高中数学余弦定理公开课精品教案教学设计
全国高中数学优质课 余弦定理教学设计
《余弦定理》教学设计一、教学内容解析本节内容选自普通高中课程标准实验教科书人教A版《数学》必修5第一章《解三角形》第一节正弦定理和余弦定理。
第一节约4课时,2课时通过探究证明正弦定理,应用正弦定理解三角形;2课时通过探究证明余弦定理,应用余弦定理解三角形。
本节课是余弦定理的第一课时,属于定理教学课。
正余弦定理是定量研究三角形边角关系的基础,它们为解三角形提供了基本方法,为后续解决测量等实际问题提供了理论基础和操作工具。
余弦定理是继正弦定理之后的解三角形又一有力工具,完善了解三角形体系,为解决三角形的边角关系提供了新的方法;是对任意三角形“边、角、边”和“边、边、边”问题进行量化分析的结果,将两种判定三角形全等的定性定理转化为可计算的公式。
纵观余弦定理的发展史,它的雏形出现公元前3世纪。
在欧几里得《几何原本》卷二对钝角三角形和锐角三角形三边关系的阐述中,利用勾股定理将余弦定理的几何形式进行了证明。
1593年,法国数学家韦达首次将欧几里得的几何命题写成了我们今天熟悉的余弦定理的三角形式,直到20世纪,三角形式的余弦定理才一统天下。
“余弦定理是作为勾股定理的推广而诞生的,以几何定理的身份出现,直到1951年,美国数学家荷尔莫斯在其《三角学》中才真正采用解析几何的方法证明了余弦定理,至于向量方法的出现,更是晚近的事了。
”从新旧教材的内容设计对比来看,无论是问题的提出,定理的证明,简单应用都呈现出变化。
旧教材数学第二册(下)中,余弦定理被安排在第五章《平面向量》的第二节解斜三角形中。
基于特殊到一般的数学思想,从直角三角形切入,提出问题后,直接用向量的方法推导定理。
新教材将余弦定理安排在独立章节《解三角形》中,首先给出探究:如果已知一个三角形的两边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形,从量化的角度研究这个问题,也为余弦定理解三角形的类型做了铺垫。
在定理的推导过程中,同样用了向量方法,但在推导前提出思考:联系已经学过的知识,我们从什么途径来解决这个问题?新教材还结合余弦定理和余弦函数的性质,分别对三种形状的三角形进行了量化分析,旧教材没有涉及此内容。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 理解余弦定理的定义和表达式。
2. 学会运用余弦定理解决三角形中的边角问题。
3. 掌握余弦定理在实际问题中的应用。
二、教学内容1. 余弦定理的定义和表达式。
2. 余弦定理的应用举例。
三、教学重点与难点1. 重点:余弦定理的定义和表达式,余弦定理的应用。
2. 难点:余弦定理在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解余弦定理的定义和表达式。
2. 采用案例分析法,通过举例让学生学会运用余弦定理解决实际问题。
3. 采用练习法,巩固学生对余弦定理的理解和应用。
五、教学过程1. 导入:通过复习正弦定理和余弦函数的知识,引出余弦定理的概念。
2. 新课讲解:讲解余弦定理的定义和表达式,举例说明余弦定理的应用。
3. 案例分析:分析实际问题,让学生运用余弦定理解决问题。
4. 练习巩固:布置练习题,让学生巩固余弦定理的知识。
5. 总结:对本节课的内容进行总结,强调余弦定理的重要性和应用。
教案仅供参考,具体实施可根据实际情况进行调整。
六、教学评估1. 课堂问答:通过提问方式检查学生对余弦定理的理解和掌握程度。
2. 练习题:布置课堂练习题,评估学生运用余弦定理解决实际问题的能力。
3. 课后作业:布置课后作业,巩固学生对余弦定理的知识。
七、教学拓展1. 引导学生思考余弦定理在现实生活中的应用,如测量三角形的角度和边长。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
八、教学反思1. 反思本节课的教学效果,检查学生对余弦定理的掌握程度。
2. 分析学生的反馈意见,调整教学方法和策略。
九、教学资源1. 教案、PPT、教材等教学资料。
2. 练习题、测试题等教学资源。
3. 互联网资源,如相关学术文章、教学视频等。
十、教学计划1. 下一节课内容:介绍余弦定理在实际问题中的应用,如几何图形中的角度计算。
2. 教学目标:让学生学会运用余弦定理解决实际问题,提高解决问题的能力。
余弦定理的教案(通用3篇)
余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
人教版高中数学余弦定理教案
人教版高中数学余弦定理教案第一章:余弦定理的概念与表达式1.1 引入余弦定理通过实际问题引入余弦定理的概念,让学生了解余弦定理在几何中的应用。
引导学生思考如何用余弦定理来解决三角形中的问题。
1.2 余弦定理的表述给出余弦定理的数学表达式:a^2 = b^2 + c^2 2bccosA解释余弦定理中的各个符号代表的意思,让学生理解余弦定理的构成。
1.3 余弦定理的应用通过例题讲解如何使用余弦定理来解决三角形中的问题,如求边长、角度等。
引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。
第二章:余弦定理在直角三角形中的应用2.1 直角三角形的余弦定理引入直角三角形的余弦定理:a^2 = b^2 + c^2解释直角三角形中余弦定理的特殊性,让学生理解直角三角形中的余弦定理与一般三角形不同。
2.2 直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决直角三角形中的问题,如求边长、角度等。
引导学生思考余弦定理在直角三角形中的应用,培养学生的实际问题解决能力。
第三章:余弦定理在非直角三角形中的应用3.1 非直角三角形的余弦定理引入非直角三角形的余弦定理:a^2 = b^2 + c^2 2bccosA解释非直角三角形中余弦定理的应用,让学生理解余弦定理在非直角三角形中的重要性。
3.2 非直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决非直角三角形中的问题,如求边长、角度等。
引导学生思考余弦定理在非直角三角形中的应用,培养学生的实际问题解决能力。
第四章:余弦定理在实际问题中的应用4.1 实际问题的引入通过实际问题引入余弦定理在实际中的应用,让学生了解余弦定理在现实生活中的重要性。
引导学生思考如何将实际问题转化为余弦定理问题。
4.2 实际问题中余弦定理的应用通过例题讲解如何使用余弦定理来解决实际问题,如测量三角形的边长、角度等。
引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。
高中数学余弦定理教学设计
高中数学余弦定理教学设计一、教学任务及对象1、教学任务本教学设计的任务是向高中学生传授余弦定理的知识。
余弦定理是解析几何中的重要内容,是解决三角形问题的有力工具。
通过本节课的学习,学生应能掌握余弦定理的推导过程,理解余弦定理的内涵,能够运用余弦定理解决实际问题,并培养他们的逻辑思维能力和空间想象能力。
2、教学对象教学对象为高中二年级的学生。
经过之前的学习,他们已经掌握了平面几何的基本知识,了解了三角函数的基本概念,具有一定的数学基础和分析问题的能力。
在此基础上,学生将通过本节课的学习,进一步深化对三角函数及其应用的理解,为后续学习复数、立体几何等内容打下基础。
同时,考虑到学生的个体差异,教学过程中将注重因材施教,使不同层次的学生都能得到提高。
二、教学目标1、知识与技能(1)理解余弦定理的概念,掌握余弦定理的表达式及其推导过程;(2)能够运用余弦定理解决三角形中的角度和边长问题,特别是在非直角三角形中的应用;(3)掌握余弦定理在实际问题中的应用,如测量、建筑等领域;(4)通过余弦定理的学习,提高学生的逻辑思维能力和空间想象能力;(5)培养学生运用数学知识解决实际问题的能力,增强他们的数学应用意识。
2、过程与方法(1)采用以退为进的教学策略,引导学生从已知的三角函数知识出发,逐步推导出余弦定理;(2)通过以点带面的方法,让学生从特殊到一般,理解余弦定理的普遍适用性;(3)采用以动带静的教学手段,利用多媒体演示余弦定理的推导过程,增强学生的直观感受;(4)通过小组讨论、合作探究,培养学生的团队合作能力和交流表达能力;(5)设计丰富的例题和练习题,让学生在实践中掌握余弦定理的应用。
3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养他们的学习热情和主动性;(2)通过解决实际问题,使学生认识到数学知识在现实生活中的重要作用,增强他们的数学价值观;(3)培养学生面对困难时勇于挑战、积极进取的精神,提高他们克服困难的能力;(4)引导学生形成正确的学习态度,注重知识的学习与技能的培养,同时关注情感、态度与价值观的塑造;(5)通过本节课的学习,使学生体会到团队合作的力量,培养他们的集体荣誉感和社会责任感。
高中数学《余弦定理》教案
高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。
引导学生思考如何用数学表达式来描述这个关系。
1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。
用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。
第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。
通过画图和几何推理,引导学生理解并证明余弦定理。
可以使用三角形的正弦定理和余弦定理的平方关系来证明。
2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。
引导学生理解余弦定理与其他定理之间的关系。
第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。
引导学生运用余弦定理计算三角形的边长和角度。
3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。
第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。
4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。
第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。
引导学生运用余弦定理解决不同类型的问题。
5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。
第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。
引导学生理解解三角形的重要性。
6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。
引导学生运用余弦定理计算三角形的边长和角度。
第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。
高中数学余弦定理教案范例
高中数学余弦定理教案范例
一、教学目标:
1. 了解余弦定理的概念和原理。
2. 掌握余弦定理的公式及应用。
3. 能够运用余弦定理解决相关问题。
二、教学重点:
1. 余弦定理的概念和公式。
2. 余弦定理在解决实际问题中的应用。
三、教学难点:
1. 如何灵活运用余弦定理解决实际问题。
四、教学内容:
1. 余弦定理的引入:介绍余弦定理的概念和原理。
2. 余弦定理的公式推导:通过几何推导,得出余弦定理的公式。
3. 余弦定理的应用:通过一些实际问题示例,让学生掌握余弦定理的应用技巧。
五、教学方法:
1. 讲解与演示相结合,提高学生的理解力。
2. 引导学生思考,激发学生学习的积极性。
3. 练习与实践相结合,巩固知识点。
六、教学步骤:
1. 引入:通过一个实际问题引入余弦定理的概念。
2. 理论讲解:介绍余弦定理的公式及推导过程。
3. 实例讲解:通过几个例题,演示如何运用余弦定理解决问题。
4. 练习与讨论:让学生进行练习,并讨论解题思路。
5. 总结与反思:总结本节课的重点内容,引导学生思考。
6. 作业布置:布置相关作业,巩固所学知识。
七、教学资源:
1. 课本、习题册等相关教材。
2. 多媒体设备。
八、教学反馈:
1. 学生课堂表现情况。
2. 学生作业完成情况。
九、教学评价:
1. 教学效果评价。
2. 学生学习情况评价。
以上是余弦定理的教案范例,希望对您有所帮助。
祝教学顺利!。
(完整版)《余弦定理》教案完美版
《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。
从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义和意义,掌握余弦定理的表达式。
2. 培养学生运用余弦定理解决三角形问题的能力。
3. 培养学生的逻辑思维能力和数学素养。
二、教学重点与难点1. 教学重点:余弦定理的定义和表达式,运用余弦定理解决三角形问题。
2. 教学难点:余弦定理的推导过程,运用余弦定理解决复杂三角形问题。
三、教学方法1. 采用问题驱动法,引导学生主动探究余弦定理。
2. 利用几何画板或实物模型,直观展示三角形中余弦定理的应用。
3. 开展小组讨论,培养学生的合作能力和解决问题的能力。
四、教学准备1. 教师准备PPT,内容包括余弦定理的定义、表达式和应用实例。
2. 准备几何画板或实物模型,用于展示三角形中余弦定理的应用。
3. 准备相关练习题,用于巩固所学知识。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考,激发学生的学习兴趣。
2. 新课讲解:讲解余弦定理的定义和表达式,引导学生理解余弦定理的意义。
3. 实例演示:利用几何画板或实物模型,展示三角形中余弦定理的应用。
4. 小组讨论:让学生分组讨论如何运用余弦定理解决实际问题,培养学生的合作能力和解决问题的能力。
5. 练习巩固:让学生解答相关练习题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调余弦定理的重要性。
7. 作业布置:布置适量作业,让学生进一步巩固余弦定理的应用。
六、教学延伸1. 引导学生思考余弦定理在实际生活中的应用,例如测量三角形的角度、计算三角形的面积等。
2. 介绍余弦定理在其他领域的应用,如物理学、工程学等。
七、课堂小结1. 让学生回顾本节课所学内容,总结余弦定理的定义、表达式和应用。
2. 强调余弦定理在解决三角形问题中的重要性。
八、课后作业1. 完成教材上的相关练习题,巩固余弦定理的知识点。
九、教学反馈1. 在下一节课开始时,检查学生的作业完成情况,了解学生对余弦定理的掌握程度。
数学必修五余弦定理教案(可编辑
数学必修五余弦定理教案(可编辑教案:数学必修五,余弦定理一、教学目标:1.理解余弦定理的概念及原理;2.学会运用余弦定理解决三角形中的实际问题;3.培养学生的逻辑思维和推理能力。
二、教学重点:1.理解余弦定理的概念及原理;2.运用余弦定理解决三角形中的实际问题。
三、教学难点:1.运用余弦定理解决具体问题。
四、教学过程:Step 1 引入与导入(5分钟)1.利用平面上两点间距离公式引入余弦定理;2.通过几个具体实例让学生感触余弦定理的作用。
Step 2 定理说明与证明(10分钟)1.介绍余弦定理的概念和原理;2.利用几何图示证明余弦定理。
Step 3 理解与运用(20分钟)1.引导学生理解余弦定理;2.利用余弦定理计算未知角度的大小;3.利用余弦定理计算未知边长的长度。
Step 4 实际问题的应用(25分钟)1.给出一些实际生活中的问题,如解决航海、测距等问题;2.分组讨论,利用余弦定理解决问题;3.学生进行展示,互相评价讨论,找出最佳解决方案。
Step 5 拓展与应用(15分钟)1.将余弦定理与三角函数的其他定理进行对比;2.引导学生思考余弦定理在其他数学领域的应用。
五、教学辅助手段及教学资源1.平面图示,辅助教学;2.三角量角器,用于演示与实践;3.教学PPT,展示定理证明与解题方法;4.实际问题的示例。
六、教学评估及反馈1.课堂练习,检测学生对概念和原理的理解程度;2.实际问题的解答,评价学生的应用能力;3.学生互相评价讨论,提供解决方案改进的建议。
七、教学延伸1.学生通过解决实际问题,培养分析和解决问题的能力;2.鼓励学生进一步探索余弦定理在其他数学领域的应用。
八、教学反思通过本节课的教学,学生对余弦定理有了更深入的理解,尤其是在解决实际问题的过程中,学生能够灵活运用余弦定理解决问题。
同时,在教学中引入实例和思考问题的环节,激发了学生的学习兴趣和思辨能力,培养了他们的创新思维和问题解决能力。
高中数学余弦定理教案(优秀5篇)
高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。
本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
人教版高中数学余弦定理教案
人教版高中数学余弦定理教案一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。
2. 能够运用余弦定理解决三角形中的边角关系问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。
2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。
四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。
2. 通过举例和练习题,培养学生的实际应用能力。
3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。
五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。
2. 讲解:介绍余弦定理的定义和表达式,解释余弦定理的意义。
3. 演示:利用几何图形和动画演示余弦定理的应用和证明过程。
4. 练习:给出一些练习题,让学生运用余弦定理解决问题。
5. 总结:回顾本节课的内容,强调余弦定理的重要性和应用范围。
教案示例:一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。
2. 能够运用余弦定理解决三角形中的边角关系问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。
2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。
四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。
2. 通过举例和练习题,培养学生的实际应用能力。
3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。
五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。
问题:在三角形ABC中,已知边长AB=5,边长BC=8,角C=45°,求边长AC 的长度。
高中数学必修精选优课教案余弦定理_1
《1.1.2余弦定理》教学设计一.教学内容分析本节课是一节公式定理课,内容是高中数学人教A版必修5第一章解三角形的第二节课,主要的教学内容有余弦定理的公式,余弦定理公式的简单应用。
本节课是在学习了正弦定理知识之后,也就要求学生类比正弦定理的学习,学会公式的优化选择。
二.目标与目标分析数学的公式定理课-------我们在平时教学中很容易把大量的花在公式定理的应用上,而忽略了让同学们参与公式的推导建构过程。
这样的过程同学们在短时间上通过大量的训练会知道怎么用公式,却总是会迷茫为什么要这么用,为什么会选择这个公式,例如我就发现同学们上高中后依旧很多同学不喜欢用求根公式,而是依旧用配方法,我想这也是在公式建构过程中,同学们没有参与推导的过程,就不知道如何解决公式的优化选择。
导致学生还是无法接受新的知识。
华罗庚说过,新的数学方法和概念,常常比解决数学问题本身更重要。
而我们要回到原点看问题,才是学生能够更好的应用数学知识的基石。
才能够用数学的思维去思考和解决问题。
三.学生学习情况分析我们面对的是高一的学生,学生在学习数学的能力还处在比较稚嫩的阶段。
不过他们刚学习完正弦定理的知识,知道正弦定理公式的推导是从直角三角形这个特殊三角形到一般三角形的推导,知道正弦定理是应用时解三角形的边角关系,学生可以通过类比的方法来学习余弦定理。
四.设计思想本节课是一节公式定理课,我设计的主线是:从生活实际出发,解决学这节课干嘛用,是为了解决生活问题的。
通过特殊到一般的思想,把特殊问题一般化,让同学们寻找解决的途径,通过对比,寻找最优化方法,最终由同学们自己推导出公式,并自己观察寻找公式的简单应用。
五.教学目标知识与技能::能推导余弦定理及其推论,能运用余弦定理解已知“边,角,边”和“边,边,边”两类三角形。
过程与方法:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。
情感态度价值观:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,让学生感受数学的美,激发学生学习数学的兴趣。
2023年最新-余弦定理优秀教学设计【精选5篇】
余弦定理优秀教学设计【精选5篇】余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。
下面我分别从教材分析。
教学目标的确定。
教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。
平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。
引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
高中数学《余弦定理》教案
高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义及其在几何中的应用。
2. 培养学生运用余弦定理解决实际问题的能力。
3. 引导学生通过探究、合作、交流的方式,发现余弦定理的规律。
二、教学内容1. 余弦定理的定义及公式。
2. 余弦定理在直角三角形中的应用。
3. 余弦定理在非直角三角形中的应用。
三、教学重点与难点1. 重点:余弦定理的定义及其应用。
2. 难点:余弦定理在非直角三角形中的应用。
四、教学方法1. 采用探究式教学法,引导学生主动发现余弦定理的规律。
2. 运用案例教学法,以实际问题为例,讲解余弦定理的应用。
3. 利用多媒体辅助教学,直观展示余弦定理的应用场景。
五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考。
2. 新课讲解:(1)介绍余弦定理的定义及公式。
(2)讲解余弦定理在直角三角形中的应用。
(3)引导学生探究余弦定理在非直角三角形中的应用。
3. 案例分析:分析实际问题,运用余弦定理解决问题。
4. 练习与讨论:布置相关习题,让学生巩固所学知识,并进行讨论交流。
六、课后作业1. 复习本节课的内容,掌握余弦定理的定义及应用。
2. 完成课后习题,巩固所学知识。
3. 探索余弦定理在生活中的应用,下周分享给大家。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。
2. 作业完成情况:检查学生课后作业的完成质量。
3. 课后分享:评价学生在探索余弦定理在生活中应用的成果。
八、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,确保教学效果。
针对学生的掌握情况,适当增加拓展内容,提高学生的数学素养。
九、教学进度安排1. 第一课时:介绍余弦定理的定义及公式。
2. 第二课时:讲解余弦定理在直角三角形中的应用。
3. 第三课时:引导学生探究余弦定理在非直角三角形中的应用。
4. 第四课时:案例分析,运用余弦定理解决实际问题。
十、教学资源1. PPT课件。
余弦定理教案(5篇)
余弦定理教案(5篇)余弦定理教案(5篇)余弦定理教案范文第1篇【关键词】学习方式;预习方式;科技手段;教学效率课堂教学效率是关于学习收益和教学时间的综合概念,是指在课堂单位时间内同学的学习收益与老师、同学的教学活动量在时间尺度上的量度。
同学的学习方式,会直接影响到学习收益,从而影响到教学效率。
传统的课堂教学过于强调同学的接受学习、机械训练和对结果学问的教学,表面上看似教学效率高,实质忽视了很重要的一个方面,即同学对过程学问与方法的理解与获得,长远来看不利于同学今后的学习与进展。
同学学问的猎取与力量的提高基本上是在课堂内完成的,所以课堂上应通过老师的设计与引导,使同学能够转变传统的学习方式,从而提高课堂教学效率。
通过实践,我们发觉是现阶段比较符合新课程改革课堂教学基本理念的一种模式,具有很大的研讨价值与空间,是一种理念的革新。
“学案导学”突出同学的自学行为,注意学法指导,培育同学学习力量、情感态度,做到把学习的主动权真正还给了同学,从而提高了课堂教学效率,也解决了课时紧急的冲突。
1 转变备课和预习方式“工欲善其事,必先利其器”,备课是上好课的先决条件,要想提高课堂教学效率,课前不仅老师要做好充分的预备,而且同学也要做相应的预备或预习。
1.1 师生共同备课。
在传统备课模式下,备课时老师对同学的设想,与其在课堂教学实施中的实际状况,有的时候出入较大。
师生共同备课转变了传统备课中,老师依据自己的理解和以往的主观阅历来“备同学”的状况。
老师在集体备课的基础上,实行每班选出三名具有不同数学学业水平的同学,事先让他们依据课本进行初步预习,然后以座谈的方式,了解他们在预习中的困惑,这样更简单在“导学案”编制过程中有的放矢,以提高它在实施过程中的效率,从而使“备同学”这一环节更加客观、精确。
1.2 同学依据“导学案”进行预习。
老师历来强调课前预习的重要性,但由于同学没有具体、周密的预习指导性材料,导致他们对预习缺乏乐观性与主动性,更是由于最重要的检查环节较弱,使同学的课前预备工作有很强的随便性,有的同学走过场。
《余弦定理》教学设计-优秀教案
余弦定理【学习目标】掌握并熟记余弦定理的有关公式;能运用余弦定理及其推论解有关的三角形问题.【学习重点】掌握并熟记余弦定理及其它的变形等有关公式.【学习难点】余弦定理,并能解决一些简单的度量问题.【学习过程】一、前置学习在中,. 能否利用平面向量求边?二、课堂学习1.余弦定理的证明及理解:上述等式表明,三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的...............................余弦..的积的两倍......这样,我们得到余弦定理. 2.余弦定理:3.余弦定理的推论:;;.例1.在中,(1),,,求B ;(2),,,求b .ABC ∆60,8,5===C BC AC AB 222____________________________________________________________________________________a b c ====A cos =B cos =C cos ABC ∆3=a 7=b 2=c 33=a 2=c 150=B【变式拓展】在△ABC 中,已知,求△ABC 的各角。
例2.用余弦定理证明:在中,当为锐角时,;当为钝角时,.【变式拓展】在中,若且,试判断的形状.例2.、两地之间隔着一个水塘,现选择一点,测得,,,求、两地之间的距离.例3.已知分别为三个内角的对边,且满足,.(1)求; (2)若是中点,,求面积.)(13:6:2::+=c b a ABC ∆C ∠222c b a >+C ∠222c b a <+ABC ∆)())((c b b c a c a -=-+C B A cos sin 2sin =ABC ∆A B C 100CA m =200CB m =60ACB ∠=A B ,,a b c ABC ∆,,A B C sin 3cos 0a B b A -=4a =A ∠D BC 3AD =ABC ∆【变式拓展】在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cos B=,且AB →BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C 的余弦值.三、课堂反馈1.已知,,= .2.在中,已知,,,求= .3.在不等边三角形ABC 中,a 是最大边,若,则A 的取值范是4.在中,已知,,试判断的形状.四、课后作业1.在中,,,,则 .2.在中,,,,则 .3.设是的三边,,则.4.在中,已知,,,则 .5.在中,边的长是方程的两个根,,则边= .6.在中,若,则= . 7.在中,,,且的外接圆半径,则 .8.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足且C=,则ab 的值为 9.已知,,且,若,,求.35⋅3a =4b =c =C ABC ∆︒=60A 4=b 7=c a 222b c a +<ABC ∆c b a +=2C B A sin sin sin 2=ABC ∆ABC ∆8=a 7=b 3=c =B ABC ∆4=a 6=b ︒=120C =c ,,a b c ABC ∆0120B ∠=222_________a c ac b ++-=ABC ∆4=b 8=c 030=B =a ABC ∆b a ,0252=+-x x 60=C c ABC ∆32,3,1π===C c b a ABC ∆a b 2=︒=45C ABC ∆2=R =a 4)(22=-+c b a 3π||4a =||3b =61)2()32(=+⋅-b a b a AB a =AC b =ABC S ∆10.为了在一条河流上建一座桥,施工前在河两岸打上两个桥位桩、,要测算出、两点间的距离,测量人员在岸边定出基线,测得,,,试计算的长.11.在△中,已知,.(1)求△面积的最大值;(2)求的最小值.12.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若是的角平分线,,求的长.A B A BBC45BC m=75B∠=45C∠=ABABC3π=C4sin2Ac=ABC a2cos2a Cb c-= AD BAC∠43,C=23AB A=BD。
教案高中数学余弦定理
教案高中数学余弦定理
1. 理解余弦定理的概念和公式;
2. 掌握余弦定理在解决三角形边长或角度问题中的应用;
3. 培养学生分析问题、解决问题的能力。
教学重难点:
1. 余弦定理的公式推导及应用;
2. 能够灵活运用余弦定理解决实际问题。
教学准备:
1. PowerPoint课件;
2. 教学板书;
3. 三角板(如有)。
教学过程:
一、导入新知识(5分钟)
1. 引入余弦定理的概念和重要性;
2. 回顾正弦定理和余弦定理的区别和联系。
二、讲解余弦定理(15分钟)
1. 展示余弦定理的公式:$a^2 = b^2 + c^2 - 2bc\cos A$;
2. 分析余弦定理的应用场景和解题思路;
3. 演示如何利用余弦定理求解三角形的边长或角度。
三、练习与讲解(20分钟)
1. 给学生几个实际问题,要求他们利用余弦定理解答;
2. 鼓励学生展示解题思路,与同学一起讨论交流。
四、总结与拓展(10分钟)
1. 总结余弦定理的重点和要点;
2. 提出一些挑战性问题,拓展学生的思维能力。
五、作业布置(5分钟)
1. 布置相关练习题目,巩固学生对余弦定理的理解和运用;
2. 鼓励学生自主探索更多余弦定理的应用场景。
教学反思:
通过本节课的学习,学生对余弦定理有了更深入的理解,同时也提高了他们解决实际问题的能力。
在以后的教学中,需要继续引导学生拓展数学知识,培养其问题分析和解决的能力。
高中数学必修精选优课教案余弦定理
§1.1正弦定理和余弦定理(3)教学目标:1、知识与技能:进一步熟悉正、余弦定理内容,能够熟练应用正、余弦定理进行边角关系的相互转化,进而判断三角形的形状或求值.2、过程与方法:让学生从正、余弦定理的变形出发,得到边角互化的关系式,引导学生利用这个关系实现三角关系中的边或角的统一,再利用已学的三角变换或代数变换解决问题.3、情感与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学重点:利用正、余弦定理进行边角互化教学难点:边角互化时边化角及角化边的合理运用课时安排:1课时教学方法:启发引导式引导学生总结在解决三角问题时,如何合理运用正、余弦定理进行边角互化教学过程:一、复习引入:1、正弦定理:R A a 2sin ===(其中R 为ABC ∆外接圆半径)正弦定理应用范围:(1)已知两角和任一边,求其他两边及一角;(2)已知两边和其中一边对角,求另一边的对角.变形: (1)⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 ; (2).⎪⎪⎪⎩⎪⎪⎪⎨⎧===R c C R b B R a A 2sin 2sin 2sin 思考:变形(1)和(2)有什么作用?2、余弦定理:=2a ; =A cos ;=2b ; 变形: =B cos ;=2c . =C cos .余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【设计意图:通过复习旧知,导入变形,引导学生认知通过变形式实现边角的互化】二、典例剖析例1、在ABC ∆中,B a A b cos cos =,试判断ABC ∆的形状.【设计意图:本题属于容易题,主要通过本题让学生认知判断三角形的形状就是判断角之间的关系或边之间的关系,利用正、余弦的变形恰好达到角或边的一个统一】【练习巩固】1、在ABC ∆中,B b A a cos cos =,试判断ABC ∆的形状.【设计意图:本题是例1的直接变形,入手容易,但后面有学生易错或易忽视的地方,如B A 2sin 2sin =仅得到B A 22=一个结论,2222222)())((c b a b a b a -=+-直接两边约掉22b a -,同时本题体现出“边化角”比“角化边”要容易一些,因此在选择边角统一时要善于发现和总结用正弦还是余弦】2、在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边长,若cos ,sin b a C c a B ==,试判断ABC ∆的形状.【设计意图:本题中sin =c a B 式子不能直接将sin B 处理成边了,让学生领悟利用正弦定理实现边角统一的关键】例2、在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A 、725 B 、725- C 、725± D 、2425【设计意图:本题是2012年的天津高考题,首先引导学生从目标入手,求角就应该处理出角之间的关系,这个较为容易,且得出的B cos 值,但多数学生会随即得出B sin 的值,然后求出C sin ,进而得到错误答案C 】例3、在锐角ABC ∆中,C B A ,,的对边分别为c b a ,,,且C ba ab cos 6=+,则=+BC A C tan tan tan tan .【设计意图:本题较难,主要因为学生习惯性的直接从条件出发,目的在于再次向学生强调思考问题,统一边角关系需从目标着手】三、本课小结:1、学会利用正弦、余弦定理解决两类题型:(1) 判断三角形的形状;(2) 三角形中的求值题.2、两种题型思路的共同点:统一边角关系.(1)边化角,利用三角变换求解;(2)角化边,利用代数变换求解. (强化目标意识)四、课后作业1、在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,则此三角形为( )A 、直角三角形B 、等腰三角形C 、等边三角形D 、等腰直角三角形2、在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,则=A cos .3、在△ABC 中,c b a b A o+=,,,80成等比数列,求B .4、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1,2A C B a c -+==,求C .5、在ABC ∆中,,,a b c 分别是,,A B C ∠∠∠的对边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余弦定理教学设计
一、教学内容解析
1.本章主要是通过任意三角形边角关系的探究,发现并掌握三角形中边长和角度之间的数量关系,即正弦定理和余弦定理,运用它们解决一些测量和与几何量有关的问题,本章教学的重点是运用两个定理解斜三角形.
2.本节内容是人教A版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时.余弦定理是揭示任意三角形边角之间关系的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机地结合起来,为解决与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据.
3.教科书中首先通过探究的方式,指出了“已知三角形的两边和它们的夹角,根据三角形全等的判定定理,这个三角形是大小、形状完全确定的三角形”,这样就可以从量化的角度看待此问题,直截了当提出问题:“已知三角形的两边和它们的夹角,如何计算出三角形的另一边和另两个角呢?”教科书上主要用向量的方法推导出余弦定理,同时提出坐标法等方法也可以证明余弦定理.为了体现由三边确定三角形,通过公式的变形指出了可以通过三角形的三边计算出三角形的三个内角,体现了量化思想.最后通过两个例题使学生掌握余弦定理及其推论的应用,同时让学生学会求三角形内角时如何选择正弦定理和余弦定理.
二、教学目标设置
1.通过对三角形边角关系的探索,理解余弦定理的证明方法,抽象出余弦定理的三个等式,进而掌握余弦定理;能从余弦定理中抽象出勾股定理,从而辨析勾股定理与余弦定理的内在联系.
通过作辅助线,构造出直角三角形,把一般三角形的边角关系转化至直角三角形中,
利用勾股定理求解边长.将陌生问题转化为熟悉问题,即数学中的转化思想.
由于向量的模及夹角对应线段的长度和夹角,所以把三角形的三边赋予向量的意义,进而把余弦定理的证明问题转化为向量问题,让学生感悟到数学不同章节知识的联系,进一步认识到向量的工具性.
通过建立坐标系,把平面几何问题中的长度问题转化为两点间的距离来解决,进一步感悟坐标法的作用.
对比余弦定理和勾股定理,让学生认识到勾股定理仅适用于直角三角形,而余弦定理适用于任意三角形,勾股定理为余弦定理的特殊情况,余弦定理为勾股定理的推广,即特殊与一般的辩证关系.
2.能够利用余弦定理及其推论解三角形.通过对余弦定理三个式子结构的分析,加强学生对三个公式的理解与记忆.三个等式中,每一个等式中含有四个量,已知其中的三个量求剩下的一个量,体现出方程思想.进而提出已知两边及其夹角求第三边和已知三边求某一内角两个基本题型,也是余弦定理的两个基本应用.通过让学生思考解决例题,培养学生的数学运算能力.通过对例题的多种方法的讲解,让学生学会求三角形内角时对正弦定理和余弦定理的选择,培养学生的逻辑推理能力.
3.让学生领悟向量法、坐标法、量化思想、转化与化归思想、方程思想等数学思想方法,以及特殊与一般的辩证关系,把数学思想方法渗透在课堂教学中,注重培养学生的数学核心素养.
三、学情分析
在学习本节课之前,学生已经在初中阶段学习过全等三角形,勾股定理,进入高中阶段又学习了三角函数,平面向量,解析几何初步等有关知识,在本册教科书中刚学习了正弦定理,已初步掌握了正弦定理的证明,并能够运用正弦定理解决一些解三角形问题.
有了以上这些知识与方法的铺垫,在此基础上,教师提出“已知三角形两边及它们的夹角,如何求第三边”这一数学问题,对于学生而言,一方面,运用前面所学的正弦定理较难解决这一问题;另一方面,本节课的授课对象是洛阳市第一高级中学(省级示范性高中)高二年级实验班A段学生,他们基础知识扎实,思路开阔,思维敏捷,面对求边长这一问题,能够很快联想到可以结合勾股定理、平面向量、坐标化等已有知识与方法,多角度展开思考,小组合作探究,寻找解
决方法.利用几何法证明过程中,部分同学会受到学案中已给图形的限制,而忽略对A为钝角、直角时两种情形的分析,欠缺定理证明的严谨性.此时需要老师适时引导,师生互动,完善过程.
在定理初步应用环节中,对学生来讲,套用公式进行求解,涉及到由正弦值求角进行分情况讨论都能顺利完成,但是在合理选用定理公式上带有一定盲目性,如何保证计算简便、避免讨论等方面的能力还有所欠缺,需要老师就例题的几种解法进行详细的对比、辨析,以促进学生能力达成.
四、教学策略分析
1.个人独立思考与小组合作探究相结合.培养团队意识,体验知识生成.2.学生展示成果,获取成功喜悦.
不同的同学会用到不同的方法,鼓励学生展示自己小组的成果,增强学习的自信,同时学会分享.通过展台展示学生的解题过程,便于及时发现学生的错误,及时纠正,规范解答步骤和过程,提高教学效率.很好地突出了余弦定理证明这一重点.
3.学生演板.
既可凸显学生个人解法的单一性,又可展现学生解法的多样性.通过教师对解题过程的讲解及对多种解法的对比,引导学生得出解题感悟,从而突破“如何合理选用正弦定理与余弦定理求三角形内角”这一难点.
4.适时点拨,问题引导.
学生展示成果时,师生互动,及时鼓励,问题引导,完善漏洞.
5.使用PPT辅助教学,提高课堂效率.
PPT内容清晰、形象,容易理解,提高学习效率.同时也很好地激发了学生的学习兴趣,有助于集中学生的注意力.呈现出的信息容量大,使课堂变得更加紧凑充实.
五、教学过程设计
复习正弦定理
设计意图:通过复习正弦定理的形式及其作用,使学生认识到正弦定理为
解三角形的一种工具,能定量研究三角形的边角关系.
师生活动:
老师:上一节课,我们学习了正弦定理,正弦定理揭示了三角形中边角之间的内在联系,首先我们对上节课所学习的内容进行复习回顾.正弦定理的内容是什么?利用正弦定理能解决解三角形的哪些类型?
提问学生,学生回答.
1.正弦定理:C
c B b A a sin sin sin ==. 2.运用正弦定理解决的两类解三角形问题:
(1)已知三角形任意两角和一边解三角形;
(2)已知三角形两边和其中一边的对角解三角形.
问题1:如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.怎样在这样的已知三角形的两边及其夹角的条件下求出另外一边,进而解出三角形呢?
设计意图:通过提出新的解三角形问题,引发学生的思考.让学生明确已知两边及其夹角时,该三角形的大小和形状完全确定,进而第三边的长唯一确定.通过“边a 的长就是线段BC 的长,也可以看成点B 和点C 两点间的距离,联系已经学过的知识”提示语来启发学生寻找思维出发点.
师生活动:
老师:那么解三角形问题,除了这两种类型,我们是否还会遇见其他情形呢?请看这样一个问题:在△ABC 中,已知b ,c 及A ,能否利用已知条件求出边a
呢?
老师:边b ,c 及A 已知,那么该三角形确定吗?
学生:根据三角形全等的判定方法,边角边,该
三角形是唯一确定的.
老师:边b ,c 和它们的夹角已知,那么该三角形的大小和形状是完全确定的.当然,边BC 的长是唯一确定的,边a 的长就是线段BC 的长,也可以看成点B 与点C 两点间的距离.请同学们联系已经学过的知识,进行分组合作探究,寻求解决方法.。