差微分方程模型简介

合集下载

第四章差分方程建模

第四章差分方程建模
yn y0 ( xn x0 ), 0,......... .......... .......... .......... ...(9) xn1 x0 ( yn y0 ), 0,......... .......... .......... .........( 10)
(步二)根据特征根的不同情况,求齐次方程(2)的通解
情况1 若特征方程(3)有n个互不相同的实根
1

,…,
n ,则齐次方程(2)的通解为
t C11 C n tn (C1,…,Cn为任意常数)
情况2 若λ 是特征方程(3)的k重根,通解中对应 k 1 t (C1 C k t ) 于λ的项为
出下一个点的一个坐标分量,并确认它在哪条曲线上,就可以画出这个点;有时
或者可由前两个点决定下一个点的一个坐标分量),也就是通过直观、几何形 式,把我们关心的变量的所有可能取值表示出来。
这里采用的方法是,引入两条曲线,因为在曲线上如果知道了 一个分量,就可以作出另一个分量。可见几何形式表示有关系 的变量是既方便又有意义的。
满足一差分方程的序 列yt称为此差分方程的解。类似于微分 方程情况,若解中含有的独立常数的个数等于差分方程的阶 数时,称此解为该差分方程 的通解。若解中不含任意常数, 则称此解为满足某些初值条件的 特解,例如,考察两阶差 分方程 易见
yt sin 与 yt cos 均是它的特解,而 2 2 yt c1 sin t c2 sin t 2 2则为它的通解,其 中c1,c2为两个任
m A0 (1 r ) [(1 r ) k 1], k 0,1,2,... r
k
这就是差分方程(4)的解。把已知数据 A0 , r 代 入 A12n 0 中,可以求出月还款额。例如: m 444 .356 A 10000 , r 0.0052125 ,n 2 时,可以求出: 元。 • 模型的进一步拓广分析:拓广分析包括条件的改 变、目标的改变、某些特殊结果等。如果 令 Ak A ,则 A m ,并且

差分方程模型的基本概念

差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。

差分方程简介

差分方程简介
2 n yxn c1 y c y ... ( 1 ) yx n x n1 n x n 2
k (1) Cn y x nk k 0 n k
,
!n ! ) k n ( !k
k n
C中 其 且规定0 yx yx f ( x)
由定义知, y f ( x)的n阶差分 是f ( x n), f ( x n 1),...f ( x 1), f ( x) 的线形组合,
(3)(ayx bzx) ayx bz x
(4)(yx zx) yx1zx zx yx yx zx zx1yx
yx z x y x y x z x (5)( ) (其中z x 0) zx z x z x1
二、差分方程
定义2 含有自变量,未知函数及未知函数差 分的方程,称为差分方程,其一般形式为
yx1 yx yx
yxn yx C yx C y ... C y yx
n
n1 n1 n x
C yx
k 0 k n k
n
由定义容易证明,差分具有以下性质
(1)(c) o(c为常数)
(2)(cyx) cyx (c为常数)
y x5 y x3 4 y x 2 y x e x 是五阶差分方程, 因为(x 5) x 5;
方程3 y x yx 1 0可转化为yx 3 3 y x 2 3 y x 1 1 0, 因而是2阶差分方程
定义4 如果某个函数代入差分方程后能使差分方程 成为恒等式,则称此函数为该差分方程的解。
反之函数y f ( x)的各个函数值也可以 用y x f ( x)和它的各阶差分式表示 。即

第4次课:差分方程模型

第4次课:差分方程模型

模型的差分方程与分析 点 P ( x0 , y0 ) 满足 y0 f ( x0 ), x0 g ( y0 ) ,在 P 0 0 点附近取直线来近似曲线 y f ( x), x g ( y) :
yk y0 ( xk x0 ), 0 xk 1 x0 ( yk y0 ), 0
... 0 ... 0 ... 0 ... ... ... 1
考虑收获的情况,设收获向量为 y ( y1 , y2 ,..., yn ) ,
T

根据假设(3),砍伐的总数和补种的幼苗数相等, n n 记 矩阵为 1 1 ... 1 y1 y2 ... yn 0 0 ... 0 0 R ,则 R y ... ... ... ... ... 0 0 0 ... 0
7.2 供需平衡问题
7.2.1 问题的背景与提出
在自由竞争的社会中,很多领域会出现供需平衡 问题。供大于需时,供给减少;需大于供时,供给增 加。这种现象在经济领域中尤其突出,从自由集市上 某种商品的供需变化中可以看到,在某一时期,商品 的上市量过于大于需求量时,就会引起价格的下跌。 生产者觉得无利可图就会减产或转产,从而导致上市 量大减。一段时间之后,随着产量的下降,带来的供 不应求又会导致价格上涨,生产者见有利可图就会增 产或转回该商品的生产,随之而来的,又会出现商品 过剩,价格下降。在没有干预的情况下,这种现象将 循环下去。
*
yn1 qn2 xn2 q x
*
……
* 3 3
(7)
* n 1 n 1
yn q x
* n 1 n 1
因为 y 是收获向量,则 yi 0, i 1,2,..., n 。又由 于幼苗的经济价值为0,故不砍伐幼苗,即 y1 0 。 xk 代替 xk * ,从式(7)有 仍用

差分方程模型(讲义)

差分方程模型(讲义)

差分方程模型一.引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。

1. 确定性连续模型1)微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。

2)微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。

3)稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。

4)变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。

2. 确定性离散模型1)逻辑方法建模,如效益的合理分配模型、价格的指数模型。

2)层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。

3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。

4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。

随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。

在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。

有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。

例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic 模型),又可建立人口差分方程模型。

这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。

有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。

但是, 往往都需要用计算机求数值解。

这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。

第七章 差分方程模型

第七章 差分方程模型

1. 使 α 尽量小,如 α=0 尽量小, 需求曲线变为水平 以行政手段控制价格不变 2. 使 β 尽量小,如 β =0 尽量小, 供应曲线变为竖直 靠经济实力控制数量不变
0
x0
x
模型的推广 生产者管理水平提高
• 生产者根据当前时段和前一时 段的价格决定下一时段的产量。 段的价格决定下一时段的产量。
αβ < 1 放宽了
7.2 减肥计划 减肥计划——节食与运动 节食与运动 背 景
• 体重指数 体重指数BMI=w(kg)/l2(m2). 18.5<BMI<25 ~ 正常; 超重; 肥胖. 正常; BMI>25 ~ 超重 BMI>30 ~ 肥胖 • 多数减肥食品达不到减肥目标,或不能维持 多数减肥食品达不到减肥目标, • 通过控制饮食和适当的运动,在不伤害身体 通过控制饮食和适当的运动, 的前提下, 的前提下,达到减轻体重并维持下去的目标
t t +1 t
∆2 yt = ∆(∆yt ) = ∆yt+1 −∆yt = yt+2 −2yt+1 + yt
为的二阶差分。类似地,可以定义 阶差分。 为的二阶差分。类似地,可以定义yt的n阶差分。 二阶差分 阶差分 差分方程, 由t、yt及yt的差分给出的方程称 为yt差分方程,其中含的最 、 高阶差分的阶数称为该差分方程的阶 高阶差分的阶数称为该差分方程的阶。差分方程也可以写成 不显含差分的形式。例如, 不显含差分的形式。例如,二阶差分方程 ∆2 yt + ∆yt + yt = 0 也可改写成 yt+2 − yt+1 + yt = 0
基本模型
w(k) ~ 第k周(末)体重 周 末 体重 c(k) ~第k周吸收热量 第 周吸收热量

差分方程模型

差分方程模型
洛阳理工学院数学建模竞赛培训教案
差分方程模型
周家全
对连续型变化的问题而言, 常常可建立微分方程模型. 而对离散状态转移的问题, 则可建立差分方程模型. 差分方 程与常微分方程有很多类似的性质和结论.首先引入差分的 概念.
1 差分定义及其性质
定义 设函数 y = y(x) 在等距节点 xi = x0 + ih ( i = 0,1, , n)
对于一般的差分方程 xn+2 + axn+1 + bxn = f 来讲, 其平衡 点的稳定性问题可以同样给出. 二阶方程的上述结果可以推
广到 n 阶线性差分方程, 即稳定平衡点的条件是特征根: n
次代数方程的根 λi (i = 1, 2, , n) 均有| λi |< 1.
4 经济学中的蛛网模型
1. 提出问题 在自由竞争的社会中, 很多领域会出现循环波动的现象. 在经济领域中, 可以从自由集市上某种商品的价格变化看到 如下现象:在某一时期, 商品的上市量大于需求, 引起价格 下跌, 生产者觉得该商品无利可图, 转而经营其它商品;一

Δf (0) = f (0.5) − f (0) = 0.75 ,
-2-
洛阳理工学院数学建模竞赛培训教案
Δf (0.5) = f (1) − f (0.5) = 1.25
周家全
Δ2 f (0)= Δ(Δf (0)) = Δf (0.5) − Δf (0) = 1.25 − 0.75 = 0.5
计算较多点的差分可按差分表进行, 容易看出表中每一 个需要计算的差分值分别等于其左侧的数减去左上侧的 数.每个点 xi 处的各阶差分位于与主对角线平行的斜线上.
(I) 先求解对应的特征方程
a0λn + a1λn−1 + + a0 = 0

第九章--微分方程与差分方程简介

第九章--微分方程与差分方程简介
19
于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx

yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f

差分方程模型的理论和方法

差分方程模型的理论和方法

差分方程模型的理论和方法1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。

通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。

差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。

通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

2、应用:差分方程模型有着广泛的应用。

实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。

差分方程模型有着非常广泛的实际背景。

在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。

可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。

或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。

在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。

一阶常微分方程-高阶常微分方程-方程组-差分方程-偏微分方程模型

一阶常微分方程-高阶常微分方程-方程组-差分方程-偏微分方程模型

计可以通过
dN / dt r sN , s r
N
进行线性拟合。其中
Nm
dN / dt N / t
。而
模型的检验也可以通过这两个参数的估计
量与一个实际的人口数量之间进行比较加
以检验。
(5) 阻滞增长模型不仅能够大体上描述人 口及许多物种的变化规律,而且在社会经
济领域中有广泛的应用,如耐用消费品的 销售量也可以用此模型来描述。
新技术推广模型
一项新技术如何在有关企业中推广,是 人们最为关心的问题,也就是说,一旦一家企 业采用了一项新技术,那么行业中的其他企 业将以怎样的速度采用该技术?哪些因素 将影响到技术的推广?下面我们在适当的 条件下讨论此问题。
记p(t)为t 时刻采用该技术的企业数。并
设 p(t)连续可微。假设未采用该技术者之所 以决定采用该技术,是因为其已知有的企 业采用了该技术并具有成效。即是以“眼 见为实”作为决策依据的,亦即“示范效应” 在起作用。
增长率递增的现象),但是随着人口数的 增加,人口的年增长率将呈现逐年递减的 现象。再考虑到环境适应程度的制约,想 象人口的增长不可能超过某个度。
(2)对于其中常数增长率r 的估计可以使用 拟合或者参数估计的方法得到。
(3)在实际情况下,可以使用离散的近似 表达式 N (t) N0 (1 r)t 作为人口的预测表 达式。
在式 (1) 中,设
A A0ert ( A0 , r 0)
即自发支出有一个常数增长率r ,则式 (2) 的
解为
Y (t)
(
A0
r)
e t
Y0
(
A0
r)
e
t
由此可见:
(1)当
r

差分方程

差分方程

第八章 差分方程模型在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。

例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。

这些量是变量,通常称这类变量为离散型变量。

描述离散型变量之间的关系的数学模型成为离散型模型。

对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。

下面介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。

函数的差分对离散型变量,差分是一个重要概念。

下面给出差分的定义。

设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。

显然,t y 的取值是一个序列。

当自变量由t 改变到1+t 时,相应的函值之差称为函数)(t f y t =在t 的一阶差分,记作t y ∆,即)()1(1t f t f y y y t t t -+=-=+∆。

由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。

当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。

按一阶差分的定义方式,我们可以定义函数的高阶差分。

函数)(t f y t =在t 的一阶差分的差分为函数在t 的二阶差分,记作t y 2∆,即)()()(11212t t t t t t t t y y y y y y y y ---=-==++++∆∆∆∆∆t t t y y y +-=++122。

依次定义函数)(t f y t =在t 的三阶差分为t t t t t t t y y y y y y y ∆∆∆∆∆∆∆∆+-=-==+++12212232)(t t t t y y y y -+-=+++12333。

常见的微分方程模型

常见的微分方程模型

常见的微分方程模型引言微分方程是数学中的一个重要分支,用于描述自然界中的各种现象和规律。

微分方程模型是一类特定形式的微分方程,常用于解决实际问题。

本文将介绍几个常见的微分方程模型,并讨论它们在不同领域中的应用。

1. 简单增长模型简单增长模型描述了一个系统中某个物质或某个群体数量随时间变化的规律。

它可以用以下形式表示:dNdt=rN其中,N表示物质或群体的数量,t表示时间,r表示增长率。

这个模型可以应用于人口增长、细菌繁殖等问题。

例如,在人口学中,我们可以使用简单增长模型来预测未来人口数量的变化趋势。

2. 指数衰减模型指数衰减模型描述了一个系统中某个物质或某个群体数量随时间指数衰减的规律。

它可以用以下形式表示:dNdt=−rN其中,N表示物质或群体的数量,t表示时间,r表示衰减率。

这个模型可以应用于放射性元素的衰变、药物的消失等问题。

例如,在医学中,我们可以使用指数衰减模型来预测药物在人体内的浓度随时间的变化。

3. 指数增长模型指数增长模型描述了一个系统中某个物质或某个群体数量随时间指数增长的规律。

它可以用以下形式表示:dN dt =rN(1−NK)其中,N表示物质或群体的数量,t表示时间,r表示增长率,K表示系统的容量。

这个模型可以应用于生态学中研究种群数量随时间变化的问题。

例如,在生态学中,我们可以使用指数增长模型来研究某种生物在特定环境下的种群动态。

4. 鱼类生长模型鱼类生长模型描述了鱼类体重随时间变化的规律。

它可以用以下形式表示:dW dt =rW(1−WK)其中,W表示鱼类的体重,t表示时间,r表示生长速率,K表示饱和重量。

这个模型可以应用于渔业学中研究鱼类养殖和捕捞的问题。

例如,在渔业学中,我们可以使用鱼类生长模型来预测鱼类的生长轨迹和最优捕捞量。

5. 热传导方程热传导方程描述了物体内部温度随时间和空间变化的规律。

它可以用以下形式表示:∂u ∂t =α∂2u∂x2其中,u(x,t)表示物体在位置x处、时间t时的温度,α表示热扩散系数。

差分方程与微分方程的区别及其应用场景

差分方程与微分方程的区别及其应用场景

差分方程与微分方程的区别及其应用场景差分方程和微分方程是数学中常见的两种形式,它们对于数学研究乃至各个领域的实际问题求解都起到了重要的作用。

尽管两者都是用来描述系统的量随时间的变化规律,但是它们之间却有很多的不同点。

本文将会简要介绍差分方程和微分方程的异同及其应用场景。

一、差分方程和微分方程的基本介绍差分方程和微分方程都是对于数量随时间变化的基本描述形式,一个是离散的,一个是连续的。

差分方程是一种离散的机率模型,其中它的连续性由于时间间隔的取值越来越小而被更多地接受。

差分方程是通过将某个时间点的函数值和以前的函数值进行比较得到的。

相对而言,微分方程是一种连续的机率模型,它描述了某个参数随时间的变化。

微分方程表示函数的导数与未知函数本身之间的关系。

这两种方程常常用于各个领域中的模型研究和实际问题求解。

二、差分方程和微分方程的区别1. 描述时间的连续性不同微分方程描述的是连续的时间变化,可以描述任意时刻参数的变化情况,而差分方程则只能描述时间间隔相等的离散状态的变化情况。

2. 解析解的形式不同微分方程通常能够求得解析解,而差分方程在一些情况下只能得到近似解,因为离散形式的特殊性质使得解析解很难求出。

3. 应用范围不同微分方程通常应用于连续系统的建模和分析,例如机械振动、物理学等领域。

由于差分方程更适合于描述离散化时间的变化,因此它通常应用于信息与计算领域,例如图像处理、统计模型等领域。

三、差分方程和微分方程的应用场景1. 差分方程的应用1) 图像处理和数字信号处理差分方程在数字图像处理和数字信号处理中有着广泛的应用,如滤波,动态规划,卷积等算法都是基于差分方程的。

2) 计算机科学和机器学习在机器学习中,差分方程被用于对时间序列数据进行建模,例如根据过去的价格预测股票未来价格、预测气候变化等。

3)统计学与经济学在经济学中,差分方程能够用来描述现金流、投资的情况等;另外,在概率统计学中常常使用离散时间马尔可夫链,这也是差分方程的应用之一。

微分方程与差分方程建模

微分方程与差分方程建模

p(r , t )dr p(r dr1 , t dt)dr (r, t ) p(r, t )drdt
[ p(r dr1 , t dt ) p(r , t dt )] [ p(r , t dt ) p(r , t )] (r , t ) p(r , t )dt , dt dr1
3)平均寿命
S (t ) t e


0 ( r ,t ) dr
t
d
t时刻出生的人,死亡率按 (r,t) 计算的平均存活时间
4)老龄化指数
控制生育率
(t ) R(t ) / S (t )
控制 N(t)不过 大 控制 (t)不过 高
Malthus模型和Logistic模型的总结 Malthus模型和Logistic模型均为对微分方程(3.7) 所作的模拟近似方程。前一模型假设了种群增长率r为一常 数,(r被称为该种群的内禀增长率)。后一模型则假设环 境只能供养一定数量的种群,从而引入了一个竞争项。 用模拟近似法建立微分方程来研究实际问题时必须对 求得的解进行检验,看其是否与实际情况相符或基本相符。 相符性越好则模拟得越好,否则就得找出不相符的主要原 因,对模型进行修改。 Malthus模型与Logistic模型虽然都是为了研究种群数量的 增长情况而建立的,但它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程即可。
模型4
di dt si i ds si dt i (0) i0 , s (0) s0
SIR模型
消去dt /
1 di ds s 1 i s s i0
0
相轨线
相轨线 i (s ) 的定义域

差分方程

差分方程

第八讲 差分方程模型一、差分方程介绍规定t 只取非负整数。

记为变量在t 点的取值,则称t y y t t t y y y −=Δ+1为的一阶向前差分,简称差分,称Δ为的二阶差分。

类似地,可以定义的阶差分。

t y t t t t t y t t y y y y y y +−=Δ−Δ=ΔΔ=+++12122)(t y t y n t ny Δ由及的差分给出的方程称为的差分方程,其中含的最高阶差分的阶数称为该差分方程的阶。

差分方程也可以写成不显含差分的形式。

例如,二阶差分方程也可改写成t y t 、t y t y t y 02=+Δ+Δt t t y y y 012=+−++t t t y y y 。

满足一差分方程的序列称为差分方程的解。

类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。

若解中不含任意常数,则称此解为满足某些初值条件的特解。

t y 称如下形式的差分方程)(110t b y a y a y a t n t n t n =+++−++L (1) 为阶常系数线性差分方程,其中是常数,n n a a a ,,,10L 00≠a 。

其对应的齐次方程为0110=+++−++t n t n t n y a y a y a L (2)容易证明,若序列与均为(2)的解,则也是方程(2)的解,其中为任意常数。

若是方程(2)的解,是方程(1)的解,则也是方程(1)的解。

)1(t y )2(t y )2(2)1(1t tt y c y c y +=21,c c )1(t y )2(t y )2()1(t t t y y y +=方程(1)可用如下的代数方法求其通解: (I )先求解对应的特征方程(3)00110=+++−a a a n nL λλ(II )根据特征根的不同情况,求齐次方程(2)的通解。

(i )若特征方程(3)有n 个互不相同的实根n λλ,,1L ,则齐次方程(2)的通解为t n n t c c λλ++L 11 (为任意常数)n c c ,,1L (ii )若λ是特征方程(3)的重根,通解中对应于k λ的项为t k k tc c λ)(11−++L ,),,1(k i c i L =为任意常数。

5 第3章 差分方程模型(一)

5 第3章 差分方程模型(一)

3.1.4 平衡点和渐近稳定性
差分方程的解 {xk } 的极限 lim xk 刻画了动态过程
k
长期变化之后的结局. 极限 lim xk 与差分方程的平衡
k
点及渐进稳定性有密切关系. 对于一阶差分方程(3.1.2)式,令 xk 1 xk x ,就 得到一元代数方程 (3.1.5) x F ( x) (3.1.5)式的解 x x 就是(3.1.2)式的平衡点.
3.2.2 一阶线性常系数 非齐次差分方程
如果 r≠0,(3.2.4)式有且仅有平衡点 x b r . 容 易证明: 平衡点 x b r 是渐进稳定的当且仅当 −2<r<0. 平衡点 x b r 的渐进稳定性也属于全局渐 进稳定性.
3.2.3 濒危物种的自然演变 和人工孵化
是(3.1.2)式的常数解,并且有 xk 0, k 0,1, 2, .
3.1.4 平衡点和渐近稳定性
对于二阶差分方程(3.1.4)式,令 xk 2 xk 1 xk x 就得到一元代数方程 x F ( x, x) (3.1.6)式的解 x x 就是(3.1.4)式的平衡点.
第3章
差分方程模型
3.2节
一阶线性常系数 差分方程及其应用
3.2.1 一阶线性常系数 齐次差分方程
一阶线性常系数齐次差分方程形如: (3.2.1) xk 1 (1 r ) xk , k 0,1, 2, 其中 r 是常数. 在建模的时候,(3.2.1)式中的 xk 是实 际对象在第 k 时段的状态值,参数 r 是相邻时段的用 前差公式计算的增长率: xk 1 xk (3.2.2) r , k 0,1, 2, xk 由(3.2.2)式可见, (3.2.1)式的模型假设为 “用前差公式 计算的增长率为常数”.

差分方程模型

差分方程模型

(2)模型的建立 以1年为一个离散化的时间单位。 记年初鱼群为X(t)=(X1(t), X2(t), X3(t), X4(t))T, 下 一 年 的 鱼 群 数 为 X(t+1)=(X1(t+1), X2(t+1), X3(t+1), X4(t+1))T 。显然, Xi(t+1) 是 Xi-1(t+1) 到 年底存活下来的鱼群数(i=1,2,3,i=4时X4(t+1)中 还包括 X4(t) 中的存活数。 X0(t) 是指上一年由卵 孵化而得到的1龄鱼),据此可建立如下差分方 程: X2(t+1)=c X1(t); X3(t+1)= c X2(t); X4(t+1)=(c-k3)X3(t)+(c-k4)X4(t);
t 2 t
2
t c 2 sin
则为它的通解,其 中c1,c2为两个 类似于微分方程,称差分方程
2
t
a 0 ( t ) y t n a1 ( t ) y t n 1 a n ( t ) y t b( t )
为n阶线性差分方程, 当 b( t )≠0时称其为n阶非齐次线性差 分方程,而
从而有: 一年后3龄鱼实际存活数:(1-α -k3)8(1-α )4X3; 一年后4龄鱼实际存活数:(1-α -k4)8(1-α )4X4; 该年3龄鱼总捕捞量: ,
k3 1 (1 k3 ) 3 (1 k3 ) k3 X 3 k3 i
8 i 1


该年4龄鱼总捕捞量:
三 建模案例--最优捕鱼策略
问题简介 生态学原理:对可再生资源的开发策略应为在可持 续收获的前提下追求最大经济效益。 考虑4个年龄组:1龄鱼,2龄鱼,3龄鱼,4龄鱼的 某鱼类。该鱼类在每年后4个月产卵繁殖。因而 捕捞只能在前8个月进行。每年投入的捕捞能力 不变,单位时间捕捞量与各年龄组鱼群条数的比 例称为捕捞强度系数。且只能捕捞3、4龄鱼,两 个捕捞强度系数比为0.42:1。即为固定努力量 捕捞。

微分方程和差分方程简介

微分方程和差分方程简介
y f (x, y)
常用的解法:分离变量法
形如
dy f (x)g( y) dx
P (x)P ( y)dx Q (x)Q (x) 0
1
2
1
2
的方程均为可分离变量的微分方程。
对(2)式两端分别积分,便可得到微分方程的通解
g( y)dy f (x)dx C
其中C为任意常数。
例1 求微分方程 y 3x2 y的通解。
特征方程 r2 pr q 0的根 两个相异实根 r1 r2 两个相等实根 r r1 r2 一对共扼复根 r1,2 i
齐次方程y py qy 0的通解
y C1er1x C2er2 x y (C1 C2 x )erx
y (C1 cos x C2 sin x)ex
二阶非齐次常系数微分方程
微分方程与差分方程简介
我们知道,函数是研究客观事物运动规律的重要 工具,找出函数关系,在实践中具有重要意义。可在 许多实际问题中,我们常常不能直接给出所需要的函 数关系,但我们能给出含有所求函数的导数(或微分) 或差分(即增量)的方程,这样的方程称为微分方程 或差分方程.
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
记号: 在表达微分方程时,用字母 D 表示求微分,D2、D3 等
表示求高阶微分.任何 D 后所跟的字母为因变量,自变量可以指
定或由系统规则选定为确省.
例如,微分方程

1、用差商代替导数
若步长h较小,则有
y'(x) y(x h) y(x) h

数学建模方法之差分方程模型

数学建模方法之差分方程模型

数学建模方法之差分方程模型差分方程模型是数学建模中常用的一种方法,它基于差分方程来描述问题,并用差分方程来求解问题。

所谓差分方程,是指用差分代替微分的方程,它是一种离散的模型。

在实际问题中,很多情况下,并不能直接通过微分方程来描述问题,而差分方程模型则可以通过离散化的方法来近似地描述问题。

差分方程模型的优点之一是可以适用于离散化的数据,对于实际问题的离散化模型建立是非常有帮助的。

差分方程模型的另一个优点是可以通过数值方法来求解,不需要进行繁琐的解析推导,因此适用于复杂问题的求解。

差分方程模型的基本形式为:yn+1 = fn(yn, yn-1, ..., yn-k)其中,yn表示第n个时刻的解,fn是一个给定的函数,表示通过前k个时刻的解来计算第n+1个时刻的解。

这个方程是离散的,通过已知的初始条件来逐步递推获得结果。

差分方程模型的适用范围非常广泛,可以用于描述和预测各种动态过程。

例如,差分方程模型可以用来描述人口增长模型、生态系统模型、传染病模型等等。

在这些例子中,差分方程模型可以通过已知的数据和初始条件来预测未来的发展趋势。

差分方程模型的建立步骤主要包括以下几个方面:1.确定问题的描述和目标:明确问题的背景和目标,确定需要建立差分方程模型的原因和用途。

2.确定模型的变量和参数:根据实际问题,确定需要用到的变量和参数。

3.确定差分方程的形式和函数:根据问题的特点和要求,选择合适的差分方程形式和函数。

这部分需要结合实际问题和数学方法来确定。

4.确定初始条件和边界条件:确定差分方程模型的初始条件和边界条件。

这部分是求解差分方程的前提条件。

5.差分方程的求解和分析:通过数值方法求解差分方程,得到数值解,并对结果进行分析和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此为著名的leslie矩阵模型.
7.具有扩散的单种群模型 具有扩散的单种群模型 由于环境容纳量的限制或者环境条件的改变等影响,种群 有时会在两个或多个栖息地间迁徙. 种群规模(密度)大的 斑块上种群通常向种群规模(密度)小的斑块迁徙或扩散.
x dx1 = x1 (1 − 1 ) + D1 ( x2 − x1 ) dt K1 dx2 = x (1 − x2 ) + D ( x − x ) 2 2 1 2 dt K2
x,y分别表示两种群的规模(密度),系数b1与c2为非正常数,反映 两种群的密度制约因素.c1与b2反映另一种群对本种群的影响 因素.a1与a2分别为两种群的内禀增长率. (1)捕食型:c1b2<0,如鱼和虾米. (2)竞争型:c1<0,c2<0,每一种群的存在限制另一种群规模的增 长,二者共同竞争资源. (3)合作型:c1>0,c2>0,如蜜蜂和花朵,二者相互促进对方的 增长.
特别地,一阶微分方程为
F ( x, y, y ' ) = 0 or y ' = f ( x, y )
需要注意:n阶微分方程的通解含有n个任意常数. 若需确定 这 n 个任意常数,需给出n个初始条件.但并非每个微分方程 或方程组均可求出其解.
3.差分与差分方程 差分与差分方程 定义3.1 设函数 y=f(x),记为yx .当x 取遍非负整数时,所 定义 得函数值可排成一数列:
dS dt dI dt = − β SI = I (β S − 1 ⇔ ) dI dS = −1 +
ρ
S
(ρ =
1
βτ
)
τ
3. lim S (t ) = S ∞ 存在.
t →∞
4. S = ρ时,达到极大值。故当初始易感者S (0) = S 0 > ρ I
时,随时间的推移,染病者先将增加达到最大值而后逐渐减少 最终消亡. 5.令 R0 = βτS 0 .当R0>1时疾病流行,R0<1时疾病不会流行,染病 者单调减少而趋于零.R0称为基本再生数. 6.为防止疾病的流行,需控制R0<1,即可以加强治疗缩短病程, 也可以通过免疫接种使易感者获得免疫力而直接成为移初者.
6.具有离散年龄结构的单种群模型 把所讨论物种的最大成活年龄区间分成n个相等的子区间, 同时把从t0开始的时间也按与年龄子区间相等的长度加以 划分,在将这两类子区间分别从小到达加以编号,用xij表示在 第j个时间段内年龄位于第i段的种群规模.假定种群的规模 只决定于时间和年龄,或略密度制约因素. a.设pi是年龄处于第i段的个体能活到i+1段的概率,即
xn xn +1 = rxn (1 − ) , n = 0,1, 2, ... K
4.具有时滞的单种群模型 具有时滞的单种群模型 (1)确定时滞模型
1 dx x (t − τ ) = r (1 − ) x dt K
τ 是妊娠所需要的时间.事实上, t时刻种群的相对增长率取决于
t − τ 时刻种群的规模.时刻增加的个体,在 t − τ 时已孕育在母体.
xi +1, j +i = pi xij
b.设Bi是年龄为i段的每一个体在一个时间段内平均生育的 下一代数量,即
x1 j +1 = B1 x1 j + B2 x2 j + B3 x3 j + L + Bn xnj

x1 j +1 = B1 x1 j + B2 x2 j + B3 x3 j + L + Bn xnj x2 j +1 = p1 x1 j x3 j +1 = p2 x2 j LL xnj +1 = pn −1 xn −1 j
x0 , x1 , ..., xn , ...
二.种群动力学模型简介
种群动力学是用动力学的方法去研究种群生态学,而种群生态 学是生态学的一个重要分支,也是迄今为止数学在生态中应用 的最广泛深入,发展的最为系统和成熟的分支. 下面将通过数 学生态学中的一些基本动力学模型,简要介绍建模思想,及常 用的研究方法. 生态学是研究生物的生存条件,生物群与环境之间相互作用的 过程及其规律的科学.在一特定时间内占据一定空间的同一物 种的集合成为一个种群,种群的每个成员成为一个个体. 种群生态学的着眼点在整个种群的演变规律和发展趋势,而往 往忽略个体的特性.
1 dx = r x dt or dx = rx ( t ) dt
X(t)表t时刻人口数,模型表为t时刻种群的变化率是与种群数 目成正比.r为内禀增长率,是种群的出生率b与死亡率d之差.
方程的解为
x = x0 e rt
当 r > 0, x(t ) → +∞ (t → +∞)
Malthus模型当t不很长时是比较符合实际的,但当t趋于无 穷大时x(t)将无限增长是与实际不符的.问题在于建立数学 模型时没有考虑到有限的资源对种群规模增长的制约作用. 2.Logistic模型 模型
类似于常系数线性齐次常微分方程的通解的构造,我们只 需找到该差分方程的n 个线性无关的解,作出其线性组合即 可.
常见的一阶差分方程 设 f 是由区间[a,b]到其自身的一个连续映射,一阶自治差 分方程的一般形式为
xn +1 = f ( xn ) n = 0,1,2...
给定初值
x0 ,通过上式反复迭代上述方程的解为一数列
y0 , y1 , L , y x , L
则差 y x +1 − y x 称为函数有y=f(x) 的一阶差分,记为 ∆y x
即 ∆y x = y x +1 − y x , 从而,∆ ∆y x) ∆y x +1 − ∆y x ( = = y x + 2 − y x +1 − ( y x +1 − y x ) = y x + 2 − 2 y x +1 + y x 记为 ∆2 y x ,即∆2 y x =∆ ∆y x)称为函数的二阶差分. ( ,
2. 常微分方程定义 凡含有未知函数,未知函数的导数与自变量之间的关系的 方程,叫做微分方程.未知函数是一元函数的叫常微分方程, 未知函数是多元函数的叫偏微分方程. 微分方程中所出现 的未知函数的最高阶导数的阶数叫做微分方程的阶.n阶 微分方程形如
F ( x, y, y ' ,..., y ( n ) ) = 0
τ 表示平均
不考虑人口的流动和自然出生和死亡.即环境封闭,切疾病随时间的 变化与自然死亡随时间的变化要显著得多.

dS = dt dI = dt dR = dt
− β SI
β SI −
1
1
τ
I
τ
I
系统性质如下: 1. S(t)+I(t)+R(t)=K, K为总人口,是常数. 2. 系统可简化为如下系统
现实世界中种群不可能单独生存,它必于相关种群相互作用, 相互依存.这样,基于单种群模型,各种多种群相互作用模型被 建立与讨论.
(2)双种群模型
Lotka-volterra 模型
dx = x ( a 1 + b1 x + c 1 y ) dt dy = y (a 2 + b2 x + c2 y ) d与常差分方程的定义 种群动力学模型简介 流行病动力学模型简介 模型性态分析方法简介
一.常微分与常差分方程的定义 常微分与常差分方程的定义
1.导数的定义及其意义 导数的定义及其意义 设函数
y = f (x) 在点
x = x 0 的某域内有定义,则称极限
f '( x0 )
1
S
β SI
I
τ
I
R
把人群分为三类: 1. 易感者类,指t时刻尚未感染但有可能感染成为传染病人者,其数量记 易感者类 为S(t). 2. 染病者类 染病者类,指t时刻已被传染成为病人者,其数量记为I(t). 3. 移除者类 移除者类,指t时刻已恢复且具有免疫力者以及因病死亡者, 其数量记 为R(t). 做如下三个假设: : 1. 2. 3. 单位时间内每一病人接触易感者的数量为 βS ,从而在时刻单位时 间内被所有病人传染的人数为βSI . 单位时间内移出染病者类即恢复的比例为常数 1/τ . 病程时间,在时间τ 内或者病人全部恢复或因病死亡
定义3.3 如果一个函数带入差分方程后,方程两边相等,则 定义 称此函数为差分方程的解.
例: + 2 x为方程y x +1 − y x = 2的解。 13
定义3.4 形如p0 ( x) y x + p1 ( x) y x +1 + L + pn ( x) y x + n = K ( x) 的差分方程成为n阶线性差分方程.当K ( x) = 0时成为线性 齐次差分方程, 否则成为非齐次差分方程. 定义3.5 若p0 ( x), p1 ( x),L , pn ( x)均为常数时, 上述方程 称为线性其次差分方程. 其特征方程记为 : p0 + p1λ + p2 λ2 + L + pn λn = 0 若其根为λi , 则λix为原差分方程的一解.
1 dx x = r (1 − ) x dt K or dx x = rx (1 − ) dt k
K>0为环境容纳量.它表示保持种群规模增长,环境所能容纳 的最大种群规模.种群规模的相对增长率与当时所剩余的资 源份量(1-x/K)成正比.
3.离散的 离散的Logistic模型 离散的 模型 离散模型通常用以描述世代不重叠的种群(蚕).设第n代种群 规模为xn ,则离散的logistic模型为
lim
x→ x
0
相关文档
最新文档