基变换与坐标变换

合集下载

§4 基变换与坐标变换

§4 基变换与坐标变换

解:设 1 (1,0,0,0), 2 (0,1,0,0), 3 (0,0,1,0), 4 (0,0,0,1)
则有
1 1 1 1
(1,2
,3
,4
)
(1,
2
,
3
,
4
)
2 1 0
1 1 1
2 1 1
1
0 1

1 1 1 11
(1,2,3,4 )
(1,2
,3
,4
)
2 1 0
1 1 1
2 1 1

又由基 1, 2 ,L , n到1,2 ,L ,n 也有一个过渡矩阵,
设为B,即 (1,2 ,L ,n ) (1, 2 ,L , n )B

比较③ 、④两个等式,有
(1, 2 ,L , n ) (1, 2 ,L , n )BA
(1,2 ,L ,n ) (1,2 ,L ,n ) AB
Q 1,2 ,L ,n; 1, 2 ,L , n 都是线性无关的,
a22 L an2
L L L
a2n x2
L ann
xMn

x1 a11 a12 L a1n 1 x1

x2 xMn
a21 L an1
a22 L an2
L L L
a2n L ann
x2
xMn

称⑥或⑦为向量ξ在基变换⑤下的坐标变换公式.
例1 在Pn中,求由基 1,2,L ,n 到基1,2,L ,n 的过渡矩阵及由基1,2,L ,n 到基 1,2,L ,n 的
的基变换公式.
2、有关性质
1)过渡矩阵都是可逆矩阵;反过来,任一可逆
矩阵都可看成是两组基之间的过渡矩阵.

1基变换与坐标变换

1基变换与坐标变换

1 2
1 1
3 2 1 1 1 1
2 1
1 0
1 2 2 2 0 1 1 1
1 0 0 0 0 1 1 1
~ 初等行变换
0 0
1 0
0 1
0 0
1 0
1 0
0 0
0 1
0 0 0 1 1 1 1 1
1 0 0 0 0 1 1 1
0 1 0 0 1 1 0 0 1 0 0 0
(2) W1 W2 W1 W2 W1;
(3) W1 W2 W1 W1 W2; (4) W1 W2 W1 W2 W1 W2或W2 W1 .
定义7 1 , 2 , , r是V中的一组向量,
L1 , 2 , , r
11 2 2 r r 1 , , r F
称为1 , 2 , , r 生成(张成)的子空间.
(4)若向量组
1 ,2 ,
,
是线性空间
r
V
的一个
基,则 V 可表示为
V x 11 2 2 r r 1 , , r F
V :基所生成的线性空间 1 , 2 , , r :向量x在基1 , 2 , , r下的坐标
例7 在线性空间P[ x]3中,p1 1,p2 x,p3 x 2,
p4 x 3是一组基,而q1 1,q2 x 2,q3 x 22, q4 x 23也是一组基.
线性空间的性质
(1) 零元素是唯一的. (2) 负元素是唯一的.
(3) 0 0; 1 ; 0 0.
(4) 如果 0,则 0或 0.
定义2 设 x(1) , x(2) , , x(k) 是线性空间V 中的任一组
向量,1, 2 , , k 是F 中任一组数,
k
y 1 x(1) 2 x(2) k x(k ) i x(i ) i 1

基变换与坐标变换

基变换与坐标变换

本节内容已结束 !! 本节内容已结束 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 !! 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 若想结束本堂课 ,, 请单击返回按钮 . 若想结束本堂课 , 若想结束本堂课 请单击返回按钮 . 若想结束本堂课 , 若想结束本堂课 请单击返回按钮 .. , 若想结束本堂课 , 请单击返回按钮 . 请单击返回按钮 请单击返回按钮 .. . 请单击返回按钮 请单击返回按钮 请单击返回按钮 请单击返回按钮 . .
5 14 11 7 3 72 2 1 2 3 1 1 139 14 20 7

维数基与坐标 基变换与坐标变换

维数基与坐标 基变换与坐标变换

§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。

高等代数-6.4基变换与坐标变换

高等代数-6.4基变换与坐标变换

3)若由基1,2 , ,n到基1, 2 , , 过n 渡矩阵为A, 由基 1, 2 , , n到基 1, 2 , ,过n 渡矩阵为B,则 由基 1,2 , ,n到基 1, 2 , ,过n 渡矩阵为AB.
事实上,若 (1, 2 , , n ) (1,2 , ,n ) A
( 1, 2 , , n ) (1, 2 , , n )B 则有,( 1, 2 , , n ) ((1,2 , ,n ) A)B
下的坐标分别为 ( x1, x2 , , xn ) 与 ( x1 , x2 , , xn ) ,
§6.4 基变换与坐标变换
即,
(1, 2 ,
x1
,
n
)
x2

(1, 2 ,
xn
x1 a11 a12

x2
a21
a22
xn an1 an2
a1n x1 a2n x2
练习:已知 P 22 的两组基:
E11
1 0
0 0
, E12
0 0
1 0
, E21
0 1
0 0
, E22
0 0
0 1
;
F11
1 0
0 0
, F12
1 0
1 0
, F21
11 10
, F22
11 11
求由基 E11, E12,E21, E22到F11, F12,F21, F22 的过渡矩阵,
过渡矩阵.其中
1 (1,0, ,0), 2 (0,1, ,0), , n (0, ,0,1)
1 (1,1, ,1),2 (0,1, ,1), ,n (0, ,0,1)
并求向量 (a1,a2 , ,an )在基1,2 , ,n下的坐标.

6.3.16.3基变换与坐标变换

6.3.16.3基变换与坐标变换

1. V为数域 P上的 n 维线性空间,1,2 , ,n 为V中的一 组向量, V ,若
x11 x22 xnn
则记作
(1,2 ,
x1
,
n
)
x2
xn
2. V为数域 P 上 n 维线性空间,1,2 , ,n ; 1, 2 , , n 为V中的两组向量,若
1 a111 a212
且由基 1,2 , ,n到1, 2 , , n 的过渡矩阵为A,
即 (1, 2 , , n ) (1,2 , ,n ) A

又由基 1, 2 , , n到1,2 , ,n 也有一个过渡矩阵,
设为B,即 (1,2 , ,n ) (1, 2 , , n )B

比较③ 、④两个等式,有
基变换
(1, 2 , , n ) (1, 2 , , n )BA
则有
1 1 1 1
(1,2
,3
,4
)
(1,
2
,
3
,
4
)
2 1 0
1 1 1
2 1 1
1
0 1

1 1 1 11
(1,
2
,
3
,
4
)
(1,2
,3
,4
)
2 1 0
1 1 1
2 1 1
1
0 1

坐标变换
2 0 2 1
(1,2,3,4 ) (1, 从而有 (1,2,3,4 )
2
,
3,
4
)
1 0 1
1 2 2
1 1 2
3
1 2
1 1 1 11 2 0 2 1
(1,2

1基变换与坐标变换共34页

1基变换与坐标变换共34页
i 0
对于通常的多项式的加法和数乘运算不能构成线性 空间.
例4 AAm nCm n,V x C nA 0 x ,F=C,
定义与 C n中相同的运算, V 构成一个复线性空间,
叫做矩阵A的零空间(或核),也叫做方程 Ax0
的解空间,记为N(A).
例5 AAm nCm n, V y C m y A ,x x C n ,
第一章 预备知识
第一节 线性空间
➢ 定义、性质及例子 ➢ 基与维数 ➢ 基变换与坐标变换 ➢ 子空间和维数定理
一、线性空间的定义、性质及例子
定义1 设V 是一个非空集合,F 是一个数域(实数 域或复数域),在集合V 的元素之间定义了一种代数
运算,叫做加法,即对于任意两个元素与 ,在V 中都有惟一的一个元素 与它们对应,称为与 的
线性表示.
定义4 设S 是线性空间V 上的子集,如果S 的任意 有限子集都线性无关,且V 的任何向量均可被S 表 出,则称S 是V 的基.
定理2 如果线性空间V 的基S 恰含n 个向量,则V 的任何基都恰含n 个向量.
有上述性质的线性空间为有限维线性空间,n 为空间的维数,即作dimV=n .
Cn、Rn是 n维空间,Cmn、 Rmn是 m×n维空间,
x (i)
i
i 1
也是V中的向量,称y 是向量组 x (1 ),x (2 ), ,x (k )的一
k
个线性组合, i x (i) 叫做y 的一个线性表出. i1
例1 V x x 1 ,2 , ,n T ,i C ,F=C,又设
y 1 ,2 , ,n T V , C , 对于通常的加法和数乘
线性空间的性质
(1) 零元素是唯一的. (2) 负元素是唯一的.

基变换与坐标变换

基变换与坐标变换
一、基变换公式与过渡矩阵
问题:在 n 维线性空间 V 中,任意 n 个线性 无关的向量都可以作为 V 的一组基.对于不同的 基,同一个向量的坐标是不同的.
那么,同一个向量在不同的基下的坐标有什 么关系呢?换句话说,随着基的改变,向量的坐 标如何改变呢?
设 1 , 2 , , n 及 1 , 2 , , n 是线性空间 两个基 , 且有
1 , 2 , , n 1 , 2 , , n P
2.坐标变换公式

x1 x1' x2 x2' P , xn xn '


用初等变换计算
B
1
A.
B
2 1 A 0 1 1 0 0 0
0 1 2 2 0 1 0 0
2 1 1 2 0 0 1 01 1 0 1
1 1 1 1
1 2 1 1 1 0 0 1
3 2
k1 k2 k3 k4 0
故 x , x x , x 1 , x 1 线性无关
3
, 是 P [ x ] 3 的一个基
.
又令 a 1 x a 2 ( x x ) a 3 ( x 1) a 4 ( x 1)
3 3 2
x 2 x 3,
x1 ' x2' xn '
1 , 2 , , n 1 , 2 , , n P
1 , 2 , , n x1 x2 1 , 2 , , n P xn x1' x2' . xn '

高等代数§6.4 基变换与坐标变换

高等代数§6.4 基变换与坐标变换




x1 x2 xn
a11 a 21 a n1
( 1 , 2 , , n ) 与 a12 a1 n x 1 a 22 a 2 n x 2 ⑥ a n 2 a nn x n x1 x2 xn

即,
a11 a12 a 21 a 22 ( 1 , 2 , , n ) ( 1 , 2 , , n ) a n1 a n 2
a1n a2n a nn


则称矩阵
a11 a 21 A a n1
( a 1 , a 2 , , a n ) 在基 1 , 2 , , n 下的坐标就是
( a 1 , a 2 , , a n )
设 在基 1 , 2 , , n下的坐标为 ( x 1 , x 2 , , x n ) ,则
x1 x2 xn 1 0 1 1 0 1 0 0 0 0 1 0 0 a1 a1 0 a 2 a 2 a1 0 a n a n a n1 1
若 1 , 2 , , n 线性无关,则
a1 a2 ( 1 , 2 , , n ) a n b1 b2 ( 1 , 2 , , n ) b n a 1 b1 a 2 b2 a b n n
§6.4 基变换与坐标变换
一、向量的形式书写法

§4基变换与坐标变换共27页

§4基变换与坐标变换共27页

1
0















谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
§4基變換與坐標變換
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8




后名,于我 Nhomakorabea若



9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散

6.4 基变换与坐标变换

6.4  基变换与坐标变换

ε 2 = 0ε 1 + 1ε 2 + 0ε 3 ε 3 = 0ε 1 + 0ε 2 + 1ε 3 , ε = 1ε + 0ε + 0ε 1 2 3 1
0 0 1 A = 1 0 0 0 1 0
方法2 直接利用矩阵来计算. 方法2:直接利用矩阵来计算.
注意 :
1) 基变换公式的矩阵形式是“形式的”. 因为 基变换公式的矩阵形式是“形式的” 在这里把向量作为矩阵的元素,一般来说没有意义 在这里把向量作为矩阵的元素,一般来说没有意义. 不过在这个特殊的情况下, 不过在这个特殊的情况下,这种约定的用法是不会 出毛病的. 出毛病的 2) 过渡矩阵 A 的第 j 列 (a1j , a2j , … , anj ), 就是第二组基向量 εj′ 在第一组ε 1 , ε 2 , … , ε n下的 坐标. 坐标
(2)
证明: 证明: 因
线性无关, 由于 ε 1 , ε 2 , L , ε n 线性无关 故即有关系式 (2).
′ x1 x1 ′ x2 x2 ′ ′ ′ (ε1 , ε 2 , L, ε n ) = ξ = (ε1 , ε 2 , L, ε n ) M M x x′ n n ′ x1 x′ 2 = (ε 1 , ε 2 , L , ε n ) A M x′ n
(α1 ,α 2 ,L ,α n ) A = (α1 ,α 2 ,L ,α n ) B ⇔ A = B .
二、基变换
V为数域 P上的 n 维线性空间, 为数域 上的 维线性空间, α1 ,α 2 ,L,α n 为V 中的一组线性无关向量,而 中的一组线性无关向量, 引理

基变换公式和坐标变换公式

基变换公式和坐标变换公式

基变换公式和坐标变换公式
基变换公式是用于描述一个向量在不同基之间的变换关系的公式。

设V是一个向量空间,A和B是V的两个基,x是V中的一个向量,那么基变换公式可以表示为:x=AxB,其中A和B分别是x在基A和基B下的坐标。

坐标变换公式是用于描述一个坐标系中的点在不同坐标系之间的变换关系的公式。

设P是一个点在直角坐标系O-xyz中的坐标,P'是该点在另一个直角坐标系O'-x'y'z'中的坐标,旋转矩阵R和平移向量T分别是O-xyz和O'-x'y'z'之间的变换关系,那么坐标变换公式可以表示为:P'=RP+T。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渡矩阵.其中
1 (1,0,L ,0), 2 (0,1,L ,0),L , n (0,L ,0,1) 1 (1,1,L ,1),2 (0,1,L ,1),L ,n (0,L ,0,1) 并求向量 (a1,a2 ,L ,an )在基 1,2 ,L ,n 下的坐标.
§6.4 基变换与坐标变换
即,1,2 ,L ,n也可由 1, 2 ,L , n 线性表出.
1,2 ,L
,n与1, 2 ,L
,
等价.
n
§6.4 基变换与坐标变换
故 1, 2,L , n 线性无关,从而也为V的一组基. 并且A就是1,2 ,L ,n到1, 2 ,L , n 的过渡矩阵. (2)若由基 1,2 ,L ,n到基1, 2 ,L , n 过渡矩阵为A, 则由基 1, 2 ,L , n到基1,2 ,L ,n 过渡矩阵为A-1.
L
a12 1
LL
a1n 1
L
a22 2 L
LLLL
a2n 2 L
L
an2 n
LL
ann n

即,
§6.4 基变换与坐标变换
a11 a12 L a1n
(1, 2 ,L
, n )
(1, 2 ,L
,
n
)
a21 L
a22 L LL
a2n L

an1 an2 L ann
a11 a12 L
§6.4 基变换与坐标变换
反过来,设 A (aij )nn 为P上任一可逆矩阵,
任取V的一组基 1,2 ,L ,n ,
n
令 j aiji , j 1,2,L , n
i 1
于是有, (1, 2 ,L , n ) (1,2 ,L ,n ) A
由A可逆,有 (1,2,L ,n ) (1, 2,L , n )A1
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 §6 子空间的交与和
与简单性质
§7 子空间的直和
§3 维数·基与坐标
§8 线性空间的同构
§4 基变换与坐标变换
§6.4 基变换与坐标变换
一、基变换 二、坐标变换
§6.4 基变换与坐标变换
引入
n维线性空间V中,任意n个线性无关的向量都 可取作线性空间V的一组基.V中任一向量在某一 组基下的坐标是唯一确定的,但是在不同基下的坐 标一般是不同的.因此如何选择适当的基使我们所 讨论的向量的坐标比较简单是一个实际的问题.
又由基 1, 2 ,L , n到1,2 ,L ,n 也有一个过渡矩阵,
设为B,即 (1,2 ,L ,n ) (1, 2 ,L , n )B

比较③ 、④两个等式,有
(1, 2 ,L , n ) (1, 2 ,L , n )BA
(1,2 ,L ,n ) (1,2 ,L ,n ) AB Q 1,2 ,L ,n; 1, 2 ,L , n 都是线性无关的, AB BA E. 即,A是可逆矩阵,且A-1=B.
则称矩阵
A
a21 L an1
a22 L an2
L L L
a1n
a2n L ann
为由基1 , 2 ,L , n到基 1, 2 ,L , n 的过渡矩阵
(transition matrix);
称 ① 或 ② 为由基 1 , 2 ,L , n到基 1, 2 ,L , n
的基变换公式.
§6.4 基变换与坐标变换
解:
1 1 2 L n

2LnLL
2
L
L
L L
L
n
n
1 0 L 0

(1,2 ,L
,n )
(1, 2,L
,
n
)
1 L 1
1 L 1
L L L
为此我们首先要知道同一向量在不同基下的坐 标之间有什么关系,即随着基的改变,向量的坐标 是如何变化的.
§6.4 基变换与坐标变换
一、基变换
1、定义
设V为数域P上n维线性空间,1, 2 ,L , n ; 1, 2 ,L , n 为V中的两组基,若
1 a111 a21 2 L an1 n
Ln2
§6.4 基变换与坐标变换
(3)若由基 1,2 ,L ,n到基1, 2 ,L , n 过渡矩阵为A, 由基 1, 2 ,L , n到基 1, 2 ,L , n 过渡矩阵为B, 则由基 1,2 ,L ,n到基 1, 2 ,L , n 过渡矩阵为AB. 证:若 (1, 2 ,L , n ) (1,2 ,L ,n ) A
2、有关性质
(1)过渡矩阵都是可逆矩阵;反过来,任一可逆矩阵
都可看成是两组基之间的过渡矩阵.
证:若 1,2 ,L ,n; 1, 2 ,L , n 为V的两组基, 且由基 1,2 ,L ,n到1, 2 ,L , n 的过渡矩阵为A,
即 (1, 2 ,L , n ) (1,2 ,L ,n ) A

§6.4 基变换与坐标变换

x1 a11 a12 L a1n 1 x1

x2 xMn
a21 L an1
a22 L an2
L L L
a2n L ann
x2
xMn

称⑥或⑦为向量ξ在基变换⑤下的坐标变换公式.
§6.4 基变换与坐标变换
例1 在Pn中,求由基 1, 2 ,L , n 到基1,2 ,L ,n 的过渡矩阵及由基1,2 ,L ,n 到基 1,2 L a1n
(1, 2 ,L
, n )
(1, 2 ,L
,
n
)
a21 L an1
a22 L an2
L L L
a2n L ann

§6.4 基变换与坐标变换
设 V 且ξ 在基 1, 2 ,L , n 与基 1, 2 ,L , n
下的坐标分别为 ( x1, x2 ,L , xn ) 与 ( x1 , x2 ,L , xn ) , 即,
( 1, 2 ,L , n ) (1, 2 ,L , n )B 则有,( 1, 2 ,L , n ) ((1,2 ,L ,n ) A)B
(1,2 ,L ,n )AB
§6.4 基变换与坐标变换
二、坐标变换
1、定义
V为数域P上n维线性空间 ,1, 2 ,L , n;
1
,
2
,L
,
n
为V中的两组基,且
x1
x1
(1, 2 ,L
,
n
)
x2 M

(1, 2 ,L
,
n
)
x2 M
xn
xn
§6.4 基变换与坐标变换
x1 a11 a12 L a1n x1

x2 M xn
a21 L an1
a22 L an2
L L L
a2n L ann
x2 M xn
相关文档
最新文档