颗粒活性炭吸附有机废气的设计与计算

合集下载

有机废气吸附设计与计算及活性炭再生计算

有机废气吸附设计与计算及活性炭再生计算

有机废气吸附设计与计算及活性炭再生计算有机废气吸附设计与计算基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。

吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。

使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。

即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。

而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。

因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。

脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。

通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。

被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。

促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。

2、吸附机理吸附和脱附互为可逆过程。

当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。

但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。

但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。

当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。

平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。

平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。

活性炭净化VOC废气的工程设计

活性炭净化VOC废气的工程设计

活性炭净化VOC废气的工程设计
背景
该文档旨在提供活性炭净化VOC(挥发性有机化合物)废气的工程设计。

VOC是一类对环境和健康有害的气体排放物,通过使用活性炭可以有效去除这些有害物质。

设计步骤
以下是活性炭净化VOC废气的工程设计步骤:
1. 确定废气负荷:首先需要确定VOC废气的排放量和特性,包括VOC成分、浓度和流量。

这些信息将有助于选择合适的活性炭吸附系统。

2. 选择合适的活性炭:根据废气负荷和VOC特性,选择适合的活性炭。

活性炭应具有高吸附效率和容量,能够有效去除目标VOC成分。

3. 设计吸附系统:根据VOC废气的特性和处理要求,设计适
当的活性炭吸附系统。

考虑吸附床尺寸、气流分布和操作参数等因素。

4. 安装活性炭吸附设备:按照设计要求安装活性炭吸附设备。

确保设备能够有效地吸附和去除VOC废气。

5. 定期维护和更换活性炭:活性炭在吸附过程中逐渐饱和,需
要定期维护和更换。

制定维护计划,并根据实际吸附效果和操作经
验确定更换周期。

6. 监测和控制:定期监测废气排放的VOC浓度,确保活性炭
吸附系统的有效性。

根据监测结果进行必要的调整和控制操作。

结论
通过以上的工程设计步骤,可以实现对VOC废气的有效净化。

活性炭吸附系统是一种成熟且可靠的处理技术,广泛应用于工业生
产和环境保护领域。

在实际工程应用中,需要根据具体情况进行调
整和优化,以确保最佳的净化效果和经济效益。

>注意:以上信息旨在提供一般性的工程设计指导,实际应用中需根据具体情况进行综合分析和决策。

活性炭废气设计方案

活性炭废气设计方案

活性炭废气设计方案活性炭废气设计方案一、设计原则1. 守法合规:废气处理设计必须符合国家和地方相关环保法规的要求,确保废气排放符合规定标准;2. 高效节能:尽可能选择高效节能的处理技术和设备,提高废气处理的利用率,降低能耗;3. 简化操作:设计简单可靠的操作控制系统,减少人工干预,提高自动化程度;4. 考虑整体需求:根据实际情况,综合考虑废气处理的综合成本、技术可行性和适用性。

二、处理工艺活性炭废气处理工艺通常包括吸附、脱附和再生三个阶段。

1. 吸附阶段:将废气通过活性炭床,通过物理吸附和化学吸附的作用将废气中的有害物质吸附到活性炭表面。

关键要素包括废气进气量、活性炭床高度和宽度、床型选择等。

2. 脱附阶段:废气经过一段时间的吸附后,活性炭饱和,需要对其进行脱附处理。

脱附方式可以采用热脱附和蒸汽脱附两种方式。

关键要素包括脱附温度、脱附时间和脱附气流量。

3. 再生阶段:活性炭完成脱附后,需要通过再生操作来恢复其吸附性能。

再生方式通常有热再生和蒸汽再生两种方式。

关键要素包括再生温度、再生时间和再生气流量。

三、设备选型根据废气处理工艺的要求,需要选择适合的设备进行吸附、脱附和再生操作。

常见的设备有吸附器、热解吸附器、再生炉等。

关键要素包括设备尺寸、材料选择、操作稳定性等。

四、操作控制系统为了提高废气处理的自动化程度和稳定性,设计一个简单可靠的操作控制系统非常重要。

该控制系统需要包括监测废气进气量、活性炭床状态、脱附和再生过程等关键参数,并能实现自动调节。

此外,还可以配备报警系统,及时发现并解决故障。

五、维护和保养为了保证废气处理系统的正常运行,需要定期对设备进行维护和保养。

包括定期更换活性炭、清洗设备、检查管道和阀门等,并记录运行情况和维护记录。

综上所述,活性炭废气处理的设计方案主要包括吸附、脱附和再生三个阶段,合理选用设备,并设计一个简单可靠的操作控制系统,定期进行维护和保养。

这样可以高效、节能地处理废气,保护环境,同时符合相关法规的要求。

活性炭吸附塔风量计算

活性炭吸附塔风量计算

活性炭吸附塔风量计算
活性炭吸附塔风量计算设计风量:Q=20000m/h=5.56m/s参数设计要求:
设计风量:Q=20000m/h=5.56m/s参数设计要求:
1、管道风速:V:=10~20m/s
2、空塔气速为气体通过吸附器整个横截面的速度。

空塔风
速:V2=0.8~1.2m/s3过滤风速:V3=0.2~0.6m/s
4、过滤停留时间:T=0.2~2s
5、碳层厚度:h=0.2~0.5m
6、碳层间距:0.3~0.5m
活性炭颗粒性质:
平均直径d-.003m表观密度p=670kglm,堆积密度p=470 kglm3孔隙率0.5-0.75,取0.75
(1)、管道直径d取0.8m 则管道截面积A:=0.50m
(2)、取炭体宽度B=2.2m 塔体高度H=2.5m
则空塔风速V2=5.56-2.2+2.5=1.01m/s 满足设计要求。

(3)、炭层长度L; 取 4.3m 2 层炭体,
则过滤风速V=5.56-2.2+4.3-2-0.75=0.392m/s 满足设计要求。

(4)、取炭层厚度为0.35m 炭层间距取0.5m
则过滤停留时间T;=0.35:0.392=0.89s 满足设计要求。

(5)、塔体进出口与炭层距离取0.1m 则塔体主体长度
[=4.3+0.2=4.5m
则塔体长度L=4.5+0.73X=5.96m
考虑安装的实际情况:塔体尺寸LxBxH=6m*2.2m*2.5m。

活性炭废气设计方案

活性炭废气设计方案

活性炭废气设计方案废气治理是在现代工业发展过程中的一个重要环节,活性炭作为一种常用的废气治理材料,具有吸附效果好、运行成本低等优点,被广泛应用于各个行业的废气处理中。

本文将结合实际案例,针对活性炭废气设计方案进行详细介绍。

第一部分:废气特性分析废气处理方案的首要任务是对废气进行全面的分析。

在进行活性炭废气设计方案之前,需要对废气的组成成分、浓度、温度、流速以及湿度等参数进行详细测定和分析。

通过对废气特性进行了解,可以为后续的活性炭设计提供依据和参考。

第二部分:活性炭选择根据废气特性分析的结果,我们可以选择适合的活性炭类型和规格。

活性炭的选择需要考虑吸附能力、稳定性、成本等因素。

根据废气特性的不同,可以选择颗粒状活性炭或者是活性炭纤维滤材等。

同时,在设计方案中需要考虑活性炭的布置方式,并确保废气与活性炭充分接触,以提高废气治理效果。

第三部分:废气处理设备设计在活性炭废气设计方案中,废气处理设备的设计是重要的一环。

根据废气的排放位置和流量要求,我们可以选择适合的处理设备,如废气净化器、废气吸附箱等。

对于大规模的废气治理项目,可以考虑使用活性炭废气处理装置,以提高废气治理效果和运行稳定性。

第四部分:系统布局与控制在活性炭废气设计方案中,系统布局与控制也是关键的一环。

合理的系统布局可以提高工艺效率,减少废气处理设备的占地面积。

同时,系统布局中需要考虑废气进出口的设置、废气管道的规划等因素。

在控制方面,可以借助自动化控制系统,对废气处理设备进行监控和调节,以确保废气治理效果的稳定性和持续性。

第五部分:运营与维护活性炭废气设计方案的最后阶段是运营与维护。

废气处理设备的长期稳定运行需要定期维护和保养。

对于活性炭的更换和再生,需要根据实际情况制定相应的计划,确保废气处理设备的正常运行。

此外,定期对废气处理效果进行监测和评估,可以对设计方案进行优化和改进。

结语:本文针对活性炭废气设计方案进行了详细的论述。

通过对废气特性分析、活性炭选择、废气处理设备设计、系统布局与控制以及运营与维护等方面的介绍,可以为活性炭废气治理提供全面的指导和参考。

有机废气处理--活性炭吸附详细计算

有机废气处理--活性炭吸附详细计算

活性炭吸附脱附及附属设备选型详细计算书目录1.绪论 (1)1.1概述 (1)1.1.1有机废气的来源 (1)1.1.2有机物对大气的破坏和对人类的危害 (1)1.2有机废气治理技术现状及进展 (2)1.2.1各种净化方法的分析比较 (2)2设计任务说明 (4)2.1设计任务 (4)2.2设计进气指标 (4)2.3设计出气指标 (4)2.4设计目标 (4)3工艺流程说明 (5)3.1工艺选择 (5)3.2工艺流程 (5)4设计与计算 (7)4.1基本原理 (7)4.1.1吸附原理 (7)4.1.2吸附机理 (7)4.1.3吸附等温线与吸附等温方程式 (8)4.1.4吸附量 (10)4.1.5吸附速率 (11)4.2吸附器选择的设计计算 (11)4.2.1吸附器的确定 (11)4.2.2吸附剂的选择 (13)4.2.3空塔气速和横截面积的确定 (15)4.2.4固定床吸附层高度的计算 (15)4.2.5吸附剂(活性炭)用量的计算 (17)4.2.6床层压降的计算]15[ (17)4.2.7活性炭再生的计算]16[ (18)4.3集气罩的设计计算 (19)4.3.1集气罩气流的流动特性 (19)4.3.2集气罩的分类及设计原则 (20)4.3.3集气罩的选型 (20)4.4吸附前的预处理 (22)4.5管道系统设计计算 (23)4.5.1管道系统的配置 (23)4.5.2管道内流体流速的选择 (24)4.5.3管道直径的确定 (24)4.5.4管道内流体的压力损失 (25)4.5.5风机和电机的选择 (25)5工程核算 (28)5.1工程造价 (28)5.2运行费用核算 (28)5.2.1价格标准 (28)5.2.2运行费用 (29)6结论与建议 (30)6.1结论 (30)6.2建议 (30)致谢 (33)1.绪论1.1概述1.1.1有机废气的来源有机废气的来源主要有固定源和移动源两种。

移动源主要有汽车、轮船和飞机等以石油产品为燃料的交通工具的排放气;固定源的种类极多,主要为石油化工工艺过程和储存设备等的排出物及各种使用有机溶剂的场合,如喷漆、印刷、金属除油和脱脂、粘合剂、制药、塑料、涂料和橡胶加工等。

有机废气吸附设计方案与计算

有机废气吸附设计方案与计算

有机废气吸附设计与计算一、基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。

吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。

使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。

即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。

而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。

因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。

脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。

通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。

被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。

促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。

2、吸附机理吸附和脱附互为可逆过程。

当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。

但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。

但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。

当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。

平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。

平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。

当吸附质与吸附剂长时间接触后,终将达到吸附平衡。

有机废气吸附计算

有机废气吸附计算

有机废气吸附设计与计算一、基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。

吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。

使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。

即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。

而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。

因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。

脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。

通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。

被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。

促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。

2、吸附机理吸附和脱附互为可逆过程。

当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。

但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。

但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。

当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。

平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。

平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。

当吸附质与吸附剂长时间接触后,终将达到吸附平衡。

有机废气吸附设计与计算190410

有机废气吸附设计与计算190410
1 2
。升温脱附可将吸附剂从 升温到 T ,这时吸附剂容量可
T
式中:L——干燥吸附剂是空气的消耗量,kg l——空气的单位消耗量,即干空气/H2O,无量纲
、 xx
1
——分别为离开、进入吸附剂层时空气的含湿量即 H2O/干空气
2
W——干燥时驱走的水分,kg 由《化工原理》查表的,常温时饱和水蒸汽密度为 0.02304kg/ m ³,则 1 L (0.02304 40000) 1084.24 kg 85% (2)加热空气所消耗的空气 热焓量
对吸附器的基本要求:
(1)具有足够的过气段面和停留时间 (2)良好的气流分布 (3)预先除去入口气体中污染吸附剂的杂质 (4)能够有效地控制和调节吸附操作温度 (5)易于更换吸附剂 吸附工艺选用固定床吸附器。基本运行参数如下: 处理风量:40000m³/h
有机废气组分:
甲苯 800 mg/ m ³,丙酮 134 mg/ m ³,乙酸乙酯 395 mg/ m ³ 材料:钢板δ =4 压降:常压 数量:两台并联,脱附吸附交替运行 2、吸附剂的选择 如何选择、使用和评价吸附剂,是吸附操作中必须解决的首要问题。一切固 体物质的表面,对于流体的表面都具有物理吸附的作用,但合乎工业要求的吸附
附一段时间后,从吸附剂层流出的汽提开始发现吸附质(或其浓度达到依规定的
允许值)时,认为床层失败,此时吸附剂吸附的吸附质的量称为吸附剂的动活性。 动活性除与吸附剂和吸附质的特性有关外,还与温度、浓度及操作条件有关。吸 附剂的动活性值是吸附系统设计的主要依据。 二、吸附器选择的设计计算 1、吸附器的确定
假设吸附器的吸附效率为 85%,则达标排放是需要吸附总的污 染物的量为:
6
53.16×85%=45.19 kg/h 4010% 0.8 VWd 9 9 t 10 10 286h 280 40000 CQ 则在吸附作用时间内的吸附量:

废气处理活性碳量计算公式

废气处理活性碳量计算公式

废气处理活性碳量计算公式在现代工业生产中,废气处理是一个非常重要的环节。

废气中含有大量的有害物质,如果直接排放到大气中,会对环境和人类健康造成严重的影响。

因此,对废气进行处理是非常必要的。

活性碳是一种常用的废气处理材料,它具有很强的吸附能力,可以有效地去除废气中的有害物质。

在进行废气处理时,需要计算活性碳的用量,以确保废气能够得到有效处理。

下面我们将介绍废气处理活性碳量的计算公式。

活性碳的用量计算公式如下:V = (Q × C × T) / (E × D)。

其中,V表示活性碳的用量,单位为重量(kg);Q表示废气的流量,单位为体积(m3/h);C表示废气中有害物质的浓度,单位为质量浓度(mg/m3);T表示废气处理的时间,单位为小时;E表示活性碳的吸附能力,单位为质量吸附量(mg/g);D表示活性碳的密度,单位为质量密度(g/cm3)。

在进行活性碳用量计算时,首先需要确定废气的流量和有害物质的浓度。

废气的流量可以通过流量计来测量,有害物质的浓度可以通过气体分析仪来测量。

然后,需要确定废气处理的时间,一般来说,处理时间越长,活性碳的用量就越大。

接下来,需要确定活性碳的吸附能力和密度,这些参数可以通过实验室测试或者参考文献来获取。

最后,将这些参数代入上面的公式中,就可以得到活性碳的用量。

在实际工程中,为了更准确地计算活性碳的用量,还需要考虑一些其他因素。

例如,废气中的有害物质可能不仅仅是一种,而是多种,每种有害物质的吸附能力和密度可能都不同,因此需要对不同的有害物质进行单独的计算,然后将各种有害物质的用量相加。

另外,活性碳在使用过程中会逐渐饱和,需要定期更换,因此还需要考虑活性碳的使用寿命和更换周期。

除了计算活性碳的用量,还需要考虑活性碳的选择和配置。

活性碳的选择应该根据废气中的有害物质的种类和浓度来确定,不同的有害物质可能需要选择不同种类的活性碳。

活性碳的配置应该考虑到废气的流量和浓度,以及处理设备的结构和工艺要求。

活性炭的性能介绍更换周期及吸附量的计算

活性炭的性能介绍更换周期及吸附量的计算

活性炭的性能介绍更换周期及吸附量的计算⼀、活性炭基本介绍活性炭⼜称活性炭⿊。

是⿊⾊粉末状或颗粒状的⽆定形碳。

活性炭主成分除了碳以外还有氧、氢等元素。

活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产⽣碳组织缺陷,因此它是⼀种多孔碳,堆积密度低,⽐表⾯积⼤。

⼆、活性炭净⽔原理活性炭是⼀种很细⼩的炭粒,有很⼤的表⾯积,⽽且炭粒中还有更细⼩的孔——⽑细管。

这种⽑细管具有很强的吸附能⼒,由于炭粒的表⾯积很⼤,所以能与杂质充分接触。

这些杂质碰到⽑细管被吸附,起净化作⽤。

三、活性炭的要求好的活性炭必须具有吸附容量⼤、使⽤寿命长、机械强度⾼、灰份低、易冲洗、出⽔⽔质好等特点,它不但能除去异臭、异味、提⾼⾊度,⽽且对⽔中的各种有毒有害物质如:氯、酚、汞、铅、砷、氯化物、洗涤剂、农药、化肥等污染物具有很⾼的去除率。

具体主要技术指标如下:1、粒度(10—24⽬2.0—0.8mm ):≥95%说明:通常来说,颗粒越⼩的活性炭,⽐外表积越⼤,也就是吸附效果越好,但是颗粒越⼩,损耗也会越⼤,粉尘也会越多。

2、碘吸附值:≥1000mg/g说明:⼀般来说碘吸附值越⾼,活性炭的吸附能⼒越强。

3、⽐表⾯积:1000---1200m2/g说明:若取1克活性炭,将⾥⾯所有的孔壁都展开成⼀个平⾯,这个⾯积将达到1000平⽅⽶(既⽐表⾯积为1000g/m2)!影响活性炭吸附性的主要因素就取决于内部孔隙结构的发达程度。

(及⽐表⾯积越⼤,活性炭的吸附效果越好)。

4、亚甲兰脱⾊⼒:≥10mL/g说明:除⾊能⼒。

5、耐磨强度:≥95%说明:即耐磨损或抗磨擦的性能;强度越⾼,活性炭性能越好。

6、⼲燥减量:≤10%说明:⼲燥减量及指⽔分,此值越低,活性炭质量越好。

7、灼烧残渣:≤3%说明:灼烧残渣及指灰分,此值越低,活性炭质量越好。

8、充填⽐重:0.48---0.55g/mL说明:充填⽐重及指密度,⼀般密度越⼩,活性炭的吸附⼒越好。

活性炭吸附箱风量计算

活性炭吸附箱风量计算

活性炭吸附箱风量计算一、活性炭吸附原理活性炭是一种具有特殊微孔结构的高效吸附材料,其吸附效果取决于活性炭的孔隙结构和表面积。

当空气中有害气体接触到活性炭时,有害气体分子会被吸附在活性炭的微孔中,从而将有害气体去除。

吸附过程中,活性炭会逐渐饱和,需要定期更换或再生。

二、活性炭吸附箱风量计算方法1.体积法:根据活性炭吸附箱的容积和空气需要停留的时间来计算风量。

公式为:Q=V/t其中,Q为风量(m³/h),V为活性炭吸附箱的容积(m³),t为空气需要停留的时间(h)。

2. 浓度法:根据空气中有害气体浓度和活性炭的吸附效果来计算风量。

首先需要知道空气中有害气体的浓度C(mg/m³),活性炭的吸附容量M(mg/g),和吸附效率η。

公式为:Q=(C×V)/(M×η)其中,Q为风量(m³/h),V为活性炭吸附箱的容积(m³),C为空气中有害气体的浓度(mg/m³),M为活性炭的吸附容量(mg/g),η为吸附效率。

3.面积法:根据活性炭的表面积和空气需要覆盖的面积来计算风量。

首先需要知道活性炭的表面积A(m²),空气需要覆盖的面积S(m²),以及空气的速度v(m/s)。

公式为:Q=A×S×v其中,Q为风量(m³/h),A为活性炭的表面积(m²),S为空气需要覆盖的面积(m²),v为空气速度(m/s)。

三、风量计算实例假设活性炭吸附箱的容积为2m³,空气需要停留的时间为2小时,空气中有害气体的浓度为100mg/m³,活性炭的吸附容量为20mg/g,吸附效率为90%。

根据体积法,风量Q=V/t=2/2=1m³/h。

根据浓度法,风量Q=(C×V)/(M×η)=(100×2)/(20×0.9)≈111.11m³/h。

颗粒活性炭吸附、脱附工艺计算书

颗粒活性炭吸附、脱附工艺计算书

处理风量(m 3/h )
10000.007.00 1.00
设备个数(个)
1.00 1.50进气浓度S o (mg/m 3)
430.0010.47排气浓度S e (mg/m 3)
0.00碳层宽度B (m )
1.50活性炭堆积密度ρ(t/m 3)
0.50孔隙率
0.75超长L 0(m )
0.90碳层长度L (m )
2.00碳层厚度h (m )
0.30碳层间距2b (m )
0.40碳层数量n (层) 2.00活性炭吸附容量(%)
5.00碳箱长度L 0(m )
2.90炭箱高H (m )
1.40空塔气速v 0(m/s)
1.32不符合过滤速度v (m/s)
0.46符合过滤时间t (s )
0.65符合活性炭重量m (t )
0.90活性炭更换周期(d)(h )0.4410.47 设备参数
注:
1、活性炭吸附进气温度小于50℃,活性炭脱附温度100-120℃,不超过140℃;
2、空塔气速为1.5-2.5m/s,过滤速度0.2-0.6m/s,过滤时间0.2-2s;
3、饱和吸附容量30%;
吸附饱和时间t 2(h )颗粒活性炭 吸附、脱附工艺计算书
设计参数
设计参数吸附、脱附炭箱个数N (个)脱附切换时间t 1(h )。

活性炭吸附塔-计算方案

活性炭吸附塔-计算方案

活性炭吸附塔计算书活性炭吸附塔1、设计风量:Q =20000m 3/h =s 。

2、参数设计要求:①管道风速:V 1=10~20m/s ,②空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2=~s ,③过滤风速:V 3=~s ,④过滤停留时间:T 1=~2s ,⑤碳层厚度:h =~,⑥碳层间距:~。

活性炭颗粒性质:平均直径d p =,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m孔隙率~,取3、(1)管道直径d 取,则管道截面积A 1=则管道流速V 1=÷=s,满足设计要求。

(2)取炭体宽度B=,塔体高度H=,则空塔风速V 2=÷÷=s,满足设计要求。

(3)炭层长度L 1取,2层炭体,则过滤风速V 3=÷÷÷2÷=s,满足设计要求。

(4)取炭层厚度为,炭层间距取,则过滤停留时间T 1=÷=,满足设计要求。

(5)塔体进出口与炭层距离取,则塔体主体长度L’=+= 两端缩口长L”=⎪⎪⎭⎫ ⎝⎛+2d -2H B 3322=⎪⎪⎭⎫ ⎝⎛+20.8-25.22.23322= 则塔体长度L=+×2=4、考虑安装的实际情况:塔体尺寸L×B×H=6m××活性炭吸附塔1、设计风量:Q =20000m 3/h =s 。

2、参数设计要求:①管道风速:V 1=10~20m/s ,②空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2=~s ,③过滤风速:V 3=~s ,④过滤停留时间:T 1=~2s ,⑤碳层厚度:h =~,⑥碳层间距:~。

活性炭颗粒性质:平均直径d p =,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m3、(1)管道直径d 取,则管道截面积A 1=则管道流速V 1=÷=s,满足设计要求。

(2)取炭体宽度B=,塔体高度H=,则空塔风速V 2=÷÷=s,满足设计要求。

VOCs有机废气吸附计算(精编文档).doc

VOCs有机废气吸附计算(精编文档).doc

【最新整理,下载后即可编辑】有机废气吸附设计与计算一、基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。

吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。

使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。

即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。

而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。

因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。

脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。

通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。

被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。

促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。

2、吸附机理吸附和脱附互为可逆过程。

当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。

但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。

但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。

当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。

平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。

平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。

活性炭吸附工程-计算书

活性炭吸附工程-计算书

活性炭吸附工程-计算书
引言
该文档旨在描述活性炭吸附工程的计算方法,以便工程师准确计算和设计活性炭吸附处理系统。

计算方法
活性炭吸附工程计算涉及以下方面:
- 活性炭选型
- 吸附器容量计算
- 平衡时间计算
- 活性炭更换时间计算
- 等等
这些计算需要考虑到以下因素:
- 水的质量:流量、温度、总固体含量、pH值、COD
- 活性炭的质量:颗粒度、比表面积、孔径、密度、碘吸附值等
- 吸附器的参数:直径、高度、填料层数、填料高度、出水浓度等
具体的计算公式如下:
1. 活性炭质量的计算:
活性炭质量 = 水量 × COD / 碳质吸附值
2. 吸附器容量计算:
吸附器容量 = 活性炭质量 / 饱和度
3. 平衡时间计算:
平衡时间 = 吸附器体积 / 进水流量
4. 活性炭更换时间计算:
更换周期 = (吸附器体积 ×更换周期浓度)/(进水流量 ×COD / 碳质吸附值)
结论
通过学习本文档,工程师能够掌握活性炭吸附工程计算方法,准确地设计和计算活性炭吸附系统。

但是,具体的计算需要根据不同的工程实际情况进行量身定制。

VOCs有机废气吸附计算

VOCs有机废气吸附计算

有机废气吸附设计与计算一、基本原理1、吸附原理当两相组成一个体系时,其组成在相界面与相内部是不同的,处在;两相界面处的成分产生了积蓄(浓缩),这种现象称为吸附。

吸附处理废气时,吸附的对象是气态污染物,被吸附的气体组分称为吸附质,吸附气体组分的物质称为吸附剂。

使已被吸附的组分从达到饱和的吸附剂析出,吸附剂得以再生的操作称为脱附。

即被吸附于界面的物质在一定条件下,离开界面重新进入体相的过程,也成解吸。

而当吸附进行一段时间后,由于表面吸附质的浓集,使其吸附能力明显下降而不能满足吸附净化的要求,此时需要采用一定的措施是吸附剂上已吸附的吸附质脱附,恢复吸附剂的吸附能力,这个过程成为吸附剂的再生。

因此,在实际工作中,正式利用吸附剂的吸附—再生—吸附的循环过程,达到除去废气中污染物质并回收废气中有用组分的目的。

脱附过程是在吸附剂结构不变化或者变化极小的情况下,将吸附质从吸附剂孔隙中除去,恢复它的吸附能力。

通过再生使用,可以降低处理成本,减少废渣排放量,同时回收吸附质。

被吸附的组分重新释放,释放的气体浓度高于原混合气的浓度。

促进解吸的条件有:(1)提高温度(热再生;(2)抽真空以降低压力(变压解吸附);(3)降低吸附剂周围组分的浓度(空气吹扫)。

2、吸附机理吸附和脱附互为可逆过程。

当用新鲜的吸附剂吸附气体中的吸附质时,由于吸附剂表面没有吸附质,因此也就没有吸附质的脱附。

但随着吸附的进行,吸附剂表面上的吸附质逐渐增多,也就出现了吸附质的脱附,且随着时间的推移,脱附速度不断增大。

但从宏观上看,同一时间吸附质的吸附量仍大于脱附量,所以过程的总趋势认为是吸附。

当同一时间吸附质的吸附量与脱附量相等时,吸附和脱附达到动态平衡,此时称为达到吸附平衡。

平衡时,吸附质在流体中的浓度和在吸附剂表面上的浓度不再变化,从宏观上看,吸附过程停止。

平衡时的吸附质在流体中的浓度称为平衡浓度,在吸附剂中的浓度称为平衡吸附量。

当吸附质与吸附剂长时间接触后,终将达到吸附平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档