()αβ+的值; (2)求tan β的值.131、下列区间中,函数π()7sin()6f x x =-单调递增的区间是( )A.π0,2⎛⎫ ⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭2、下列函数中是奇函数,且最小正周期是π的函数是( ) A.cos |2|y x =B.|sin |y x =C.πsin 22y x ⎛⎫=+ ⎪⎝⎭D.3πcos 22y x ⎛⎫=- ⎪⎝⎭3、设ϕ∈R ,则“0ϕ=”是“()cos()()f x x x ϕ=+∈R 为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 4、下列说法正确的是( )A.函数tan y x =在定义域内是增函数B.函数π()2tan 4f x x ⎛⎫=+ ⎪⎝⎭的单调递增区间是3πππ,π()44k k k ⎛⎫-+∈ ⎪⎝⎭ZC.函数π2tan 23y x ⎛⎫=+ ⎪⎝⎭的定义域是π|π,12x x k k ⎧⎫≠+∈⎨⎬⎩⎭ZD.函数tan 1y x =+在ππ,43⎡⎤-⎢⎥⎣⎦上的最大值为31+,最小值为05、与函数πtan 24y x ⎛⎫=- ⎪⎝⎭的图象不相交的直线是( )A.3π8x =B.π2x =-C.π4x =D.π8x =-6.已知函数.(1)求的最大值及取得最大值时的值; (2)求的单调递减区间.141、函数12sin 23y x π⎛⎫=+ ⎪⎝⎭,[2,2]x ∈-ππ的单调递增区间是( )A.52,3π⎛⎫-π- ⎪⎝⎭B.5,33ππ⎛⎫- ⎪⎝⎭C.5,33ππ⎛⎫⎪⎝⎭D.5,23π⎛⎫π ⎪⎝⎭2、函数()cos 4f x x π⎛⎫=+ ⎪⎝⎭的递增区间为( )A.37,44k k ⎡⎤π+ππ+π⎢⎥⎣⎦,k ∈ZB.5,44k k ππ⎡⎤π+π+⎢⎥⎣⎦,k ∈ZC.52,244k k π⎡⎤π+π+π⎢⎥⎣⎦,k ∈ZD.372,244k k ⎡⎤π+ππ+π⎢⎥⎣⎦,k ∈Z3、已知75tan 11a π=,52tan 11b π⎛⎫=- ⎪⎝⎭,则( )A.0a b <<B.0b a <<C.0b a <<D.0b a <<5、已知角α顶点在原点,始边与x 轴正半轴重合,点(1,P -在终边上,则πsin 3α⎛⎫+= ⎪⎝⎭( )A.0B.12-C. D.1-6.已知函数()12sin f x x =-(1)用“五点法”作法函数()f x 在[]0,2πx ∈上的简图; (2)根据图象求()1f x ≥在[]0,2π上的解集.。
高一数学寒假假期百分百作业
高一数学寒假假期百分百作业数学是一切科学的基础,小编预备了高一数学寒假假期百分百作业,具体请看以下内容。
1.下列各组对象不能构成集合的是()A.所有直角三角形B.抛物线y=x2上的所有点C.某中学高一年级开设的所有课程D.充分接近3的所有实数解析A、B、C中的对象具备三性,而D中的对象不具备确定性.答案D2.给出下列关系:①12②2③|-3|④|-3|Q.其中正确的个数为()A.1B.2C.3D.4解析①③正确.答案B3.已知集合A只含一个元素a,则下列各式正确的是()A.0AB.a=AC.aAD.aA答案D4.已知集合A中只含1,a2两个元素,则实数a不能取()A.1B.-1C.-1和1D.1或-1解析由集合元素的互异性知,a21,即a1.答案C5.设不等式3-2x0的解集为M,下列正确的是()A.0M,2MB.0M,2MC.0M,2MD.0M,2M解析从四个选项来看,本题是判定0和2与集合M间的关系,因此只需判定0和2是否是不等式3-2x0的解即可.当x=0时,3-2x=30,因此0不属于M,即0当x=2时,3-2x=-10,因此2属于M,即2M.答案B6.已知集合A中含1和a2+a+1两个元素,且3A,则a3的值为()A.0B.1C.-8D.1或-8解析3A,a2+a+1=3,即a2+a-2=0,即(a+2)(a-1)=0,解得a=-2,或a=1.当a=1时,a3=1.当a=-2时,a3=-8.a3=1,或a3=-8.答案D7.若a,bR,且a0,b0,则|a|a+|b|b的可能取值所组成的集合中元素的个数为________.解析当ab0时,|a|a+|b|b=2或-2.当ab0时,|a|a+|b|b=0,因此集合中含有-2,0,2三个元素.答案38.以方程x2-5x+6=0和x2-6x+9=0的解为元素的集合中所有元素之和等于________.解析方程x2-5x+6=0的解为x=2,或x=3,方程x2-6x+9=0的解为x= 3,集合中含有两个元素2和3,元素之和为2+3=5.答案59.集合M中的元素y满足yN,且y=1-x2,若aM,则a的值为______ __.解析由y=1-x2,且yN知,y=0或1,集合M含0和1两个元素,又aM,a=0或1.答案0或110.设集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2A,求实数x.解(1)由集合中元素的互异性可知,x3,xx2-2x,x2-2x3.解之得x-1且x0,且x3.(2)∵-2A,x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1-1,x=-2.11.已知集合A含有三个元素2,a,b,集合B含有三个元素2,2a,b2,若A与B表示同一集合,求a,b的值.解由题意得2a=a,b2=b,或2a=b,b2=a,解得a=0,b=0,或a=0,b=1,或a=0,b=0,或a=14,b=12.由集合中元素的互异性知,事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
寒假作业含答案
高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。
2022高一数学寒假作业及答案
不同函数模型测试题二 1.某动物数量 y(只)与时间 x(年)的关系为 y=alog2(x+1), 设第一年有 101 只,那么到第七年它们开展到() A.300 只 B.400 只 C.500 只 D.600 只 解析:选 A.由确定第一年有 101 只,得 a=101,将 a=101, x=7 代入 y=alog2(x+1),得 y=300. 2.马先生于两年前购置了一部手机,此时此刻这款手机的价 格已降为 1010 元,设这种手机每年降价 20%,那么两年前这部手 机的价格为() A.1535.5 元 B.1440 元 C.1620 元 D.1562.5 元 解 析 : 选 D. 设 这 部 手 机 两 年 前 的 价 格 为 a , 那 么 有 a(1-0.2)2=1010,解得 a=1562.5 元,应选 D. 3.为了改善某地的生态环境,政府决心绿化荒山,打算第一 年先植树 0.5 万亩,以后每年比上年增加 1 万亩,结果第 x 年植 树亩数 y(万亩)是时间 x(年数)的一次函数,这个函数的图象是() 解析:选 A.当 x=1 时,y=0.5,且为递增函数. 4.某单位为鼓舞职工节约用水,作出了如下规定:每月用水 不超过 10m3,按每立方米 x 元收取水费;每月用水超过 10m3,超 过局部加倍收费,某职工某月缴费 16x 元,那么该职工这个月实
第6页 共9页
家发觉,两岁燕子的飞行速度可以表示为函数 v=5log2Q10,单位 是 m/s,其中 Q 表示燕子的耗氧量.
(1)试计算:燕子静止时的耗氧量是多少个单位? (2)当一只燕子的耗氧量是 80 个单位时,它的飞行速度是多 少? 解:(1)由题意知,当燕子静止时,它的速度为 0,代入题目 所给公式可得 0=5log2Q10,解得 Q=10, 即燕子静止时的耗氧量为 10 个单位. (2)将耗氧量 Q=80 代入公式得 v=5log28010=5log28=15(m/s), 即当一只燕子耗氧量为 80 个单位时,它的飞行速度为 15m/s. 高一数学寒假作业及答案 5 集合的含义与表示练习一 1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是 () A.{x|x 是小于 18 的正奇数} B.{x|x=4k+1,k∈Z,且 k0,所以 m<1. 答案:m<1 4. 用适当的方法表示以下集合: (1)全部被 3 整除的整数;
高一数学(必修二)寒假作业(立体几何)Word版含答案
高一数学(必修二)寒假作业(立体几何)第Ⅰ卷(选择题,48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。
)1.若α、β是不重合的平面,a 、b 、c 是互不相同的空间直线,则下列命题中为真命题的是 ( ) ① 若α//a ,α//b ,则b a // ; ② 若α//c ,α⊥b ,则b c ⊥ ; ③ 若α⊥c ,β//c ,则βα⊥ ;④ 若α⊂b ,α⊂c 且b a ⊥,c a ⊥,则α⊥a A.③④ B. ①② C. ①④ D. ②③2.下列四个命题:①平行于同一平面的两条直线相互平行 ②平行于同一直线的两个平面相互平行 ③垂直于同一平面的两条直线相互平行 ④垂直于同一直线的两个平面相互平行 其中正确的有A .4个 B.3个 C.2个 D.1个3.某几何体的三视图如图所示,则该几何体的体积为( )A 、163πB 、203πC 、403πD 、5π4.已知正四棱锥的各棱棱长都为23,则正四棱锥的外接球的表面积为( ) A .π12B .π36C .π72D .π1085.某几何体的三视图如图所示,则该几何体的体积为A.168π+B.88π+C.1616π+D.816π+6..a ,b 表示空间不重合两直线,α,β表示空间不重合两平面,则下列命题中正确的是( )A.若α⊂a ,β⊂b ,且b a ⊥,则βα⊥B.若βα⊥,α⊂a ,β⊂b 则b a ⊥C.若α⊥a ,β⊥b ,βα//则b a //D.若βα⊥,α⊥a ,β⊂b ,则b a //7.下列命题中为真命题的是( ) A .平行于同一条直线的两个平面平行 B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.8.如图是一个组合几何体的三视图,则该几何体的体积是 . A 36128π+ B 3616π+ C 72128π+ D 7216π+9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m //,则m α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m //10.已知某几何体的三视图如右图所示,其中,主(正)视图,左(侧)视图均是由直角三角形与半圆构成,俯视图由圆与内接直角三角形构成,根据图中的数据可得此几何体的 体积为( )16+ (B) 4136π+12+ (D)2132π+11.已知圆柱1OO 底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴1OO 逆时针旋转 (0)θθπ<≤后,边11B C 与曲线Γ相交于点P ,设BP 的长度为()f θ,则()y f θ=的图象大致为( )12.某三棱锥的侧视图和俯视图如图--1所示,则该三棱锥的体积为( )A .4 3B .8 3C .12 3D .243第Ⅱ卷(非选择题,共72分)二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,在三棱柱ABC C B A -111中, F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V _____.14. 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 .15.如右图为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成..ABC1ADE F1B1C16.已知某个几何体的三视图如图(正视图中的弧线是半圆),图中标出的尺(单位:㎝), 可得这个几何体表面是 cm 2。
浙江省杭州市2023-2024学年高一下学期寒假作业检测(开学考试)数学试卷含答案
杭州钱江学校高一数学寒假作业检测(答案在最后)一、单选题:本题共8小题,每小题5分,共40分.每小题给出的选项中,只有一项是符合题目要求.1.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆ ,则实数m 的取值范围为()A.{}|21m m -≤≤ B.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D.11|24m m ⎧⎫-≤≤⎨⎬⎩⎭【答案】B 【解析】【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论.【详解】由题意,A ∪B ={x |﹣1<x <2},∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0;②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1,综上所述,12-≤m ≤1,故选:B .【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.2.三角函数值1sin ,2sin ,3sin 的大小顺序是A.123sin sin sin >> B.213sin sin sin >>C.132sin sin sin >> D.3 2 1sin sin sin >>【答案】B 【解析】【分析】先估计弧度角的大小,再借助诱导公式转化到090θ<< 上的正弦值,借助正弦函数在090θ<< 的单调性比较大小.【详解】解:∵1弧度≈57°,2弧度≈114°,3弧度≈171°.∴sin 1≈sin 57°,sin 2≈sin 114°=sin 66°.sin 3≈171°=sin 9°∵y =sin x 在090θ<< 上是增函数,∴sin 9°<sin 57°<sin 66°,即sin 2>sin 1>sin 3.故选B .【点睛】本题考查了正弦函数的单调性及弧度角的大小估值,是基础题.3.设a =log 54,b =(log 53)2,c =log 45,则()A.a <c <b B.b <c <aC.a <b <cD.b <a <c【答案】D 【解析】【详解】∵a =log 54<log 55=1,b =(log 53)2<(log 55)2=1,c =log 45>log 44=1,所以c 最大单调增,所以又因为所以b<a 所以b<a<c.故选D .4.已知函数74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭y x x 的图象与直线y m =有三个交点的横坐标分别为()123123,,x x x x x x <<,那么1232x x x ++的值是()A.34πB.4π3 C.5π3D.3π2【答案】C 【解析】【分析】先作出74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭y x x 的图像,结合图像利用对称性即可求得结果.【详解】先作出函数74sin 20,66y x x ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭的图象,如图,令4sin 246y x π⎛⎫=+=± ⎪⎝⎭,可得6x π=和23x π=,所以由对称性可得1223242,26333x x x x ππππ+=⨯=+=⨯=,故123523x x x π++=,故选:C.5.设(),0,παβ∈,()5sin 13αβ+=,1tan 22α=,则cos β的值是()A.1665-B.1665C.3365- D.3365【答案】A 【解析】【分析】根据半角公式得出α的正切值,继而得出其正弦值和余弦值,再根据α的取值范围和题意判断出π,π2αβ⎛⎫+∈ ⎪⎝⎭,并得出αβ+的余弦值,最后根据恒等变换公式计算[]cos cos ()βαβα=+-即可.【详解】22tan142tan tan 12231tan 2αααα=⇒==>- ,因为(),0,παβ∈,ππ,42α⎛⎫∴∈ ⎪⎝⎭,且4sin cos 3αα=,又223sin cos 1cos 5ααα+=⇒=,得4sin 5α=.因为()0,πβ∈,则π3π,42αβ⎛⎫+∈⎪⎝⎭,又5sin()132αβ+=<,所以π,π2αβ⎛⎫+∈ ⎪⎝⎭,12cos()13αβ∴+=-,[]16cos cos ()cos()cos sin()sin 65βαβααβααβα=+-=+++=-.故选:A.6.设函数()2sin()f x x ωϕ=+,x R ∈,其中0ω>,||ϕπ<.若5()28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A.23ω=,12πϕ= B.23ω=,12ϕ11π=-C.13ω=,24ϕ11π=- D.13ω=,724πϕ=【答案】A 【解析】【详解】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕπ<得12πϕ=,故选A.【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.7.设()|31|x f x =-,c b a <<且()()()f c f a f b >>,则下列关系中一定成立的是A .3c >3bB.3b >3aC.3c +3a >2D.3c +3a <2【答案】D 【解析】【分析】画出()|31|x f x =-的图象,利用数形结合,分析可得结果.【详解】作出()131xf x =-的图象,如图所示,要使c b a <<,且()()()f c f a f b >>成立,则有0c <且0a >,313c a ∴<<,()()13,31c a f c f a ∴=-=-,又()()f c f a >,1331c a ∴->-,即332a c +<,故选D.【点睛】通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.8.已知()f x 是偶函数,且()f x 在[0,)+∝上是增函数,若()()12f ax f x +≤-在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,则实数a 的取值范围是()A.[﹣2,1] B.[﹣5,0]C.[﹣5,1]D.[﹣2,0]【答案】D 【解析】【分析】利用函数的奇偶性和单调性,可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦恒成立,再分离参数利用函数单调性求最值即可求解【详解】由题意可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,得x ﹣2≤ax +1≤2﹣x 对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,从而3x a x -≥且1x a x -≤对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,又3x y x -=单调递增∴a ≥﹣21xy x-=;单调递减,所以a ≤0,即a ∈[﹣2,0],故选D .【点睛】本题考查的是不等式、函数性质以及恒成立有关的综合类问题.在解答的过程当中充分体现了函数的性质、恒成立的思想以及问题转化的能力,属于中档题.二、多选题:本题共4小题,共20分.每小题给出的选项中,有多项符合题目要求.9.存在函数()f x 满足:对任意x ∈R 都有()A.()sin cos f x x =B.()sin sin 2f x x =C.()cos cos 2f x x =D.()sin sin 3f x x=【答案】CD 【解析】【分析】分别取0x =、x π=可得()01f =、()01f =-,A 错误;同理,取3x π=、23x π=可得(22f =、(22f =-,B 错误;利用三角恒等变换将cos 2x 整理为关于cos x 的二次函数可判断C ;同理可判断D.【详解】A :取0x =时,sin 0,cos 1x x ==,()01f =,取x π=时,sin 0,cos 1x x ==-,()01f =-,故A 不正确;B :取3x π=时,sin ,sin 222x x ==,(22f =,取23x π=时,sin ,sin 222x x ==-,(22f =-,故B 错误;C :()2cos cos 22cos 1f x x x ==-,令cos ,[1,1]t x t =∈-,则()221f t t =-,C 正确;D :()sin sin 3sin(2)sin 2cos cos 2sin f x x x x x x x x==+=+222sin (1sin )(12sin )sin x x x x=⨯-+-⨯3332sin 2sin sin 2sin 3sin 4sin x x x x x x=-+-=-令sin ,[1,1]t x t =∈-,则()334,[1,1]f t t t t =-∈-,D 正确.故选:CD10.下列不等式中,正确的是().A.13π13πtan tan 45< B.ππsincos 57⎛⎫<- ⎪⎝⎭C.ππsin 55> D.ππtan 55>【答案】BC 【解析】【分析】利用诱导公式及三角函数的单调性判断A 、B ,利用三角函数线证明当π02x <<时sin tan <<x x x ,即可判断C 、D.【详解】对于A :13πππtantan 3πtan 1444⎛⎫=+== ⎪⎝⎭,13π2π2πtantan 3πtan 0555⎛⎫=-=-< ⎪⎝⎭,所以13π13πtan tan 45>,故A 错误;对于B :因为ππππ7654<<<,且sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,所以1πππ2sin sin sin 26542=<<=,又πππcos cos cos 7762⎛⎫-=>= ⎪⎝⎭,所以ππsincos 57⎛⎫<- ⎪⎝⎭,故B 正确;对于C 、D :首先证明当π02x <<时sin tan <<x x x ,构造单位圆O ,如图所示:则()1,0A ,设π0,2POA x ⎛⎫∠=∈ ⎪⎝⎭,则()cos ,sin P x x ,过点A 作直线AT 垂直于x 轴,交OP 所在直线于点T ,由=tan ATx OA,得=tan AT x ,所以()1,tan T x ,由图可知OPA TOA OPA S S S << 扇形,即21111sin 11tan 222x x x ⨯⨯<⨯⨯<⨯⨯,即sin tan <<x x x π02x ⎛⎫<< ⎪⎝⎭,所以ππsin 55>,ππtan 55<,故C 正确,D 错误;故选:BC11.关于函数()|ln |2||f x x =-,下列描述正确的有()A.()f x 在区间(1,2)上单调递增B.()y f x =的图象关于直线2x =对称C.若1212,()(),x x f x f x ≠=则124x x +=D.()f x 有且仅有两个零点【答案】ABD 【解析】【分析】作出函数()f x 的图象,由图象观察性质判断各选项.【详解】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .12.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若对任意(],x m ∈-∞,都有()89f x ≥-,则实数m 的值可以是()A.94B.73C.52D.83【答案】AB 【解析】【分析】因为(1)2()f x f x +=,可得()2(1)f x f x =-,分段求解析式,结合图象可得.【详解】解:因为(1)2()f x f x +=,()2(1)f x f x ∴=-,函数图象如下所示:(0x ∈ ,1]时,1()(1)[4f x x x =-∈-,0],(1x ∴∈,2]时,1(0x -∈,1],1()2(1)2(1)(2)[2f x f x x x =-=--∈-,0];(2x ∴∈,3]时,1(1x -∈,2],()2(1)4(2)(3)[1f x f x x x =-=--∈-,0],当(2x ∈,3]时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(x ∈-∞,]m ,都有8()9f x - ,则73m .故选:AB .【点睛】本题考查分段函数的性质的应用,解答的关键是根据函数的性质画出函数图象,数形结合即可得解;三、填空题:本题共4小题,每小题5分,共20分.13.函数()()21256f x log x x =-+-的单调减区间是______.【答案】522,⎛⎫ ⎪⎝⎭【解析】【分析】根据对数函数的定义域及复合函数单调性的判断即可求得单调递减区间.【详解】因为()()21256f x log x x =-+-所以2560x x -+->解得()2,3x ∈因为()12f x log x =为单调递减函数,所以由复合函数单调性判断可知应该取()256f x x x =-+-的单调递增区间,即5,2x ⎛⎫∈-∞ ⎪⎝⎭结合定义域可得函数()()21256f x log x x =-+-的单调减区间是522,⎛⎫⎪⎝⎭【点睛】本题考查了复合函数单调区间的求法,注意对数函数的真数大于0,属于基础题.14.已知0a >,0b >,且111a b +=,则1411a b +--的最小值为___.【答案】4【解析】【分析】由等式111a b +=可得出1a >,1b >以及1a b a =-,代入1411a b +--可得出()14141111a ab a +=+----,利用基本不等式可求得结果.【详解】0a > ,0b >,且111a b +=,得1a >,1b >以及1ab a =-,()14141414111111a a ab a a a ∴+=+=+-≥=------,当且仅当32a =时,等号成立,因此,1411a b +--的最小值为4.故答案为:4.【点睛】本题考查利用基本不等式求最值,解题时注意对定值条件进行化简变形,考查计算能力,属于中等题.15.函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,则k 的取值范围是_____;②若f (x )的值域为R ,则k 的取值范围是_____.【答案】①.[0,34)②.k 34≥【解析】【分析】(1)根据()f x 的定义域为R ,对k 分成0,0,0k k k =><三种情况分类讨论,结合判别式,求得k 的取值范围.(2)当()f x 值域为R 时,由00k >⎧⎨∆≥⎩求得k 的取值范围.【详解】函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,可得kx 2+4kx +3>0恒成立,当k =0时,3>0恒成立;当k >0,△<0,即16k 2﹣12k <0,解得0<k 34<;当k <0不等式不恒成立,综上可得k 的范围是[0,34);②若f (x )的值域为R ,可得y =kx 2+4kx +3取得一切正数,则k >0,△≥0,即16k 2﹣12k ≥0,解得k 34≥.故答案为:(1).[0,34)(2).k 34≥【点睛】本小题主要考查根据对数型复合函数的定义和值域求参数的取值范围,属于中档题.16.函数253sin cos 82y x a x a =+⋅+-在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是1,则=a __________.【答案】32【解析】【分析】令[]cos ,0,1x t t =∈,即求25218y t at a =-++-在[]0,1上的最大值,需要根据对称轴的位置进行分类讨论即可求出结果.【详解】22535sin cos cos cos 82812y x a x a x a x a =+⋅+-=-+⋅+-,令[]cos ,0,1x t t =∈,则25218y t at a =-++-,对称轴2at =,若02a ≤,即0a ≤时,25218y t at a =-++-在0=t 处取得最大值,即51821a -=,解得125a =,与0a ≤矛盾,故不合题意,舍去;若012a <<,即12a <<时,25218y t at a =-++-在2a t =处取得最大值,即25122821a a a a ⎛⎫-+⋅+-= ⎪⎝⎭,即225120a a +-=,解得4a =-或32a =,因为12a <<,所以32a =;若12a ≥,即2a ≥时,25218y t at a =-++-在1t =处取得最大值,即251=1821a a -++-,解得2013a =,与2a ≥矛盾,故不合题意,舍去;综上:32a =.故答案为:32.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知a ∈R ,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若1a =,求A B ⋂;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1){}2,1-(2)71,3⎡⎤⎢⎥⎣⎦【解析】【分析】(1)首先解一元二次不等式求出集合A ,再根据条件求出集合B ,最后根据交集的定义计算可得;(2)依题意可得B A ⊆,则问题转化为关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,结合二次函数的性质计算可得.【小问1详解】由2230x x --≤,即()()130x x +-≤,解得13x -≤≤,所以{}{}2230|13A x x x x x =--≤=-≤≤当1a =时{}{}2202,1B x x x =--==-,所以{}2,1A B =- 【小问2详解】因为A B A ⋃=,所以B A ⊆,关于x 的方程220x ax --=,因为280a ∆=+>,所以关于x 的方程220x ax --=必有两个不相等的实数根,依题意关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,所以()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为71,3⎡⎤⎢⎥⎣⎦.18.设集合{}12A x x =-≤≤,{}121B x m x m =-<<+.(1)若B A ⊆,求实数m 的取值范围;(2)若()R B A I ð中只有一个整数2-,求实数m 的取值范围.【答案】(1)(]1,20,2⎡⎤-∞-⎢⎥⎣⎦ ;(2)3,12⎛⎫-- ⎪⎝⎭.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆列出关于实数m 的不等式(组),解出即可得出实数m 的取值范围;(2)求出集合R A ð,由题意得知B ≠∅,且有1213122213m m m m -<+⎧⎪-≤-<-⎨⎪-<+≤⎩,解该不等式组即可得出实数m 的取值范围.【详解】(1)集合{}12A x x =-≤≤,{}121B x m x m =-<<+.①当B =∅时,121m m -≥+,解得2m ≤-,符合要求;②当B ≠∅时,若B A ⊆,121m m -<+,则12111212m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得102m ≤≤.综上,实数m 的取值范围是(]1,20,2⎡⎤-∞-⎢⎥⎣⎦;(2) 集合{}12A x x =-≤≤,{1R A x x ∴=<-ð或}2x >,若()B A R ð中只有一个整数2-,则必有B ≠∅,1213122213m m m m -<+⎧⎪∴-≤-<-⎨⎪-<+≤⎩,解得312m -<<-,因此,实数m 的取值范围是3,12⎛⎫-- ⎪⎝⎭.【点睛】本题考查利用集合的包含关系求参数的取值范围,同时也考查了利用交集与补集的混合运算求参数,解题时要结合题意列出不等式组进行求解,考查分析问题和解决问题的能力,属于中等题.19.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域.【答案】(1)3,22ππ;(2)331,122⎡-+⎢⎣⎦.【解析】【分析】(1)由函数的解析式结合偶函数的性质即可确定θ的值;(2)首先整理函数的解析式为()sin y a x b ωϕ=++的形式,然后确定其值域即可.【详解】(1)由题意结合函数的解析式可得:()()sin f x x θθ+=+,函数为偶函数,则当0x =时,()02k k Z πθπ+=+∈,即()2k k Z πθπ=+∈,结合[)0,2θ∈π可取0,1k =,相应的θ值为3,22ππ.(2)由函数的解析式可得:22sin sin 124y x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭1cos 21cos 26222x x ππ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=+11cos 2cos 2226x x ππ⎡⎤⎛⎫⎛⎫=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦111cos 2sin 2sin 2222x x x ⎛⎫=--- ⎪ ⎪⎝⎭1331cos 2sin 2222x x ⎛⎫=-- ⎪ ⎪⎝⎭31sin 226x π⎛⎫=+- ⎪⎝⎭.据此可得函数的值域为:1,122⎡-+⎢⎣⎦.【点睛】本题主要考查由三角函数的奇偶性确定参数值,三角函数值域的求解,三角函数式的整理变形等知识,意在考查学生的转化能力和计算求解能力.20.已知函数())2πcos 204f x x x ωωω⎛⎫=-++> ⎪⎝⎭的最小正周期是π.(1)求函数()y f x =的单调递增区间;(2)若对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,求m 的取值范围.【答案】(1)62ππ,π,Zπ3k k k ⎡⎤-+-+∈⎢⎥⎣⎦(2)2,0⎤-⎦【解析】【分析】(1)利用二倍角公式及两角和的余弦公式化简,再根据周期公式求出ω,即可得到函数解析式,最后根据余弦函数的性质求出单调递增区间;(2)由x 的取值范围求出π23x +的范围,即可求出()f x 的值域,由()22m f x m -≤≤+恒成立得到关于m 的不等式组,解得即可.【小问1详解】因为()2πcos 24f x x x ωω⎛⎫=-++ ⎪⎝⎭πcos 224x x ωω⎛⎫=+ ⎪⎝⎭πcos 222x x ωω⎛⎫=++ ⎪⎝⎭cos 22x xωω=132cos 2sin 222x x ωω⎛⎫=- ⎪ ⎪⎝⎭π2cos 23x ω⎛⎫=+ ⎪⎝⎭,又0ω>且函数的最小正周期是π,所以2ππ2T ω==,解得1ω=,所以()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭,令Z ππ2π22π,3k x k k -+≤+≤∈,解得2ππππ,Z 36k x k k ≤--+≤+∈,所以函数()y f x =的单调递增区间为62ππ,π,Z π3k k k ⎡⎤-+-+∈⎢⎥⎣⎦.【小问2详解】当π5π,1212x ⎡⎤∈-⎢⎣⎦,则ππ7π2,366x ⎡⎤+∈⎢⎥⎣⎦,所以πcos 21,32x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,则()f x ⎡∈-⎣,因为对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22f x m -≤-≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22m f x m -≤≤+,所以222m m ⎧+≥⎪⎨-≤-⎪⎩20m ≤≤,即m的取值范围为2,0⎤-⎦.21.已知函数()ln (0,e 2.71828e xaf x x a =->=L 为自然对数的底数).(1)当1a =时,判断函数()f x 的单调性和零点个数,并证明你的结论;(2)当[]1,e x ∈时,关于x 的不等式()2ln f x x a >-恒成立,求实数a 的取值范围.【答案】(1)函数()f x 的零点个数为1个,证明见解析(2)()e 1e,∞++【解析】【分析】(1)利用函数单调性证明,再利用零点存在性定理即可知零点个数.(2)将()2ln f x x a >-转化为ln ln e ln e ln a x x a x x -+-+>,构造函数()e xg x x =+,转化为ln ln a x x ->,即ln ln a x x >+,即()max ln ln a x x >+,求解即可.【小问1详解】函数()f x 的定义域为()0,∞+.当1a =时,函数()e1ln x f x x =-在()0,∞+上单调递减,证明如下:任取()12,0,x x ∈+∞,且12x x <,()()12121212211111ln ln ln ln e e e ex x x x f x f x x x x x -=--+=--211221e e ln e e x x x x x x -=+⋅∵120x x <<,∴21211,e e 0x x x x >->,21ln 0xx ∴>∴()()120f x f x ->,即()()12f x f x >.所以函数()e1ln x f x x =-在()0,∞+上单词递减.又1111(1)ln10,(e)ln e 10e e e ex x f f =-=>=-=-<∴()e 1ln xf x x =-在区间()1,e 上存在零点,且为唯一的零点.∴函数()f x 的零点个数为1个【小问2详解】()2ln f x x a >-可化为ln 2ln e xaa x x +>+.可化为ln e ln ln a x a x x x -+->+.可化为ln ln e ln e ln a x x a x x -+-+>.令()e xg x x =+,可知()e x g x x =+在R 单调递增,所以有ln ln a x x ->,即ln ln a x x>+令()ln h x x x =+,可知()ln h x x x =+在(0,)+∞上单调递增.即()ln h x x x =+在[]1,e 上单调递增,max ()(e)ln e e 1eh x h ==+=+e 1max ln ()e 1ln e a h x +∴>=+=,e 1e a +∴>所以实数a 的取值范围是()e 1e,∞++.【点睛】方法点睛:本题考查不等式的恒成立问题,不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图像在()y g x =上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.22.已知函数2()|2|f x x x x a =+-,其中a 为实数.(Ⅰ)当1a =-时,求函数()f x 的最小值;(Ⅱ)若()f x 在[1,1]-上为增函数,求实数a 的取值范围;(Ⅲ)对于给定的负数a ,若存在两个不相等的实数12,x x (12x x <且20x ≠)使得12()()f x f x =,求112x x x +的取值范围.【答案】(Ⅰ)12-(Ⅱ)2a ≤-或0a >;(Ⅲ)见解析【解析】【分析】(Ⅰ)由题可知2222,2()22,2x ax x af x x x x a ax x a⎧-≥=+-=⎨<⎩当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩,分别讨论该函数在各段上的最小值和区间端点值,进而求出在整个定义域上的最小值;(Ⅱ)因为()f x 在[1,1]-上为增函数,分0a >,0a =,0a =三种情况讨论即可(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=,分122aa x ≤<,12x a <两种情况具体讨论即可.【详解】解:2222,2()22,2x ax x a f x x x x a ax x a⎧-≥=+-=⎨<⎩(Ⅰ)当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩所以当12x =-时()()2222f x x x x +=≥-有最小值为1122f ⎛⎫-=- ⎪⎝⎭;当2x =-时,由()()22f x x x =-<-得()1242f -=>-,所以当1a =-时,函数()f x 的最小值为12-(Ⅱ)因为()f x 在[1,1]-上为增函数,若0a >,则()f x 在R 上为增函数,符合题意;若0a =,不合题意;若a<0,则12a≤-,从而2a ≤-综上,实数a 的取值范围为2a ≤-或0a >.(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=1、若122a a x ≤<,则12x x a +=,由20x ≠知22a x a <≤-且20x ≠所以121222221x a x a x a x x a x x x -+=+-=--+令()1ag x x a x=--+,则()g x 在,[上为增函数,在)+∞,(-∞上为减函数(1)当4a ≤-时,2a≤a ->,则()g x 在,[上为增函数,在]a -,[2a上为减函数从而当22ax a <<-且20x ≠所以2()1g x a ≥-+或2()1g x a≤--+(2)当41a -<<-时,2a>且a ->,则()g x 在,[,0)2a上为增函数,在]a -上为减函数从而当22ax a <<-且20x ≠所以2()12ag x >+或2()1g x a ≤-+(3)当10a -≤<时,2a >且a -<,则()g x 在(0,]a -,[,0)2a上为增函数,从而当22ax a <<-且20x ≠所以2()12ag x >+或2()22g x a <-2、若12x a <,则2122222ax x ax =-,2212x x x a=-且2x a>-第21页/共21页2222222211222(,22)(11)1x x x x a x a a x a x x x x a+=+=--∞-∈+---因为221a a-≤-+综上所述,当4a ≤-时,112x x x +的取值范围为(,1]1,)a a -∞--+-++∞ ;当41a -<<-时,112x x x +的取值范围为(,1](1,)2a a +-∞--++∞ ;当10a -≤<时,112x x x +的取值范围为(,22)(1,)2a a -∞-++∞ .【点睛】本题考查函数的综合应用,包括求最值,单调性,分类讨论思想等,属于偏难题目.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同学们:如果高考是X轴,那寒假中的我们应该做正弦函数,围轴转动,有收有放,认真踏实的度过这个假期的每一天。
谁拥有假期,谁拥有自主,谁就拥有未来。
不论我们前面是怎么样的随机变量,不论未来有多大的方差,期末的波谷都过去了,三年后六月的波峰一定属于你!请相信:一切皆有可能!
【1】
今天是假期的第一天,万事开头难,希望你端正好自己的态度,把放假看淡一些,因为此刻对你来说没有什么比学习更重要的。
☆
一、选择题(本大题共5小题,共25.0分)
1.下列角与终边相同的角为
A. B. C. D.
2.已知,则等于
A. B. C. D.
3.设向量则与垂直的向量可以是
A. B. C. D.
4.若向量与向量满足:,且当时,的最小值为,则向量在向量方向
上的投影为
A. 1或2
B. 2
C. 1或3
D. 3
二、填空题(本大题共3小题,共15.0分)
5.已知向量,若,则的值为______ .
6.已知单位向量的夹角为,则向量与的夹角为______ .
三、解答题(本大题共2小题,共24.0分)
7.已知,函数.
求的对称轴方程;
求使成立的x的取值集合;
若对任意实数,不等式恒成立,求实数m的取值范围.
【2】
今天是假期的第二天,已经有了昨天开的好头,希望你坚持下来,把我们的寒假生活当作循环小数,不要当作分母为零的无意义分数。
☆
一、选择题(本大题共5小题,共25.0分)
1.已知,则与向量共线的单位向量为
A. 或
B. 或
C. 或
D. 或
2.已知向量若与垂直,则
A. 1
B.
C. 2
D. 4
3.若,且为第三象限角,则的值等于
A. B. C. D.
4.已知角且,则的值为
A. B. C. D.
二、填空题(本大题共3小题,共15.0分)
5.已知,且,则点P的坐标为______ .
6.已知,则的值为______ .
三、解答题(本大题共2小题,共24.0分)
7.已知.
求的最小正周期及单调递减区间;
求函数在区间上的最大值和最小值.
【3】
今天是除夕,这个特殊的日子是最能体现你定力的时候,在玩和学习之间,你是否开始挣扎了?希望你今天提前完成你的学习任务,晚上可以放松的去欣赏春晚。
如果一天都没学习,你一定会后悔的!
☆
一、选择题(本大题共5小题,共25.0分)
1.函数的图象的一条对称轴方程是
A. B. C. D.
2.将函数的图象向左平移个单位,得到函数的图象,则下列关于函数的说法正确的是
A. 奇函数
B. 周期是
C. 关于直线对称
D. 关于点对称
3.已知,则向量与的夹角是
A. B. C. D.
4.若,并且、均为锐角且,则的值为
A. B. C. D.
二、填空题(本大题共3小题,共15.0分)
5.的部分图象如图
所示,则函数的解析式为______
6.将函数的图象向左平移m个单位,若所得图象对应的函数为偶函数,则m的最小值是______ .
三、解答题(本大题共2小题,共24.0分)
7.已知函数.
化简并求的最小正周期;
求在区间上的最大值和最小值.
【1月28日】
今天是放假的第四天,也是鸡年的第一天,祝愿你及家人新年快乐。
今天,你可以放假一天,利用这天向关心你的亲人们拜年,感恩他们对你的爱!
在这一年,希望你能闻鸡起舞,我们将与你继续一起奋斗;
在这一年,愿你学会金鸡独立,我们将陪你昂首走进高考的考场;
在这一年,祝愿你能鹤立鸡群,我们将看到你在高考场中傲视群雄;
在这一年,收到你的金鸡报晓,我们将与你共同分享你的高考硕果!
孩子们,也许高三很累,也许高三很苦,但我想告诉你:经历高三,也是一种幸福。
高考还有100多天,这个时候最重要的就是相信自己,培养自己的自信心,不管面对的是什么困难,都要勇于克服,不能当逃兵。
既要有梦想,还要敢于追梦!梦想翱翔,才能翱翔!
【4】
今天是放假的第五天,也许别人还沉浸在新年的欢乐中,但今天的你必须投入到新的学习之中了,此
时年级的学霸们早已投入到学习中了,他们都还在努力,你还在干什么?
☆
一、选择题(本大题共5小题,共25.0分)
1.如图,在平行四边形ABCD中,M、N分别为AB、AD上的点,且,连接AC、MN
交于P点,若,则的值为
A. B. C. D.
2.已知是锐角,,且,则为
A. B. C. 或 D. 或
3.若,则实数m的取值范围是
A. B. C. D.
4.若,则
A. B. C. D.
二、填空题(本大题共3小题,共15.0分)
5.已知,且与的夹角为锐角,则x的取值范围为______ .
6.已知向量,则等于______ .
三、解答题(本大题共2小题,共24.0分)
7.已知函数
求函数的单调递减区间.求函数的最大值,并求取得最大值时的x的集合.
若,求的值.
【5】
今天是放假的第六天,假期已经过半了,你的寒假学习任务过半了吗?你做的数学练习应该不少
吧?如果不是,那就赶紧找找原因,不要放松,要抓紧一分一秒,因为你的对手此刻正在努力学习!
☆
一、选择题(本大题共5小题,共25.0分)
1.在中,若点D满足,则
A. B. C. D.
2.在单位圆中,面积为1的扇形所对的弧长为
A. 1
B. 2
C. 3
D. 4
3.已知,且,则的值为
A. B. C. D.
4.若,则的值为
A. B. C. D.
二、填空题(本大题共3小题,共15.0分)
5.已知向量,若,其中,则______.
6.已知向量满足与的夹角为,则______.
三、解答题(本大题共2小题,共12.0分)
7.设.
Ⅰ求的单调递增区间;
Ⅱ把的图象上所有点的横坐标伸长到原来的2倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.
【6】
今天是放假的第七天,你可能有点想放松了,但这时候我要告诉你:此时的放松就是对自己的放纵!不论怎么样,咬紧牙关坚持下去!
☆
一、选择题(本大题共5小题,共25.0分)
1.已知,则的值是
A. B. C. D.
2.已知,则点位于
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3.最小值为
A. B. 0 C. 1 D.
4.若是锐角,则
A. B. C. D.
二、填空题(本大题共3小题,共15.0分)
5.已知向量,若,则与的夹角为______ .
6.已知与的夹角为,则在方向上的投影为______ .
三、解答题(本大题共2小题,共24.0分)
7.已知
求的值;
求的值.
【7】
今天是放假的第八天,你还有什么理由不坚持学习呢?记住一切原因都只是你懒惰的借口!想成功,就不要给自己找任何借口!其实很多时候,我们是自己把自己打败的。
☆
一、选择题(本大题共5小题,共25.0分)
1.若为锐角,,则的值为。