最新初中数学有理数易错题汇编及答案

合集下载

(易错题精选)初中数学有理数难题汇编附解析

(易错题精选)初中数学有理数难题汇编附解析

(易错题精选)初中数学有理数难题汇编附解析一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果. 【详解】2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.已知a b >,下列结论正确的是( ) A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a <0,故B 不符合题意;C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.20.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】 解:∵235280x y x y +--+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.。

(完整版)有理数易错题汇总答案

(完整版)有理数易错题汇总答案

有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______;3±此题用符号表示:已知,3=x 则x=_______;3±,5=-x 则x=_______;5± (2)绝对值不大于4的负整数是________;-1,-2,-3 (3)绝对值小于4.5而大于3的整数是________.4±(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;5±(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________; 4,-2(6) 平方得412的数是____;23±此题用符号表示:已知,4122=x 则x=_______;23± (7)若|a|=|b|,则a,b 的关系是________;a=b,或a=-b (8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值. a=4,b=-2时a-b=6,a=4,b=2时为2二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a_____<___-a ;a --是一个____负____数;(2)已知,x x -=则x 满足__0≤x ______;若,x x =则x 满足___0≥x _____;若x=-x, x 满足______x=0__;若=-<2,2a a 化简____ ;2-a正数0 负数(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( A )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

初中数学有理数易错题汇编含答案

初中数学有理数易错题汇编含答案

初中数学有理数易错题汇编含答案一、选择题1.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.2.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4 【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可. 【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.下列各数中,最大的数是( )A .12-B .14C .0D .-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】 112024-<-<<, 则最大的数是14, 故选B .【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C.【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.13.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的14.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若2(21)12a a -=-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】 根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.16.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.17.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.18.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .19.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.20.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1B .1C .-1D .0【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.。

初中数学有理数易错题汇编及答案解析

初中数学有理数易错题汇编及答案解析

初中数学有理数易错题汇编及答案解析一、选择题1.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2. 故选:C.【点睛】本题考查数轴的知识点,有两个答案.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.4.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.5.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.6.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.7.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a和数b的两点之间的距离为6∴6a b -= 解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.下列各数中,最大的数是( )A .12-B .14C .0D .-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<, 则最大的数是14, 故选B .【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.13.下列各组数中,互为相反数的组是( )A .2-与()22- B .2-与38- C .12-与2 D .2-与2 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2与()22-=2,符合相反数的定义,故选项正确;B 、-2与38-=-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.【详解】A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.15.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )A .a +bB .a ﹣bC .|a +b |D .|a ﹣b | 【答案】D【解析】【分析】根据数轴确定出a 是负数,b 是正数,并且b 的绝对值大于a 的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b ,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b ,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.16.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.17.下列运算正确的是( )A 4 =-2B .|﹣3|=3C 4=± 2D 39【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.18.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .19.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.20.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.。

(易错题精选)初中数学有理数易错题汇编及答案

(易错题精选)初中数学有理数易错题汇编及答案

(易错题优选)初中数学有理数易错题汇编及答案一、选择题1.方程 |2x+1|=7的解是()A. x=3B. x=3 或 x=﹣3C. x=3 或 x=﹣ 4D. x=﹣ 4【答案】 C【分析】【剖析】依据绝对值的意义,将原方程转变为两个一元一次方程后求解.【详解】解:由绝对值的意义,把方程2x+1=7 变形为:2x+ 1= 7 或 2x+1=- 7,解得 x= 3 或 x=- 4应选 C.【点睛】本题考察了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是依据绝对值的意义,去除绝对值后再解方程.2.以下四个数中,是正整数的是()1 A.﹣ 2B.﹣ 1C.1D.2【答案】 C【分析】【剖析】正整数是指既是正数又是整数,由此即可判断求解.【详解】A、﹣ 2 是负整数,应选项错误;B、﹣ 1 是负整数,应选项错误;C、 1 是正整数,应选项正确;1D、不是正整数,应选项错误.2应选: C.【点睛】考察正整数观点,解题主要掌握既是正数仍是整数两个特色.3.1的绝对值是 () 6A.﹣ 6B. 611 C.﹣D.66【答案】 D【分析】【剖析】利用的定解答即可.【解】1的是1,66故 D.【点睛】本考了得定,理解定是解的关.4.- 6 的是()A. -6B. 611 C. -D.66【答案】 B【分析】【剖析】在数上,表示一个数的点到原点的距离叫做个数的.【解】数的等于它的相反数,因此-6 的是 6故 B【点睛】考点: .5. 3 的是()A. 3B. 311 C. -D.33【答案】 B【分析】【剖析】依据数的是它的相反数,可得出答案.【解】依据的性得:|-3|=3 .故 B.【点睛】本考的性,需要掌握非数的是它自己,数的是它的相反数.6.如,在数上,点 A 表示 1,将点 A 沿数做以下移,第一次将点 A 向左移3个位度抵达点A1,第二次将点A1向右移 6 个位度抵达点A2,第三次将点A2向左移9 个位度抵达点A3,⋯依照种移律行下去,第51 次移到点A51,那么点 A51所表示的数()A. 74B. 77C. 80D. 83【答案】B【分析】【剖析】序号奇数的点在点 A 的左,各点所表示的数挨次减少3,序号偶数的点在点 A 的右,各点所表示的数挨次增添 3 ,即可解答.【解】解:第一次点 A 向左移3个位度至点A1, A1表示的数,1-3=-2 ;第 2 次从点 A1 向右移 6 个位度至点A2, A2表示的数- 2+6=4;第 3次从点 A2向左移9 个位度至点A3, A3表示的数4-9=-5 ;第 4次从点 A3向右移12个位度至点A4, A4表示的数- 5+12=7;第 5次从点 A4向左移15个位度至点A5, A5表示的数7-15=-8;⋯;点 A51表示:51131263178 1 77,2故 B.7.在- 3,- 1, 0, 3 四个数中,比- 2 小的数是()A.- 3B.- 1C. 0D. 3【答案】 A【分析】【剖析】依据两个数比大小,大的数反而小,正数比数大,逐一判断与-2 的大小关系即可.【解】解:∵-32 1 03∴比- 2 小的数是 -3故: A【点睛】本考有理数的大小比,掌握数比大小的方法是关.28.在–2, +3.5,0,,–0.7, 11 中.分数有( )3A. l 个B.2 个C.3 个D.4 个【答案】B依据负数的定义先选出负数,再选出分数即可.解:负分数是﹣2,﹣ 0.7,共 2 个.3应选 B.9.数轴上表示数 a 和数 b 的两点之间的距离为6,若 a 的相反数为2,则 b 为()A.4B.4C.8D.4或8【答案】 D【分析】【剖析】依据相反数的性质求出 a 的值,再依据两点距离公式求出 b 的值即可.【详解】∵a 的相反数为2∴a 2 0解得 a2∵数轴上表示数 a 和数 b 的两点之间的距离为6∴a b 6解得 b 4 或8故答案为: D.【点睛】本题考察了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的重点.10. 2019 的倒数的相反数是()A. -20191C.1B.D. 2019 20192019【答案】 B【分析】【剖析】先求 2019 的倒数,再求倒数的相反数即可.【详解】1,2019 的倒数是20191的相反数为1,20192019因此 2019 的倒数的相反数是1,2019应选 B.本题考察了倒数和相反数,娴熟掌握倒数和相反数的求法是解题的重点.a b c abc11.已知 a、 b、c 都是不等于0 的数,求a b c的全部可能的值有 ()abc个.A.1B. 2C. 3D. 4【答案】 C【分析】【剖析】依据 a、 b、 c 的符号分状况议论,再依据绝对值运算进行化简即可得.【详解】由题意,分以下四种状况:①当 a、b、c 全为正数时,原式1 1 114②当 a、b、c 中两个正数、一个负数时,原式11110③当 a、b、c 中一个正数、两个负数时,原式11110④当 a、b、c 全为负数时,原式1 1 114综上所述,所求式子的全部可能的值有 3 个应选: C.【点睛】本题考察了绝对值运算,依照题意,正确分状况议论是解题重点.12.7 的绝对值是()A.11D. 7 B.C. 777【答案】 C【分析】【剖析】负数的绝对值为这个数的相反数.【详解】|-7|=7, 即答案选 C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的重点.13. 2 的相反数是()11 A.2B.2C.D.22【答案】 B【分析】依据相反数的性质可得结果.【详解】因为 -2+2=0,因此﹣ 2 的相反数是2,应选 B.【点睛】本题考察求相反数,熟记相反数的性质是解题的重点.14.已知点c|+b7P 的坐标为( a, b)( a> 0),点 Q 的坐标为( c, 3),且 |a ﹣=0,将线段PQ 向右平移 a 个单位长度,其扫过的面积为20,那么a+b+c 的值为()A.12B. 15C. 17D. 20【答案】 C【分析】【剖析】由非负数的性质获得a=c, b=7, P( a, 7),故有PQ∥ y 轴, PQ=7-3=4,因为其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且 | a -c|++ b 7 =0,∴a=c, b=7,∴P( a, 7), PQ∥ y 轴,∴P Q=7-3=4,∴将线段PQ 向右平移 a 个单位长度,其扫过的图形是边长为 a 和 4 的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,应选 C.【点睛】本题主要考察了非负数的性质,坐标的平移,矩形的性质,能依据点的坐标判断出 PQ∥y 轴,从而求得 PQ 是解题的重点.15.有理数a,b在数轴上的地点以下图,以下说法正确的选项是()A.a b 0B.a b 0C.ab0D.b a 【答案】 D【剖析】由图可判断a、 b 的正负性, a、 b 的绝对值的大小,即可解答.【详解】依据数轴可知:-2<a< -1,0< b< 1,∴a+b< 0, |a| >|b| , ab<0, a-b< 0.因此只有选项 D 建立.应选: D.【点睛】本题考察了数轴的相关知识,利用数形联合思想,能够解决此类问题.数轴上,原点左侧的点表示的数是负数,原点右侧的点表示的数是正数.16.实数a,b在数轴上对应点的地点以下图,则以下结论正确的选项是(). a b. a b. a b 0. a b 0A B C D【答案】 A【分析】【剖析】依据数轴得 a<0<b,且a b ,再依据实数的加法法例,减法法例挨次判断即可.【详解】由数轴得 a<0<b,且a b ,∴a+b<0, a-b<0,故 A 正确, B、 C、D 错误,应选: A.【点睛】本题考察数轴,实数的大小比较,实数的绝对值的性质,加法法例,减法法例.17.以下各数中,绝对值最大的数是()A.1B.﹣ 1C. 3.14D.π【答案】D【分析】剖析:先求出每个数的绝对值,再依据实数的大小比较法例比较即可.详解:∵ 1、 -1、 3.14、π的绝对值挨次为1、1、 3.14、π,∴绝对值最大的数是π,应选 D.点睛:本题考察了实数的大小比较和绝对值,能比较实数的大小是解本题的重点.18. 以下各组数中互为相反数的一组是( )A .3 与1 C .(-1) 2与 1D . -4 与 (-2) 2B . 2 与|-2|3【答案】 D【分析】考点:实数的性质.专题:计算题.剖析:第一化简,而后依据互为相反数的定义即可判断选择项. 解答:解: A 、两数数值不一样,不可以互为相反数,应选项错误; B 、 2=|-2| ,两数相等,不可以互为相反数,应选项错误. C 、( -1) 2=1,两数相等;不可以互为相反数,应选项错误; D 、( -2)2 =4,-4 与 4 互为相反数,应选项正确; 应选 D .评论:本题主要考察相反数定义:互为相反数的两个数相加等于0.19. 1 是 0.01 的算术平方根, ③ 错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④ 错误应选:A【点睛】本题考察观点的理解,解题重点是注意观点的限制性,如④ 中,一定有限制条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20. 已知直角三角形两边长 x 、y 知足 x 24( y 2) 21 0 ,则第三边长为 ( )A .B . 13C . 5或 13D .,5或 13【答案】 D【分析】【剖析】【详解】解:∵ |x 2-4| ≥0,( y2)2 1 ≥0,∴ x 2-4=0, ( y 2) 2 1=0,∴x=2 或 -2(舍去), y=2 或 3,分 3 种状况解答:① 当两直角边是 2 时,三角形是直角三角形,则斜边的长为:22222 2;② 当 2, 3 均为直角边时,斜边为223213;③ 当 2 为向来角边, 3 为斜边时,则第三边是直角,长是225 .3 2应选 D .考点: 1.非负数的性质; 2.勾股定理.。

(易错题精选)初中数学有理数的运算难题汇编含解析

(易错题精选)初中数学有理数的运算难题汇编含解析

(易错题精选)初中数学有理数的运算难题汇编含解析一、选择题1.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为()A.1269×108B.1.269×108C.1.269×1010D.1.269×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】1269亿=1.269×1011故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题关键.2.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.3.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.4.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( )A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C .【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.故选C .考点:科学记数法—表示较大的数.5.2018年全国高考报名总人数是975万人,用科学记数法表示为( )A .30.97510⨯人B .29.7510⨯人C .69.7510⨯人D .70.97510⨯人【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是69.7510⨯;B.错误,应该是69.7510⨯;C.正确;D. 错误,应该是6⨯.综上,答案选C.9.7510【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a<10,n表示整数,熟练掌握科学计数法的定义是本题解题关键.6.清代·袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10-5B.8.4×10-6C.84×10-7D.8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】7.我县人口约为530060人,用科学记数法可表示为( )A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.13.据资料显示,地球的海洋面积约为36000万平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( ).A .73610⨯B .83.610⨯C .90.3610⨯D .43.610⨯【答案】B【解析】【分析】先将36000万平方千米化为360000000平方千米,再根据科学计数法的概念进行表示,即可得到答案.【详解】36000万平方千米=360000000平方千米,将360000000用科学记数法表示为83.610⨯,则用科学记数法表示地球海洋面积约为83.610⨯平方千米,故选:B .【点睛】本题考查科学计数法.科学记数法的形式为:10n a ⨯,其中110a ≤≤,n 为整数.14.据报道,2019年元旦小长假云南省红河州共接待游客约为7038000人,将7038000用科学记数法表示为( )A .570.3810⨯B .67.03810-⨯C .67.03810⨯D .60.703810⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将7038000用科学记数法表示为:7.038×106.故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.2018年4月10日,“2018博鳌亚洲论坛”在我国海南省博鳌小镇如期举行,据统计,在刚刚过去的一年,亚洲经济总量为29.6万亿美元,高居全球七大洲之首.数据“29.6万亿”用科学记数法可表示为( )A .2.96×108B .2.96×1013C .2.96×1012D .29.6×1012【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。

有理数易错题

有理数易错题

1、下列说法正确的是
A. 几个非零有理数相乘,当因数有奇数个时,积为负
B. 几个非零有理数相乘,当正因数有奇数个时,积为负
C. 几个非零有理数相乘,当负因数有奇数个时,积为负
D. 几个非零有理数相乘,当积为负数时,负因数有偶数个(答案)C
2、如果ab > 0,a + b < 0,那么a、b这两个数()
A. 都是正数
B. 都是负数
C. 一个为正数,一个为负数
D. 以上说法都不对
(答案)B
3、下列比较大小正确的是 ( )
A. -(-9) < +(-9)
B. -|-9| > -(+9)
C. -(-9) > +|-9|
D. -|-9| = -(+9)
(答案)D
4、下列说法中正确的是 ( )
A. 有理数就是有限小数和无限小数的统称
B. 数轴上的点表示的数都是有理数
C. 一个有理数不是整数就是分数
D. 正分数、零、负分数统称为分数
(答案)C
5、下列运算正确的是 ( )
A. 3a + 2b = 5ab
B. 5a2 - 2b2 = 3
C. 7a + a = 7a2
D. (x - 1)2 = x2 + 1 - 2x
(答案)D
6、下列说法正确的是 ( )
A. 最大的负数是 -1
B. 有理数分为正数和负数
C. 互为相反数的两个数的绝对值相等
D. 两数比较,绝对值大的反而小
(答案)C
7、若 |x - 1| + (y + 3)2 = 0,则 5x2 - 4(x2 - 3y) = _______.
A. 14
B. 23
C. -14
D. 36
(答案)B。

有理数及其运算(易错题归纳)(解析版)—2024-2025学年七年级数学上册单元速记巧练(北师大版)

有理数及其运算(易错题归纳)(解析版)—2024-2025学年七年级数学上册单元速记巧练(北师大版)

有理数及其运算(易错题归纳)易错点一认为带“+”的数是正数,带“_”的数是负数正数前面的“+”可有可无,但负数前面一定带“_”1.下列各数中:5,―5,―3,0,―25.8,+2,负数有()7A.1个B.2个C.3个D.4个2.在15,―0.23,0,5,―0.65,2,―,316%这几个数中,非负数的个数是()5A.4个B.5个C.6个D.7个【答案】B【分析】本题考查非负数的识别,熟练掌握其定义是解题的关键.非负数即0和正数,据此进行判断即可.【详解】解:15,0,5,2,316%是非负数,共5个,故选:B.易错点二画数轴时,容易缺少某个要素数轴必须具备三个要素:原点、正方向和单位长度。

在画数轴时易出现的错误有:(1)缺少正方向;(2)缺少原点;(3)单位长度不统一3.下列图形中是数轴的是( )A.B.C.D.【答案】D【分析】本题考查了数轴的定义,掌握数轴的定义是解题的关键,数轴是规定了原点、正方向和单位长度的直线.【详解】解:A、没有正方向,不是数轴,故本选项不符合题意;B、负半轴的数据标注错误,不是数轴,故本选项不符合题意;C、单位长度不等,不是数轴,故本选项不符合题意;D、符合数轴的定义,是数轴,故本选项符合题意;故选:D.4.如图是一些同学在作业中所画的数轴,其中,画图正确的是( )A.B.C.D.5.下列四个选项中,所画数轴正确的是()A.B.C.D.【答案】D【分析】本题考查数轴定义,熟记数轴三要素:原点、单位长度和正方向,逐项验证即可得到答案,熟记构成数轴的三要素是解决问题的关键.【详解】解:A、没有原点,所画数轴错误,不符合题意;B、单位长度不统一,所画数轴错误,不符合题意;C、数轴上的点表示的数必须是左边小、右边大,所画数轴错误,不符合题意;D、所画数轴正确,符合题意;故选:D.6.如果两数和为正数、下列说法中正确的是()A.两个加数都是正数B.一个加数是正数,另一个加数是负数C.两个加数的差是正数D.绝对值数较大的加数必是正数【答案】D【分析】根据有理数的加法计算法则可知,两数相加时,符号取绝对值大的数的符号,因为结果为正数,则其中大的那个加数的符号为正,据此可得答案.【详解】解:∵两数和为正数,∴绝对值大的数的符号为正,故选D.【点睛】本题主要考查了有理数的加法计算法则,熟知两数相加时,符号取绝对值大的数的符号是解题的关键.7.如果两个数的和是正数,那么( )A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值D.以上皆有可能【答案】D【分析】根据有理数的加法法则分析判断即可.【详解】解:如果两个数的和是正数,可能这两个加数都是正数,如1+1=2;一个数为正数,另一个加数为0,两个数的和是正数,如0+2=2;一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值,则两个数的和为正数,如―1+3=2.故选:D.【点睛】本题主要考查了有理数的加法法则,理解并熟练掌握有理数的加法法则是解题关键.易错点三对绝对值意义理解不透,认为只有正数的绝对值是它本身正数和0的绝对值是它本身,负数的绝对值是它的相反数8.当|x|=―x时,则x一定是( )A.负数B.正数C.负数或0D.0【答案】C【分析】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=―a.根据绝对值的意义得到x≤0.【详解】解:∵|x|=―x,∴x≤0.故选:C.9.已知a=―5,|a|=|b|,则b=()A.+5B.―5C.0D.+5或―5易错点四已知一个数的绝对值求这个数的时,容易漏掉其中一个互为相反数的两个数的绝对值相等,是同一个数10.如果|a|=7,|b|=5,a、b异号.试求a―b的值为( )A.2或―2B.―12或―2C.2或12D.12或―12【答案】D【分析】本题考查求代数式的值,绝对值,熟练掌握以上知识是解题的关键.先根据绝对值的性质求出a与b的值,再代入进行计算即可.【详解】解:∵|a|=7,|b|=5,a、b异号,∴a=7,b=―5或a=―7,b=5,∴a―b=7―(―5)=12或a―b=―7―5=―12.故选:D.11.一个数的绝对值等于34,则这个数是()A.34B.―34C.±34D.±43易错点五在进行有理数加法运算时,容易忽略符号在进行有理数加法运算时,可分为两步:1.确定符号;2.进行运算12.将5―(+6)―(―7)+(―8)写成省略正号和括号的形式,正确的是()A.5―6+7―8B.5―6―7―8C.5―6+7+8D.5―6―7+813.计算:(1)(+7)+(―6)+(―7);(2)13+(―12)+17+(―18);(3)++52+(4)(―20)+379+20+(5)(―3.75)+2+―(6)5.6+(―0.9)+4.4+(―8.1).【答案】(1)―6(2)0(3)0(4)314.用适当的方法计算:(1)0.34+(―7.6)+(―0.8)+(―0.4)+0.46;(2)(―18.35)+(+6.15)+(―3.65)+(―18.15).【答案】(1)―8(2)―34【分析】本题考查了有理数的加法,解题的关键是掌握有理数的加法法则.(1)利用结合律简便计算法计算;(2)利用结合律简便计算法计算.【详解】(1)解:0.34+(―7.6)+(―0.8)+(―0.4)+0.46=(0.34+0.46)+(―0.8)+[(―0.4)+(―7.6)]=0.8+(―0.8)+(―8)=―8;(2)(―18.35)+(+6.15)+(―3.65)+(―18.15)=(―18.35)+(―3.65)+[(―18.15)+6.15]=―22+(―12)=―34.易错点六认为两数之和一定大于每一个加数两正数相加时,两数之和一定大于每一个加数;但是,两有理数相加数之和不一定大于每一个加数。

初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析一、选择题1.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.已知235280x y x y +-+-+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0【答案】C【解析】【分析】根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】 解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.8.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的11.已知a 、b 、c 都是不等于0的数,求abcabca b c abc +++的所有可能的值有()个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.13.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3. 故选:A . 【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.。

最新初中数学有理数易错题汇编及答案解析

最新初中数学有理数易错题汇编及答案解析

最新初中数学有理数易错题汇编及答案解析一、选择题1.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的2.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.3.下列四个数中,是正整数的是( )A.﹣2 B.﹣1 C.1 D.1 2【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、1是正整数,故选项正确;D、12不是正整数,故选项错误.故选:C.【点睛】考查正整数概念,解题主要把握既是正数还是整数两个特点.4.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.5.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a ,b 的中间,如图,由图可得:,,,,,故选项A 错误,故选:A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.6.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B ()22a a -=()2a -2a -B 正确;C 、3 a 3a -C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.7.﹣3的绝对值是( )A .﹣3B .3C .-13D .13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C 【解析】 【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.12.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.13.2(21)12a a-=-,则a的取值范围是()A.12a≥B.12a>C.12a≤D.无解【答案】C【解析】【分析】2(21)a-=|2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到2a-1≤0,然后解不等式即可.=|2a-1|,∴|2a-1|=1-2a,∴2a-1≤0,∴12a≤.故选:C.【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.14.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】解:由绝对值的意义,把方程217x+=变形为:2x+1=7或2x+1=-7,解得x=3或x=-4故选C.【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.15.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.16.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项. 解答:解:A 、两数数值不同,不能互为相反数,故选项错误; B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确; 故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <,故D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.。

最新 有理数易错题(Word版 含答案)

最新 有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.3.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.4.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

(易错题精选)初中数学有理数全集汇编附答案解析

(易错题精选)初中数学有理数全集汇编附答案解析

(易错题精选)初中数学有理数全集汇编附答案解析一、选择题1.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b +-=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.2.如图,a 、b 在数轴上的位置如图,则下列各式正确的是( )A .ab >0B .a ﹣b >0C .a+b >0D .﹣b <a【答案】B【解析】解:A 、由图可得:a >0,b <0,且﹣b >a ,a >b∴ab <0,故本选项错误;B 、由图可得:a >0,b <0,a ﹣b >0,且a >b∴a+b <0,故本选项正确;C 、由图可得:a >0,b <0,a ﹣b >0,且﹣b >a∴a+b <0;D 、由图可得:﹣b >a ,故本选项错误.故选B .3.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零 【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;3=, 故错误;D. ()66=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.7.若︱2a ︱=-2a ,则a 一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.在-3,-1,0,3这四个数中,比-2小的数是()A.-3 B.-1 C.0 D.3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】<-<-<<解:∵-32103∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.9.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.如图所示,数轴上点P所表示的数可能是()A.30B.15C.10D.8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<4,即9<P<16∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.11.下列各组数中互为相反数的一组是()A.3与13B.2与|-2| C.(-1) 2与1 D.-4与(-2) 2【答案】D【解析】考点:实数的性质.专题:计算题.分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A、两数数值不同,不能互为相反数,故选项错误;B、2=|-2|,两数相等,不能互为相反数,故选项错误.C、(-1)2=1,两数相等;不能互为相反数,故选项错误;D、(-2)2=4,-4与4互为相反数,故选项正确;故选D.点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.12.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.13.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 14.2019的倒数的相反数是()A.-2019 B.12019C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.15.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.16.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】 本题考查了绝对值的定义.17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A 【解析】 【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.19.下列各数中,绝对值最大的数是( )A.1 B.﹣1 C.3.14 D.π【答案】D【解析】分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,∴绝对值最大的数是π,故选D.点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.20.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.。

最新初中数学有理数易错题汇编附答案(1)

最新初中数学有理数易错题汇编附答案(1)

最新初中数学有理数易错题汇编附答案(1)一、选择题1.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n﹣2)2互为相反数,∴|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得m=﹣3,n=2,所以,m n=(﹣3)2=9.故选C.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.4.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】 解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 60︒=()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.5.16的绝对值是( ) A .﹣6B .6C .﹣16D .16【答案】D【解析】【分析】利用绝对值的定义解答即可.【详解】16的绝对值是16, 故选D .【点睛】本题考查了绝对值得定义,理解定义是解题的关键.6.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.7.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】 解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.8.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.13.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.【详解】A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.14.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.15.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.17.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010- 【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值. 【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.如图所示,数轴上点P 所表示的数可能是( )A 30B 15C 10D 8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<4P∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.。

初中数学有理数的运算易错题汇编含答案

初中数学有理数的运算易错题汇编含答案
【答案】C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
【详解】
19.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()
A.a5B.bd0C. D.
【答案】D
【解析】
【分析】
根据数轴得到-5<a<b<0<c<d,且 ,再依次判断各选项即可得到答案.
【详解】
由数轴得-5<a<b<0<c<d,且 ,
∴A错误;
∵b+d>0,故B错误;
∵ ,
∴C错误;
∵ ,c>0,
∴ ,故D正确,
故选:D.
【点睛】
此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.
20.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约 元, 用科学计数法表示为()
【详解】
4.23+23+23+23=2n,则n=( )
A.3B.4C.5D.6
【答案】C
【解析】
【分析】
原式可化为:23+23+23+23=4×23 ,之后按照有理数乘方运算进一步求解即可.
【详解】
∵23+23+23+23=4×23
∴ ,
所以答案为C选项.
【点睛】
本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.
A. B. C. D.
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.

(易错题精选)初中数学有理数难题汇编及答案解析

(易错题精选)初中数学有理数难题汇编及答案解析

(易错题精选)初中数学有理数难题汇编及答案解析一、选择题1.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .,5或13【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.2.在﹣3,﹣1,1,3四个数中,比2大的数是( )A .﹣3B .﹣1C .1D .3 【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:022a +-=,则23a +=,解得:1a =,Q tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.5.下列说法错误的是( )A .2 a 与()2a -相等BC .D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确; C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.6.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.下列各数中,最大的数是( )A .12-B .14C .0D .-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<, 则最大的数是14,【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.8.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a >C .ad bc >D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.9.实数a 、b 在数轴上的位置如图所示用下列结论正确的是( )A .a+b>a>b>a−bB .a>a+b>b>a−bC .a−b>a>b>a+bD .a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a ,b 在数轴上的位置可以确定a 、b 的取值范围,然后利用有理数的加减运算即可比较数的大小.解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.0 C.4或—4 D.0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a,则这个为±a11.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.解:设”□”表示的数是x ,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D .【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.13.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立;若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键. 14.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .15.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.16.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .17.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc<,∴a、b、c三数中有2个正数、1个负数,则a b c a b cb c a c a b a b c+-=+-+++---,若a为负数,则原式=1-1+1=1,若b为负数,则原式=-1+1+1=1,若c为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A.【点睛】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.下列各组数中互为相反数的一组是()A.3与13B.2与|-2| C.(-1) 2与1 D.-4与(-2) 2【答案】D【解析】考点:实数的性质.专题:计算题.分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A、两数数值不同,不能互为相反数,故选项错误;B、2=|-2|,两数相等,不能互为相反数,故选项错误.C、(-1)2=1,两数相等;不能互为相反数,故选项错误;D、(-2)2=4,-4与4互为相反数,故选项正确;故选D.点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.20.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.。

新初中数学有理数的运算易错题汇编含答案解析

新初中数学有理数的运算易错题汇编含答案解析

新初中数学有理数的运算易错题汇编含答案解析一、选择题1.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的2.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.3.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A.6⨯3.153610⨯B.73.153610C.6⨯31.536100.3153610⨯D.8【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1013.故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5.温州市2019年一季度生产总值(GDP )为129 800 000 000元.将129 800 000 000用科学记数法表示应为( )A .1298×108B .1.298×108C .1.298×1011D .1.298×1012【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】129 800 000 000=1.298×1011,故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数,表示时关键要正确确定a的值以及n的值.6.据民政部网站消息截至2018年底,我国60岁以上老年人口已经达到2.56亿人.其中2.56 亿用科学记数法表示为()A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:2.56亿=256000000=2.56×108,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.6⨯C.711.610⨯B.7116101.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861B.863C.865D.867【答案】C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】 输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.13.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯【答案】D【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D .点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.16.12010-的倒数是( ) A .2010-B .2010C .12010D .12010- 【答案】A【解析】【分析】 根据倒数的定义求解.【详解】解:根据互为倒数的两个数乘积为1可知:12010-的倒数为-2010. 故选A .【点睛】 本题考查倒数的定义,题目简单.17.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.18.如图,是一个计算流程图.当16x=时,y的值是()A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】解:输入16x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根22是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.19.计算(-2)100+(-2)99的结果是()A.2 B.2-C.992-D.992【答案】D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.20.-3的倒数是()A.13B.3 C.0 D.13-【答案】D【解析】【分析】根据倒数的定义判断.【详解】-3的倒数是:1 3故选:D【点睛】本题主要考查了倒数的定义,掌握乘积为1的两个有理数互为倒数是解题的关键.。

初中数学七年级上册数学《有理数》易错题

初中数学七年级上册数学《有理数》易错题

《有理数》易错题,附答案第1节 正数和负数1.易错点:对正数和负数的概念理解不清1、下列说法正确的是_____________(填序号)①不带“-”号的数都是正数;①一个数不是正数就是负数;①带负号的数是负数;①0℃表示没有温度;①若a 是正数,则-a 一定是负数。

参考答案1、①第2节 有理数 2.易错点:对有理数的相关概念理解不清 1、下列有关有理数的说法正确的是( ) A .有限小数和无限循环小数不是有理数 B .正整数与负整数构成整数 C .整数和分数统称为有理数 D .非负整数即为正整数 2、【变式1】下列有关有理数的说法中,正确的是( ) A .0不是有理数 B .﹣2是整数 C .0.5不是分数 D .有理数就是正数和负数 3、【变式2】下列说法:①0是最小的整数;①最大的负整数是﹣1;①正有理数和负有理数统称有理数;①无限小数不是有理数。

其中正确的有______(填序号) 参考答案 1、C 2、B 3、① 3.易错点:非负数、非正数中漏掉0 1、在-5,4.2,21 ,0,+10,3这六个数是,非负数是____________________,非负整数是_____________。

2、【变式1】比-3大的负整数有__________,比3小的非负整数是_________。

参考答案 1、4.2,0,+10,3;0,+10,3 2、-2,-1;2,1,0 4.易错点:数轴上到某点的距离为正数的点有两个 1、到原点的距离为35个单位长度的点表示的数是__________。

2、【变式1】已知在数轴上A 点表示的数是7,B 点到A 点的距离是3个单位长度,则B 点表示的数是_________。

3、【变式2】如果数轴上的点A 对应的有理数为-2,那么与点A 相距3个单位长度的点所对应的有理数为_______。

参考答案1、35或-352、4或103、-5或15.易错点:误以为数轴上的点只能表示有理数 1、下列说法正确的是( ) A .数轴上的点都表示有理数 B .数轴上右边的数不一定比左边的数大C .数轴上的点离原点越远,表示的数越大D .有理数都能在数轴上表示参考答案 1、D 6.易错点:对相反数的概念理解不清 1、-a 的相反数是_______。

人教版初中数学有理数易错题汇编含答案解析

人教版初中数学有理数易错题汇编含答案解析

人教版初中数学有理数易错题汇编含答案解析一、选择题1.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.2.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8- 【答案】D【解析】【分析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】 解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.5.已知235280x y x y +-+-+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.四个有理数﹣2,1,0,﹣1,其中最小的数是( )A .1B .0C .﹣1D .﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D .【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.8.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .2 【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.9.如图,a 、b 在数轴上的位置如图,则下列各式正确的是( )A .ab >0B .a ﹣b >0C .a+b >0D .﹣b <a【答案】B【解析】解:A 、由图可得:a >0,b <0,且﹣b >a ,a >b∴ab <0,故本选项错误;B 、由图可得:a >0,b <0,a ﹣b >0,且a >b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a ∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.10.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C 【解析】 【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b ,∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.13.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.14.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.【详解】A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.15.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.16.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b ,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】 利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立;若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.17.下列运算正确的是( )A =-2B .|﹣3|=3C =± 2 D【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形, ∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,a=-,(2019+1)÷2=1010,故20191010故选:D.【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学有理数易错题汇编及答案一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】 【分析】 从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.4.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.5.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.6.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.已知直角三角形两边长x 、y 满足240x -=,则第三边长为 ( )A .B .13C .5或13D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=.故选D .考点:1.非负数的性质;2.勾股定理.11.小麦做这样一道题“计算()3-+W ”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A .5B .-5C .11D .-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x ,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D .【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下列各组数中互为相反数的是( ) A .52(5)-B .2--和(2)-C .38-38-D .﹣5和15【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.13.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.14.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.15.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .16.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.17.-14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.18.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.19.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.20.如图所示,数轴上点P 所表示的数可能是( )A 30B 15C 10D 8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<4P∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.。

相关文档
最新文档