超棒超快的数学心算方法_

合集下载

10以内的加减法怎么教小孩子更易懂

10以内的加减法怎么教小孩子更易懂

10以内的加减法怎么教小孩子更易懂10以内的加减法怎么教小孩子更易懂,教孩子加减法窍门如下:1、先易后难算术是比较复杂的,而对孩子来说,如果一开始就让他们学习较难的算术,很难让他们接受。

家长可以将生活融入到孩子的数学学习中,例如去超市买苹果,让孩子自己挑选,并数出数量,等到回到家的时候,家长可以让孩子洗两个苹果,一人一个吃掉后,问孩子还有多少个苹果。

通过这种方式,让孩子在生活中不知不觉的接触数学并学习数学,可以提高孩子对数学的兴趣,而且也能够帮助孩子理解数学在生活中的重要性。

2、运用分解技巧从分解组合开始教孩子,一边分,一边用语言表述,一定要用嘴巴说出来,能说出来的孩子,表示她自己真的掌握了。

从5以内的开始。

先从分解2开始。

每次分开后表述完,要记得在合起来。

3、大数记心里,小数上下加减加法:大数记心里,小数往上数,如4+2=把4记在心里,往上数两个数,5、6,之后得出结果4+2=6减法:大数记在心里,小数往下数,如6-3=把6记在心里,往下数三个数,5、4、3,之后得出结果6-3=3家长需配合每日为宝贝出30道10以内加减法,提升幼儿的算术能力,注意不要让孩子数指头,养成习惯不好改,培养心算能力。

4、需要幼儿掌握的一些识记的东西第一个需要识记的是:10加几就等于10几,例如:10+1=1110+2=12,一直加到9,第二个需要识记的就是1+1=22+2=43+3=64+4=85+5=106+6=127+7=148+8=169+9=1810+10=20,这样记住了以后,进行20以外的加减法运算,对孩子来说,就不会很难学;5、巩固成果家长要经常给孩子出题目,只要有空闲时间就提问,而且问的时候语速要快,要给孩子一种紧迫感,这样可以锻炼孩子思维的效率,而且多次练习能够让孩子的思维能力不断增强,从而提高算术能力。

如果家长在问的时候孩子能够快速的答出来,家长需要对孩子进行表扬,例如“真棒!”,“真厉害!”这些话语,会激发孩子的积极性,让孩子有一定的成就感,对数学算术产生兴趣,认为学习数学是一件很好玩的事情。

超棒超快的数学心算方法和公式

超棒超快的数学心算方法和公式

超棒超快的数学心算法A 乘法速算一、两位数相乘乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 22 5 × 7 = 35 即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 7=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。

例:17 × 1917 + 9 = 26 7 × 9 = 63 即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 3150 × 30 = 1500 50 + 30 = 801580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 9180 × 90 = 7200 80 + 90 = 17073707371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 46(43 + 6)× 40 = 1960 3 × 6 = 181978例:89 × 87(89 + 7)× 80 = 7680 9 × 7 = 637743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

口算心算速算方法

口算心算速算方法

口算心算速算方法
“哎呀妈呀,这数学作业也太难了吧!”我看着那些口算题直发愁。

旁边的小伙伴凑过来,“咋啦?这口算题还能难住你?”我苦着脸说:“可不是嘛,算得我脑袋都大了。


嘿,其实口算心算速算有好多方法呢!比如说凑十法。

就像玩拼图一样,把数字凑成十,这样算起来就容易多啦。

比如8+6,就可以把6 分成2 和4,8+2 等于10,再加上4 就是14。

这多简单呀!还有分解法,把一个数分解成几个容易计算的数。

就像把一个大蛋糕切成小块,一块一块地吃。

比如25×4,可以把25 分解成5×5,5×4 等于20,20×5 就是100。

口算心算速算在生活中可有用啦!买东西的时候能很快算出要花多少钱,找零多少。

这就像有个小魔法,能让你在商店里变成小机灵鬼。

考试的时候也能节省好多时间呢,说不定就能多检查几遍,考个好成绩。

这不是跟有了一把超级武器一样嘛。

有一次,我们班进行口算比赛。

我一开始可紧张啦,心怦怦直跳。

但是我想起了那些速算方法,就不慌了。

我快速地算着题,就像小赛车在赛道上飞驰。

最后我得了个好成绩,哇,那感觉,就像吃了蜜一样甜。

口算心算速算方法真的很棒!能让我们变得更聪明,更厉害。

大家一定要好好掌握这些方法哦。

《两位数减两位数退位减法》教案一等奖

《两位数减两位数退位减法》教案一等奖

《两位数减两位数退位减法》教案一等奖1、《两位数减两位数退位减法》教案一等奖教学内容:人教版实验教材数学教科书二年级上册第18页例2教学目标:1、使学生会计算100以内的两位数减两位数。

2、让学生理解退位减法的算理,从而概括出“两位数减两位数退位减法”的计算法则。

教学重难点:理解退位减法的算理,从而概括出“两位数减两位数退位减法”的计算法则。

教学用具:小棒教学过程:一、基本训练口算:80-735-863-426-742-543-632-965-9竖式计算:52-2179-3765-24出示56根小棒,让学生口述从56根小棒中拿走8根,讨论为什么得数十位上是4而不是5,今天我们继续学习两位数退位减法的笔算,写课题:退位减法二、新课师:还记得北京得了多少票吗?巴黎呢?巴黎比北京少多少票?怎么列式?(56-18=)你会计算吗?请大家试试2选择有代表性的算法板书师:都是56-18,现在有两个得数,到底哪个得数对呢?下面我们就用摆小棒的方法来研究解决动手操作,形成表象每位学生拿出一张纸,自己画上数位表在数位表上摆出56根小棒提问:从56根中去掉18根该怎么办?师生同共讨论操作:从整捆小棒中打开一捆和6根小棒,合起来就是16根,从16根中去掉8根剩8根,再从剩下的4捆中去掉1捆还剩3捆,所以56-18得38是正确师:通过摆小棒,我们知道了56-18=38,如果用竖式怎样计算呢?看竖式,首先遇到6减8不够减,刚才我们拿小棒时遇到了从6根小棒拿8根不够减,是怎样做的呢?(从6根里拿8根不够拿,我们是从5捆里拿1捆,把它拆开是10根,和个位上的`6根合起来再拿的)在笔算时,当位上的6减8不够减时,也要从十位上拿出1,叫做从十位上退1,这时十位上是几减几?为什么是4减1?引导学生回忆操作过程,从6根里拿8根不够拿,我们是从5捆里拿1捆,把它拆开是10根,和个位上的6根合起来,所以只剩下4捆,十位上是4,可以这样说,从十位退1,十位上的数就少了1,为了不忘记从十位退1,要在竖式中被减数的十位上点一个退位点(用红粉笔)教学反思:第二课时教学目的:通过学习,让学生掌握100以内退位减法的计算方法教学重难点:理解退位的含义教学过程设计:一、复习1、口算:14-932-814-364-814-712-342-563-472-982-32、计算:47-2356-4172-32二、新授1、板书:50-24(1)首先列竖式要注意什么问题?(相同的数位对齐)板书竖式,从哪位算起?个位上0减4不够减。

超级棒!!!六种技巧解决你做不出来

超级棒!!!六种技巧解决你做不出来

六种技巧解决你做不出来的行测题一、最有效、最基本的方法——难度判断法定义:难度判断法是指根据试题的难度确定答案的基本位置。

基本原理:由于行测全是四选一的客观题,所以无论如何答案都在ABCD这四个选项中,此其一。

其二,按照试题设置的原则,答案分布应当均衡,因此各个答案出现的机率要差不多。

到底在不同的试题中,哪种题的答案放在哪个位置?一个基本的原则就是,难题的答案放前边,易题的答案放后边。

由此就涉及如何判断难题和易题。

难题是指试题涉及较多的知识和信息,信息之间缝隙太大,试题与答案之间不容易建立起直接联系的题。

易题是指试题内容为广大报考者熟悉,多数人都可能做得起的题。

由此,总体来说,难题的答案在AB,易题的答案在CD。

那么,又怎样确定哪个答案在A,哪个答案在B呢?一般说来,难得无从下手的答案在A,很难但可以倒回去验证的答案在B。

易题中哪个选C,哪个选D呢?一般说来,估计多数人都做得起的题答案在D,估计多数人都做得起但要花较多时间的答案在C。

简而言之,就是最难的题答案常在A,最易的题答案在D。

很难但可以倒回去验证的答案在B,容易但费时的答案在C。

例:对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有A、22人B、28人C、30人D、36人(05中央A)我们先根据难度来判断,这道题有多难。

如果以很难、难、易、很易为四级的话,估计这道题的难度为“很难”。

因为看了之后,发觉这道题的答案和题之间找不出可以互相支持的地方。

一般人简直无从下手。

这时候,放弃做题是必要的,但放弃答案是不行的。

这时候,你就选择A,对这种牛吃南瓜开不起头的答案选A的正确率非常高。

我们来看考过的题中的难题与答案分布。

二、对数学运算比较有效的方法——联系法联系法是指数字之间存在着一些必然联系,通过这些联系可以找出答案。

五年级数学乘法简便运算

五年级数学乘法简便运算

五年级数学乘法简便运算哎呀,大家好呀!今天咱们来聊聊数学里的乘法简便运算。

别害怕,数学可没那么可怕,咱们就当是在聊家常,轻松点儿。

这乘法呢,有时候就像是在超市里挑水果,选对了方法,心情好得很,选错了,哎呀,烦心事儿就来了。

首先呢,想想乘法这个东西,很多时候就是把几个相同的数加在一起,听上去是不是很简单?比如说,2乘3,咱可以想象成把2加3次,也就是2+2+2,这不就是6吗?简单吧?这就是数学里的“乘法”在生活中的应用。

你去买了三盒巧克力,每盒里面有两块,嘿,你一算就知道总共有六块了。

真是太棒了,巧克力可比数学有趣多了。

说到这里,咱们再来看看倍数。

比如说,4乘5,咱们可以想成是4加了5次,那就是4+4+4+4+4,这个过程就像在不停地吃冰淇淋,真是让人快乐!4和5这两个数,你如果会心算,那可真是事半功倍。

心里默念一下,算出来的结果就像坐过山车,心情跌宕起伏,最后的结果让人惊喜。

然后呢,还有个方法叫分配律,听起来很复杂,其实特别简单。

就像你和朋友一起点披萨,假设有两个大小不一样的披萨,每个披萨里有三种口味。

你想把这两种口味都分享给朋友,分配一下,最后你发现,每种口味都有分。

数学上说的就是“a乘以(b+c)”等于“a乘b加上a乘c”。

这就像把两块披萨分成四份,分得好大家都开心嘛。

再说说用零乘的事儿。

你有没有发现,任何数乘以零,结果都是零,这就像你去超市买东西,买了一堆好吃的,结果忘带钱包,那就只能回家啃苹果了。

哈哈,所以说啊,乘以零的情况,真的是让人哭笑不得。

明明有很多选择,结果却啥都没有。

接着呢,咱们再来谈谈结合律,听起来是不是又要头疼了?其实呢,结合律就像是你在洗衣服,先把白衣服洗了再洗彩色的,和先洗彩色的再洗白衣服,结果都是干净的衣服。

数学上说的就是,a乘(b乘c)和(a乘b)乘c,其实没啥区别。

简简单单,反正最后都是洗好的衣服嘛。

然后,别忘了咱们生活中的应用。

乘法不光是课堂上的知识,生活中随处可见。

史丰收速算法

史丰收速算法

史丰收速算方法速算:史丰收速算由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。

这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。

这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。

联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。

史丰收速算法的主要特点如下:⊙从高位算起,由左至右⊙不用计算工具⊙不列计算程序⊙看见算式直接报出正确答案⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上速算法演练实例Example of Rapid Calculation in Practice○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。

□本文针对乘法举例说明○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。

本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。

○乘积的每位数是由「本个加后进」和的个位数即--□本位积=(本个十后进)之和的个位数○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。

现在,就以右例具体说明演算时的思维活动。

(例题)被乘数首位前补0,列出算式:7536×2=15072乘数为2的进位规律是「2满5进1」7×2本个4,后位5,满5进1,4+1得55×2本个0,后位3不进,得03×2本个6,后位6,满5进1,6+1得76×2本个2,无后位,得2在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。

珠心算基础知识

珠心算基础知识

珠心算基础知识珠心算基础知识一什么是珠心算简单的说:珠心算就是头脑里打算盘..详细阐述:在熟练珠算的基础上;通过模拟拨珠、数珠互译等训练;过渡到大脑思维控珠的由操作技能转化为心智技能..二学珠心算有什么好处1、能开发儿童智力..2、让孩子对数字比较敏感..3、能适当提高计算能力..4、养成良好的学习习惯..5、锻练优秀的思维品质..三怎样教好珠心算1、与孩子有效沟通..①孩子喜欢老师才会喜欢珠心算..具备童心和耐心②说孩子能听懂的话..语言的逻辑性与简洁性③说孩子爱听的话..形成自己独特的语言风格与儿化特性2、眼神交流..眼神决定前程①老师的眼神让孩子感觉到平等、尊重、重视..②善于使用肢体语言..随意性安抚;不经意触碰;面带微笑..四珠心算老师必须具备的专业知识1、会打算盘..2、会判断题型..3、会根据需要快速出题..4、完全熟悉珠心算的内在联系与教学主线..五认识算盘1、算盘的主要结构:梁、档、算珠、计位点、清盘器、框..虚盘:梁、算珠、档..2、清盘器:左手中指清盘..为什么用中指清盘答:①中指的末稍神经很丰富..②有利于感觉器官充分的训练..3、计位点儿歌:个十百千万;三位分一节;一节前千位;二节前百万;三节前十亿;好读又好记..目前市场上最常见的有两种算珠颜色;分别是黑色和白色..而我们的橙色是特制的;市场上很少..黑色:黑色算珠比较沉重;而大脑的皮质层是灰褐色的;属同一色系;导致算珠的图像形成比较慢;运算速度也就变得比较慢..白色:白色算珠在快速拨珠时会反光;不断的剌激眼睛;可能导致近视..橙色:选择橙色算珠时;做了一个实验;设定7种颜色的算珠;供68个孩子每人选择两种自己最喜欢的颜色的算珠;结果有48个选择了橙色算珠;说明孩子喜欢这种颜色的算珠..六珠示数儿歌:小朋友记清楚;上珠一颗表示5;下珠一颗表示1..※认识5比认识1更重要;原因是5还需与1、2、3、4组合成6、7、8、9..※让孩子快速认珠的方法:①岁数法②儿歌法③故事法④拳头法⑤秘密法七怎样打算盘1、横竖放算盘..目的:①培养团队精神..②培养集中注意力..③显得更加整齐..④教孩子分清左右手..2.置盘:置于离胸前桌子边缘略大于一个拳头位的地方..3.姿势:双手抬起、胸不靠桌、头微前倾、自然放松..4、握笔:教学流程:左手伸出来;右手伸出来;把左手的笔放在右手掌心上;笔尖朝下;伸出约一厘米..5、手指分工:①单指拨珠:拇指下珠往上;食指下珠往下及上珠上下..②双指拨珠:双合:+6+7+8+9双分:-6-7-8-9滑滑梯:↓6↓7↓8↓9爬楼梯:↑6↑7↑8↑96、拨珠细节:a、拨珠的手指范围不能超出外框..b、算盘的盘面是一个平行面;拨珠时手尽量与盘面平行..7、力度、角度:力度“轻巧”;角度“点到为止”..用力过大会增大手指移动的距离;导致速度变慢;大量心算时会头痛;用力过轻会悬珠;导致判断错误..角度太大;手指被迫形成弓形;导致容易疲劳;角度太小;会出现带珠;导致判断失误..※点到为止:手指的指尖接触到算珠的棱角..八直加直减1、4以内直加直减..没有动用到上珠的直加直减2、9以内直加直减..有动用到上珠的直加直减3、多位数直加直减..特别强调双手同时拨珠;同时移动;看准再拨;拨时不犹豫..九补数若A+B=10n为正整数;则A和B互为补数儿歌:1和9;手拉手;2和8;笑哈哈;3和7;在一起;4和6;好朋友;5和5;并肩走齐敲鼓..1的补数是9;9的补数是1;2的补数是8……1、画图画表示:如:五角星;小白兔;蝴蝶;文具盒……2、上课时直接对补数;不要有其它花样;渗透“补数”概念时用“直接教学法”..※小朋友很喜欢被老师提问;但这个问题是他一定知道答案的问题;经常这样做;孩子会更亲近你..十进位加题型能直接减补数的进位加..本档不够加的情况;去补进1;拨珠方法..共35题1+92+93+94+96+97+98+99+92+83+84+87+88+89+83+74+78+79+74+69+65+56+57+58+ 59+56+47+48+49+47+38+39+38+29+29+1十一退位减能够直接加补数的退位减..本档不够减、借1加补;拨珠方法..共35题10-110-210-310-410-510-610-710-911-211-311-411-511-711-811-912-312-412-512-812-913-413-513-914-515-615-715-815-916-716-816-917-817-918-9十二滑滑梯题型※动珠:运动中的算珠所表示的数合在一起表示多少..儿化成“滑滑梯”、“爬楼梯”..共有8种;分别是滑下6、7、8、9;爬上6、7、8、9下珠不够加情况;滑下补数拨珠方法共10题..尚沃说法:滑滑梯题型;传统说法:凑5加;满5加..1+42+43+44+42+33+34+33+24+24+11、必须记住这十个题目..2、教学时;先教3+4和4+2..3、让孩子明白是滑下“后”一个数的补数..十三挖土机题型不能直接加补数的退位减..本档不够减的情况;减几就借1滑几拨珠方法共10题尚沃说法:挖土机题型;传统说法:满5退位减..1、须记住这10个题目:11-612-613-614-612-713-714-713-814-814-92、训练方法:强化训练;让孩子能快速判断该题型为挖土机题型;训练到条件反射..十四爬楼梯题型下珠不够减的情况;爬上补数拨珠方法..尚沃说法:爬楼梯题型;传统说法:破五减..5-15-25-35-46-26-36-47-37-48-4必须记住这10个题目..十五推土机题型不能直接减补数的进位加..本档不够加的情况;加几就推几进1拨珠方法尚沃说法:推土机;传统说法:破5进位加..共10题:5+65+75+85+96+66+76+87+67+78+6训练方法:在某一时间内一般在第45-48节课每次听打100题;让孩子对此题型形成条件反射..十六易错题分析1、例:35+18误认为已经进12、例:45+5懒得或忘记进13、例:95+8不知道要进1或不知道进到哪里4、例:158+396=554牵涉到加1个数要用两种拨珠方法5、例:61-16懒得或忘记借16、例:51-16误认为已经借17、例:102-7会多借1次18、例:654-159中间带0的题目十七如何快速判断题型1、知道各种题型的拨珠方法..2、题型与拨珠方法的对称性..滑滑梯:滑下补数爬楼梯:爬上补数看下珠推土机:爬几进1挖土机:借1滑几看补数进位加:去补进1退位减:借1加补看外珠3、把第一笔数快速译成算珠图像..十八怎样才能让孩子在做题时不易混乱1、动珠与补数要非常熟悉..2、拨珠之前必须分清是哪一类题型..①分清下珠是否够加或够减;②分清本档是否够加或够减;③能快速判断是否为推、挖题型..3、让孩子知道加法不借1;减法不进1..4、如何分辨“去补进1”还是“爬几进1”例:6+56+6共同点:本档不够加..不同点:加5时能直接去补;加6时不能直接去补..能直接减补数为“去补进1”;不能直接减补数为“爬几进1”..5、如何分辨“借1加补”;还是“借1滑几”..例:12-312-6共同点:本档不够减..不同点:减3时个位档能直加补数7;减6时个位档不能直加补数4..能直接加补数采用“借1加补”;不能直接加补数就采用“借1滑几”..6、如何分辨“滑下补数”;还是“借1滑几”..例:14+214-8共同点:都要滑下8..不同点:一个是加法;一个是减法..做加法不需要“借1”;做减法时才可能要“借1”..7、如何分辨“爬上补数”;还是“爬几进1”..例:5-315+7共同点:都要爬上7;不同点:一个是减法;一个是加法..5-3时爬上7就可以;不能进位;15+7时爬上7;还要进位..十九珠心算加减归类二十试教:认识算盘1、让学生知道该物品是算盘..2、让孩子知道算盘的结构:梁、档、算珠..3、让孩子知道上珠下珠分别表示5和1..4、让孩子在算盘上拨加减1..二十一数珠互译数珠互译:就是数与珠的不断转换;在珠心算教学过程中;数珠互译很重要;其实珠心算过程实际上就是数珠互译的过程..由算珠变成数字比数字变成算珠更重要..听数译珠:听到数之后在虚盘上显示算珠..看数译珠:看到数之后在虚盘上显示算珠..听珠译数:根据算珠量说或写出数值..看珠译数:看算珠卡;说数字或拨算珠所有两位数中78是最难的..二十二听数拨珠听数拨珠:听数拨珠的快慢与准确率会影响到心算首位数的拨珠速度..在上课时经常听拨的目的是:让学生能够准确、稳定、快速地实拨;从而映像于大脑;使虚盘能自然“盲打”..报数时遵循以下的规律:算珠量一样多;示数不一样;比如:1和5、2和6、3和7;4和815、51、37、48算珠量相近的;如:34、78、89算珠量很悬殊的;如:19、59、92带0的:105、901、780※边看卡片边拨珠;看卡片写答案..二十三心算的实质虚盘:头脑中映像算盘..结构:梁、算珠、档..虚盘的清晰程度会影响心算的效果..怎样才能让虚盘更清晰1、抓住虚盘扩张的时机..2、实拨时个位档的中间位置..3、珠算的熟练程度..4、听数拨珠的量..5、数珠互译卡的使用..二十四主余光训练小朋友坐好后;头不许随便乱动;只许动眼珠;老师拿一指挥棒;根据上→下→左→右→转圈→反转→下→上等的程序移动指挥棒;每次训练时间不超过1分钟..训练目的:1、为了看打时看数速度更快..2、增强孩子的视觉宽度和敏锐度..3、为盲打奠定基础..二十五静定训练1、目的:①稳定虚盘..②让孩子学会自我管理和养成动静分明的习性..③为了更好的控场..2、过程:①手:左手五指散开放在桌面上;右手五指并拢;放在左手上面..②脚:自然平放..③眼:轻轻闭上..④根据老师的指令进行思维想象;但不得做出动作..⑤慢慢睁开眼睛..3、须知:①不超过3分钟..②不动、不笑、不哭、不说话..③信息简单..④暗示要准确、积极..⑤可以安抚孩子;“如果谁做的好;老师就过去摸摸他..”※静坐时老师所报的信息要求:A、孩子熟悉的..B、比较简单的..C、比较能联想的..D、比较能放松情绪的..E、或跟珠心算相关的..二十六珠心算课的共练内容1、静坐2、补数3、主余光4、听拨5、看卡片6、指法练习7、听打8、思维训练二十七定数加减定数有1—9练习的顺序为:1—→2—→5—→9—→3—→7—→4—→6—→8定加130秒135定减130秒110开始减定加230秒240定减230秒200开始减定加530秒450定减530秒400开始减各定数定加定减时所用到的拨珠方法:1、定加1、2、3、4;直加、滑滑梯、去补进1..2、定加6、7、8、9;直加、推土机、去补进1..3、定减1、2、3、4;直减、爬楼梯、借1加补..4、定减6、7、8、9;直减、挖土机、借1加补..5、定加5;直加;去补进1..6、定减5;直减;借1加补..二十八加减百子1+2+3…+10=5555+11+12…+20=210210+21+22…+36=666666+37+38……+50=127512 75+51+52…+100=505055-1-2…-10=0210-11-12…-10=55666-21-22…-36=2101275 -37-38…-50=6665050-51-52…-100=1275二十九102-3的教学方法1、问孩子个位档上的“2”够不够减“3” 不够..2、“不够怎么办呢”“从十位档借1”“有没有1来借呀” 没有..3、那我们就要向百位档借“1”;有1来借吗有..4、把百位档上的1借来..5、然后把中间的“0”变为“9”..6、别忘了;还要在个位档上加“3”的补数“7”..※如有小朋友问为什么把0变为9;就告诉孩子;“这样拨就对了”..102-3“3”用另一种颜色写出来;借1后手不能离开;讲四遍..三十试讲“全盘拨入4;上下珠滑滑梯”小朋友;跟着老师全盘拨入4;拨好了吗好;拿出你们的小鸟嘴巴;咦;大老虎来了;4只小山羊快跑呀..就滑下9..再示范:大老虎来了;小山羊赶快跑;大老虎来了;小山羊赶快跑……示范几遍后说:好了;小朋友;现在你们自己玩玩..三十一试讲“全盘拨入5;上下珠爬”全盘拨入5或:刚讲完全盘拨入4;上下珠滑滑梯时;算盘上剩下5告诉小朋友这是大老虎的头;这是大老虎的尾巴;调皮的小山羊都想去摸大老虎的屁股;好了;现在第一组的4只小山羊去摸大老虎的屁股;老虎吓得赶紧跑;以此类推;也可叫小朋友这样让小山羊去摸大老虎的屁股..三十二试讲滑滑梯1、静坐1分钟..10%2、补数..10%3、动珠..5%4、看卡片..15%5、由4+5过渡到4+2;由3+1;3+5过渡到3+4..35%6、让学生试拨、跟拨..10%7、全班听打;个别指点..10%8、简单的事情重复做..5%三十三试教挖土机一定要突出;本档不够减;且不能直接加补数时;减几就借一滑几..1、静坐10%2、补数5%3、听拨10%直接叫小朋友拿出算盘;握笔;直接报出题目;不用说什么“老师报题、报数”或什么..4、卡片10%5、导入新课40%小朋友;3+4等于多少呀试拨一下;今天老师要教你们一个新内容;这个内容就是“挖土机”..先看看老师是怎样拨的..比如14-6;我们听到-6;就用左手在左边一档借1;同时右手滑下6..再来一题13-8;我们这次听到就用左手在前面左边一档借1;同时右手滑下8..记住:挖土机题型是这样的:减几就借1滑几..6.题型比较20%3+4是加法;它不用借1..14-6是减法;个位档的4又不够减6;所以要用左手去借1;我们来练习这两题注:导入时可以通过几道已学过的题型进行听拨;最后报出要讲的内容如:4+3;9-6; 5+2;8-3;4+2;14-6..这时小朋友不会做了;现在才讲会好一点..7、简单的事情重复做5%※讲第6点时;问一下她们3+4是加法还是减法这个问题很简单;小朋友都能回答对;这时他们会觉得很有成就感..3+4是滑下了6;而14-6时也滑下了6;这样有个比较..三十四珠心算的教学主线1、传统教法:认识算盘----怎样打算盘----直加直减----满凑5加下5减凑----破5减去5加凑---进位加---破5进位加----退位减----满5退位减----综合提高..2、尚沃教法:认识算盘---怎样打算盘---直加直减----去补进1----借1加补----滑滑梯----借1滑几挖土机----爬楼梯----爬几进1推土机----综合提高..。

珠心算 珠心算教学心得体会(优秀12篇)

珠心算 珠心算教学心得体会(优秀12篇)

珠心算珠心算教学心得体会(优秀12篇)作为一名教学工作者,时常需要用到教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么什么样的教案才是好的呢?作者分享了12篇珠心算教学心得体会,希望对于您更好的写作珠心算有一定的参考作用。

珠心算教案篇一一、目的:1、巩固看数拨珠2、学习9以内直加直减,并逐步过渡到心算。

3、培养幼儿对珠心算的兴趣,发展幼儿的智力。

二、准备:大算盘、小算盘、笔、大挂图、小白兔、大灰狼头饰、数字剥皮精灵头饰若干(与幼儿人数相等)题目,音乐等,数字展示板。

三、过程:1、邀请小朋友去数字王国玩,小朋友坐火车来到数字王国门口,没人,进去一看,数字小精灵全都藏起来,小朋友去把小精灵找出来。

2、数字小精灵介绍自己是什么数字和名字,“唔,你们这些数字小精灵长的可真可,你是什么数字呀?数字精灵介绍自己:我是数字1,我的名字叫多多。

3、巩固看数拨珠。

①出示算盘,认识算盘各部分名称,听说在你们数字王国里有一件很历害的能计算的武器是什么呀?(算盘)对了,就是算盘(然后出示算盘,认识各部分名称:框、梁、档、上珠、下珠、定位珠)②看数拨珠(1)“唔,我知道,在算盘里一个下珠表示1,上珠表示5,那如果是数字2,那怎样在算盘上表示。

(教师出示2的数字展示板,通过问答引导幼儿读出2的:2象什么?2象小鸭水上漂,靠梁下珠有几个:靠梁下珠有二个,并请幼儿在算盘上拨出。

随机练习3、5、7等数)(2):摸数拨珠,教师出示魔术箱,请幼儿出来摸出来一个数,说出后在算盘上表示出来。

4、学习9以内的直加直减①小朋友非常的棒,那怎样在算盘上进行计算呢?怎么样加,怎么样减呢?(引导幼儿说出加时把算珠轻轻的推上去,减时拨下来)然后教师总结出靠梁为加,离梁为减。

②教师出示一道题:3-25=?齐读题后,教师讲解榜样。

并请幼儿出来榜样。

③再出示几道题,请几名幼儿出来榜样。

④请幼儿回坐座,教师出题,幼儿计算。

(同时复习必胜坐姿,酷酷握笔,旋风清盘)5、引导幼儿进行心算。

珠心算的知识

珠心算的知识

珠心算又称珠算式心算或珠脑速算。

珠心算是将数变成脑海中算盘上的算珠进行计算的一种方法。

它是在珠算的基础上发展而成的。

目前在东南亚一带甚为流行,日本、新加坡、马来西亚、韩国、台湾,如雨后春笋般掀起珠心算热潮。

近年,珠心算将在中国大陆掀起一个新的学习高潮。

珠算式心算能力来源于脑映像,孩子们自身也能实际感受到心算能力提高。

因此,珠算、心算激发了孩子们由一位到多位数心算的求知愿望。

使孩子们通过珠心算训练,不仅能学习一种特殊而有益的计算方法,而且可以培养良好的学习习惯,启发大脑智力,加强形象思维能力,沟通左右脑,使整个大脑的发育趋于平衡,协调发展,从而更具有创造力。

初学珠算是有意识地拨算珠,以后就可以做到无意识地自动地拨珠了,这一点任何人都可以做到。

接着是根据算盘的形象在脑中描绘,并开始练习心算,通过多年的实践证明,4-5岁开始学习珠心算效果最佳。

一般分界是在10岁左右,脑映象一旦消失便不能再生。

学龄前的幼儿,不仅不了解数的概念,而且也没有数的印象,为了让小朋友能够具体地理解数的概念,有必要使用算盘一类的具体工具作为教学辅助。

如果教他们珠算,容易产生算盘图像,但随着年龄上升,就会产生自己的数字图像,这个时候再教他们学习珠心算就容易产生混乱,因此最理想是从小一点的时候开始学习珠心算。

注:4-5岁开始学习珠心算效果最佳。

一般分界是在10岁左右,脑映象一旦消失便不能再生。

珠心算的基础是熟练掌握珠算技术,训练学生尽快在大脑中建立起清晰的脑算盘,实现从静止的“静珠”图像到可以拨动的“动珠”脑算盘的飞跃。

然后运用笔算训练学生实现快速书写正确、规范的阿拉伯数码,并达到每秒钟能写3个数码以上。

一、珠心算的特点及作用(一)训练右脑,开发智力由于改变了过去传统的单手拨珠为双手拨珠,有利于大脑右半球的开发,而发达的右脑正是富有创造性人材所具备的。

(二)促进形象思维向抽象思维的飞跃发展在珠算计算时,拨入、拨去1—9等数时,都是一次拨珠,使学生很快进入数群运算,缩短了从数数逐一加、减进入运用数群加减的过程,促进了学生从逐一数数的形象思维向数群运算抽象思维的飞跃发展。

成人提高心算口算方法

成人提高心算口算方法

成人提高心算口算方法
嘿,你想提高心算口算能力不?那可太棒啦!咱先说说步骤哈。

首先,得从简单的数字开始练起,就像盖房子得先打牢地基一样。

从个位数的加减开始,慢慢增加难度到两位数、三位数。

然后呢,多做一些拆分数字的练习,比如把一个数拆成几个容易计算的部分。

这就好比把一个大难题拆成几个小问题,一下子就好解决多啦!
注意事项也不少呢。

千万别着急,心算口算可不是一下子就能练成的。

要有耐心,就像种花儿一样,得慢慢等它开花。

而且要多练习,不能三天打鱼两天晒网。

你想想,要是不经常练,那咋能提高呢?
安全性和稳定性方面,这完全不用担心呀!心算口算又不是啥危险的事儿,只要你认真练,肯定不会出问题。

它就像走路一样平稳,不会突然出啥岔子。

应用场景那可多了去啦!去超市买东西的时候,算算账多方便呀。

还有考试的时候,能节省好多时间呢。

这优势不就很明显嘛,又快又准,多牛呀!
我给你说个实际案例哈。

我有个朋友,以前心算口算可差了,买东西都算不明白账。

后来他就按照这些方法练,嘿,现在可厉害啦!去菜
市场买菜,人家老板还没算出来呢,他就知道多少钱了。

你说这效果好不好?
所以呀,提高心算口算能力真的很有用,赶紧练起来吧!。

珠心算乘法口诀表顺口溜

珠心算乘法口诀表顺口溜

珠心算乘法口诀表顺口溜嘿,你有没有觉得数学有时候就像一个神秘的魔法世界呢?特别是珠心算里的乘法,那可真是超级有趣。

今天呀,我就想跟你唠唠珠心算乘法口诀表顺口溜这事儿。

我有个朋友叫小明,他刚开始学珠心算的时候,那叫一个头疼啊。

看着那乘法口诀表,就像看着一堆乱码似的。

他就跟我说:“这乘法口诀怎么这么难记啊,就像一群调皮的小怪兽在脑子里跑来跑去,根本抓不住。

”我就笑他,我说:“你可别灰心呀,要是有了顺口溜,就像给这些小怪兽套上了缰绳,一下子就听话了。

”那珠心算乘法口诀表顺口溜到底是个啥样呢?就拿一一得一来说,那就是最基础最简单的。

我们可以这么编顺口溜:“一一一呀真容易,就像一颗小水滴。

”你看,一颗小水滴多简单明了,一下子就记住了一一得一这个口诀。

再说说一二得二,我们可以说:“一二二呀像小鸭,摇摇摆摆嘎嘎嘎。

”把二想象成一只可爱的小鸭,这样记口诀是不是很有趣呢?就好像口诀不再是干巴巴的数字,而是变成了有生命的小动物。

我还有个同学叫小红,她可聪明了。

她跟我说:“我觉得一三得三可以这样编,一三得三像小山,山上有树不孤单。

”哇,我当时就觉得她特别有创意。

这小山的比喻,让一三得三这个口诀瞬间就变得很形象。

那二二得四呢?我想了个顺口溜:“二二得四像方纸,四个角儿都相似。

”把四想象成一张方方正正的纸,四个角都是一样的,这多好记啊。

当我们说到二乘以三等于六的时候,我就跟小伙伴们说:“二三得六像口哨,吹起口哨乐逍遥。

”你想啊,口哨的形状有点像数字六,而且吹口哨的时候那种快乐的感觉也能让我们更好地记住这个口诀。

我和小伙伴们经常凑在一起,互相分享自己编的珠心算乘法口诀表顺口溜。

有一次,小刚说:“我觉得三三得九像气球,九个气球天上游。

”我们听了都觉得太棒了。

气球在空中飘啊飘的,九个气球就对应着三三得九这个口诀。

随着口诀越学越多,我们的顺口溜也越来越丰富。

像三四十二,我们可以说:“三四十二像时针,一圈里面走一轮。

”把十二想象成时钟的时针走一圈,这也是一种很独特的记忆方式。

手指速算口诀

手指速算口诀
3、首位差一尾数互补者,大数首尾平方减。如76×64=4864
4、末位皆一者,首位之积接着首位之和,尾数之积后面接。如:51×21=1071
------- “几十一乘几十一”速算 特殊:用于个位是1的平方,如21×21=441
两积组成:1248
如(4)245平方=60025
∵10+ (7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272。
(二)十位数字相同、个位数字互补(和为10)的两位数相乘
5、首同尾不同,一数加上另数尾,整首倍后加上尾数积。23×25=575
速算1),首位皆一者,一数加上另数尾,十倍加上尾数积。17×19=323---- “十几乘十几”速算
包括了十位是1(即11~19)的平方,如11×11=121---- “十几平方”
常用速算口诀(三则)
(一)十几与十几相乘
十几乘十几,
方法最容易,
保留十位加个位,
添零再加个位积。
速算 2)首位皆二者,一数加上另数尾,廿倍加上尾数积。25×29=725----“二十几乘二十几”
速算 3)首位皆五者,廿五接着尾数积,百位再加尾数之和半。57×57=3249----“五十几乘五十几”
速算 4)首位皆九者,八十加上两尾数,尾补之积后面接。95×99=9405----“九十几乘九十几”
中间留个空,
用和补进去。
证明:设m、n 为1 至9 的任意整数,则
(10m+n)×(10+1)=100m+10(m+n)+n。
例:36×ll
首位之积排在前,首尾交叉积之和十倍再加尾数积。如37x64=1828+(3x4+7x6)x10=2368

1年级口算心算速算方法

1年级口算心算速算方法

1年级口算心算速算方法一、凑十法。

宝子们呀,凑十法可太好用啦。

就像1 + 9、2 + 8、3 + 7、4 + 6、5 + 5这些组合,它们加起来都等于10呢。

比如说计算9 + 3,咱就可以把3分成2和1,9和1凑成10,然后10再加上2就等于12啦。

这就像给数字找小伙伴,凑成10之后再加上剩下的部分,是不是超级简单呀?二、分与合。

数字的分与合也是口算的小秘诀哦。

10可以分成1和9、2和8、3和7、4和6、5和5。

咱们在做减法的时候就可以用到啦。

像13 - 4,13可以分成10和3,4可以分成3和1,那13 - 3 = 10,10再减去1就等于9啦。

感觉就像在玩数字拆分的小游戏呢。

三、接着数。

这个方法很有趣哦。

比如说计算3 + 2,咱们可以在3的基础上接着数2个数,4、5,所以结果就是5啦。

做减法的时候也能用呢,像7 - 3,从7开始倒着数3个数,6、5、4,那答案就是4咯。

就像小蚂蚁排队走,加的时候接着往后排,减的时候就倒着走。

四、利用生活中的小物件。

宝子们,咱们还可以借助身边的东西来练习口算呢。

像小木棒啦,小珠子啦。

要是算3 + 4,就拿出3根小木棒,再拿出4根小木棒,然后数一数一共有几根,这样就能直观地算出答案啦。

这就像把数字变成看得见摸得着的小玩意儿,算起来可有意思啦。

五、多练习,多玩数字游戏。

口算嘛,就是要多练。

咱们可以玩一些数字游戏,像数字接龙。

一个人说一个算式,下一个人说出答案然后再说一个新的算式。

这样边玩边学,口算能力肯定蹭蹭往上涨。

而且呀,每天花个几分钟做几道口算题,坚持下来,你会发现口算变得越来越容易啦。

宝子们加油哦,口算小能手就是你们啦!。

速算口诀快速记忆法

速算口诀快速记忆法

速算口诀快速记忆法
“速算法”是指利用数与数之间的特殊关系进行较快的加减乘除运算,是数学方法中的一种!速算就是这样一种关于运算规律的学问,可以是通过双手,也可以是通过珠心算,总体而言对于正在学习小学数学的孩子而言,掌握好这套方法,对于学习的提高和成绩的提升都很有帮助。

很多奥数知识都运用到了速算的思维模式。

速算口诀:头乘头,头加头,尾是1(头加头如果超过10要进位)
2、十位数是“1”
速算口诀:头是1,尾加为,尾乘尾(超过10要进位)
3、个位数都是“9”
速算口诀:头数各加1 ,相乘再乘10,减去相加数,最后再放1
4、十位数都是“9”
速算口诀:100减前数,再被后减数。

100减大家,结果相互乘,占2位
5、头相同,尾互补(尾数相加为10)
速算口诀:头乘头加1,尾乘尾占2位
6、头互补,尾相同
速算口诀:头乘头加尾,尾乘尾占2位
7、互补数乘叠数
速算口诀:头加1再乘头,尾乘尾占2位
8、其中一个是11
速算口诀:首尾都不动,相加放中间。

超棒超快的数学心算方法完整版

超棒超快的数学心算方法完整版

超棒超快的数学心算方法完整版数学心算方法是指在脑海中进行数学运算的能力,它可以帮助人们迅速准确地解决数学问题。

在这篇文章中,我将介绍一些超棒超快的数学心算方法,帮助你提升运算速度和准确性。

1.快速加法:-利用十进位数的相加,例如:57+38=(50+30)+(7+8)=80+15=95 -利用补数相加,例如:57+38=(57+2)+(38-2)=59+36=95-利用相差法,例如:57+38=57+40-2=97-2=952.快速减法:-利用十进位数的相减,例如:83-29=(80-20)+(3-9)=60-6=54 -利用补数相减,例如:83-29=(83-1)-(29+1)=82-30=52-利用相差法,例如:83-29=83-30+1=53+1=543.快速乘法:-利用十进位数的相乘,例如:34×23=(30×20)+(4×20)+(30×3)+(4×3)=600+80+90+12=782-利用分解法,例如:34×23=(30+4)×23=(30×23)+(4×23)=690+92=782-利用近似法,例如:34×23≈30×23=690。

4.快速除法:-利用估算法,例如:430÷8≈400÷8=50。

-利用倍数法,例如:430÷8=(400÷8)+(30÷8)=50+3.75=53.755.快速平方:-利用公式法,例如:23²=(20+3)²=(20²)+(2×20×3)+(3²)=400+120+9=529-利用近似法,例如:23²≈20²=400。

6.快速立方:-利用近似法,例如:23³≈20³=8000。

除了以上的数学运算方法,还有一些通用的数学技巧可以帮助加快心算速度:1.使用近似值:将复杂的数进行适当的近似,可以减少心算过程中的计算量,提高速度。

珠心算教案

珠心算教案

珠心算教案珠心算教案1教学目标:1、通过算式练习进一步巩固理解直减口诀。

2、娴熟运用直减口诀进行唱拨算式。

3、培育幼儿对数字的认识技能。

4、让幼儿懂得简约的数学道理。

5、引发幼儿学习的爱好。

教学重难点:教学重点:娴熟运用口诀进行唱拨算式。

教学难点:进行心算。

教学预备:1、老师及同学用算盘、铅笔,嘉奖贴。

2、相关多媒体教学课件。

教学过程:(一)基本功训练1、全盘练:全盘拨入并拨去一位数练习。

全盘拨入并拨去1 " 9。

2、听数布数两位数。

3、看数、看珠两位数、三位数。

(二)教学引入(1)复习①谈话:在上课前老师想和小伙伴们一起来复习一下我们前面学习过的内容,现在我邀请几位小伙伴到前面来协作我,谁情愿上来呢!②老师请4位小伙伴(1位男孩、3位女孩)到前面来。

③提问:老师一共请了几位小伙伴到前面来?我要用一个数字来表示,用几来表示呢?小男孩一共有几个?你是怎么知道的?用的什么方法?能列出一个算式吗?④列出算式:4-3=1请幼儿唱拨算式。

(2)小结:刚才我们对前面学习过的算式进行了复习,小伙伴们都表现得很棒!请鼓舞自己。

(三)学习新课1、指导幼儿依据问题列出算式。

①停车场上停着各式各样美丽的汽车,请小伙伴们数一数一共有几辆小汽车/(老师点击大屏幕涌现汽车图片)②提问:红颜色的汽车有几辆?请你说一说,你运用什么方法知道的?③列出算式:7-5=22、示范、练习拨珠。

①谈话:刚才,小伙伴们能够用自己的.方法找到答案,说明你们很聪慧,表扬表扬自己!现在请小伙伴们自己在算盘上尝试着拨一拨,看看在算盘上能不能得到相同的答案。

②老师示范拨珠。

唱拨口诀:7减5,先拨入7,减5,减看内珠,够减直减。

拨去5,等于2,拨去2。

③请个别幼儿到前面来拨,下面的小伙伴跟着一起练习唱拨。

3、课中律动《做操》(四)课堂练习1、老师点击大屏幕依次出示巩固练习算式:6-5 8-5 9-5 。

①依次出示算式,请全体幼儿先在自己的算盘上练习唱拨。

两位数乘法心算技巧

两位数乘法心算技巧

两位数乘法心算技巧1. 嘿,你知道吗,两位数乘法心算有个超棒的技巧呢!比如说34×56,我们可以先把 34 拆成 30+4,把 56 拆成 50+6,然后算30×50=1500,30×6=180,4×50=200,4×6=24,最后把这些结果相加,不就得出结果了嘛!这不是很简单?2. 哇塞,还有一种方法呢!就像45×67,先找到接近的整十数,把 45 看成 50,把 67 看成 70,50×70=3500,然后再减去多算的部分,是不是很巧妙呀?3. 你看哈,对于23×88 这样的,我们可以把 88 变成 100-12,然后用 23 分别去乘 100 和 12,再相减,是不是感觉一下子就会算了呢?4. 嘿呀,再教你一招哦!比如算76×32,我们可以根据乘法分配律,把 76 拆成 70+6,分别和 32 相乘,再相加,咋样,学会了吧?5. 哎呀,还有一种有趣的方法呢!像55×44,我们可以把其中一个数凑成整十数的倍数呀,比如把 55 变成5×11,44 变成4×11,这样就好算了很多,对吧?6. 哇哦,遇到63×78 这种的怎么办?可以先算60×78,再加上 3×78,是不是一下子思路就清晰啦?7. 嘿,还有个超好用的呢!比如87×25,我们可以先算87×100÷4,是不是很神奇?8. 哈哈,再告诉你个绝的!算94×55 的时候,可以把 94 近似看成 90,先算90×55,然后再加上4×55 来修正,酷不酷呀?9. 总之呢,两位数乘法心算的技巧真的好多呀!掌握了这些,算起来就又快又准,何乐而不为呢!。

如何教孩子口算心算

如何教孩子口算心算

如何教孩子口算心算口算心算是数学学习中的重要组成部分,它可以培养孩子们的计算能力、逻辑思维和注意力集中能力。

对于孩子来说,掌握口算心算的技巧将会为他们以后的学习和生活带来很大的便利。

因此,引导孩子正确学习口算心算是每位家长的责任和义务。

下面,我将为大家介绍一些方法和技巧,帮助家长教孩子掌握口算心算的能力。

首先,要培养孩子的对数字的敏感性。

让孩子在日常生活中接触到数字,并与其进行互动。

例如,在购物时让孩子帮忙计算总价格,或者在扔垃圾时让孩子数一下垃圾袋里有多少个垃圾袋。

通过这些简单的游戏,培养孩子对数字的认识和感知。

其次,需要教孩子一些基本的口算技巧。

例如,加法和减法的极限方法,即通过连加或连减的方式进行简化。

例如,当孩子面对9 +7这个题目时,可以先教他们将9加1变成10,再加上6。

这样,孩子只需要计算10 + 6,而不是9 + 7,大大简化了计算的难度。

另外,还可以教孩子使用分解法、进位法和退位法等。

例如,对于62 + 17,可以先将17拆分为10 + 7,然后分别与62相加,再将结果相加。

这样,孩子可以将复杂的题目简化为多个简单的小题目,更容易掌握和计算。

除了基本的口算技巧,还需要培养孩子的心算能力。

心算是指在脑海中进行计算而不借助其他工具的能力。

这种能力需要长期的积累和训练。

一开始,可以从简单的计算开始,例如让孩子心算10以内的加减法,然后慢慢增加难度。

鼓励孩子进行日常的数学思维训练也是提高口算心算能力的重要方法之一。

例如,在早餐时间,让孩子自主选择面包数量,并计算总共需要多少片面包。

在外出购物时,让孩子计算折扣之后的价格。

这样的思维训练可以帮助孩子将数学与生活结合起来,培养他们的数学思维能力。

此外,还可以通过游戏的方式激发孩子对口算心算的兴趣。

例如,玩数学达人等数学相关的游戏,让孩子在游戏中体验到口算心算带来的成就感。

在游戏中,孩子会不断地接触到各种计算题目,从而提高他们的计算速度和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超棒超快的数学心算方法,让你从此不再用计算器_ 乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×17 15 + 7 = 22 5 × 7 = 35255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 7=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用15 + 7”,而不用“ 150 + 70”。

例:17 × 1917 + 9 = 267 × 9 = 63即260 + 63 = 323、个位是1 的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 3150 × 30 = 150050 + 30 = 801580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 9180 × 90 = 720080 + 90 = 17073707371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 4643 + 6)× 40 = 19603 × 6 = 181978例:89 × 87(89 + 7)× 80 = 76809 × 7 = 63774310 的四、首位相同,两尾数和等于两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0 补。

例:56 × 54 (5 + 1) × 5 = 30-- 6 × 4 =243024例: 73 × 77(7 + 1) × 7 = 56-- 3 × 7 = 215621例: 21 × 29(2 + 1) × 2 = 6-1 × 9 = 9609“ --”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

五、首位相同,尾数和不等于10 的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积例:56 × 585 × 5 = 25--(6 + 8 )× 5 = 7-6 × 8 = 483248得数的排序是右对齐,即向个位对齐。

这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10 的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0 补例:66 × 37(3 + 1)× 6 = 246 ×7 = 422442例:99 × 19(1 + 1)× 9 = 18-9 × 9 = 811881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助6 的方法相似。

两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0例:46 × 994 × 9 + 9 = 45-6 × 9 = 544554例:82 × 33 8 × 3 + 3 = 27--2706八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方)得数作为后积,没有十位补0。

例:78 × 387 × 3 + 8 = 29-8 × 8 = 642964例:23 × 832 × 8 +3 = 19-3 × 3 = 91909B、平方速算一、求11~19 的平方底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

例:17 × 1717 7 = 24-7 × 7 = 49289参阅乘法速算中的“十位是1 的两位相乘”二、个位是1 的两位数的平方底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

例:71 × 71 7 × 7 = 49-- 7 × 2 = 14-5041参阅乘法速算中的“个位数是1 的两位数相乘”三、个位是5 的两位数的平方十位加1 乘以十位,在得数的后面接上25 。

例:35 × 35(3 + 1)× 3 = 12-251225四、21~50 的两位数的平方在这个范围内有四个数字是个关键,在求25~50 之间的两数的平方时,若把它们记住了,就可以很省事了。

它们是:21×21=44122×22=48423×23=52924×24=576求25~50 的两位数的平方,用底数减去25,得数为前积,50 减去底数所得的差的平方作为后积,满百进1,没有十位补0。

例:37 × 37 37 - 25 = 12--136950 - 37) ^2 = 169注意:底数减去25 后,要记住在得数的后面留两个位置给十位和个位。

例:26 × 26 26 - 25 = 1--50-26)^2 = 576676C、加减法、补数的概念与应用补数的概念:补数是指从10、100、1000⋯⋯中减去某一数后所剩下的数。

例如10 减去9 等于1,因此9 的补数是1 ,反过来,1 的补数是9。

补数的应用:在速算方法中将很常用到补数。

例如求两个接近100 的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

D、除法速算一、某数除以5、25、125 时1、被除数÷ 5= 被除数÷ (10 ÷ 2)= 被除数÷ 10 × 2= 被除数× 2 ÷ 102、被除数÷ 25= 被除数× 4 ÷ 100= 被除数× 2 × 2 ÷ 1乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

例:15×1715 + 7 = 225 × 7 = 35255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 7=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用15 + 7”,而不用“ 150 + 70”。

例:17 × 1917 + 9 = 267 × 9 = 63即260 + 63 = 323二、个位是1 的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

例:51 × 3150 × 30 = 1500 50 + 30 = 801580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。

数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

例:81 × 91 80 × 90 = 7200 80 + 90 =17073707371原理大家自己理解就可以了。

三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

例:43 × 4643 + 6)× 40 = 19603 × 6 = 181978例:89 × 87(89 + 7)× 80 = 7680 9 × 7 = 637743四、首位相同,两尾数和等于10 的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0 补。

例:56 × 54(5 + 1) × 5 = 30-6 × 4 = 243024例: 73 × 77 (7 + 1) × 7 = 56--3 × 7 = 215621例: 21 × 29(2 + 1) × 2 = 6-1 × 9 = 9609“ --”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的五、首位相同,尾数和不等于10 的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

例:56 × 585 × 5 = 25--(6 + 8 )× 5 = 7--6 × 8 = 483248得数的排序是右对齐,即向个位对齐。

这个原则很重要。

六、被乘数首尾相同,乘数首尾和是10 的两位数相乘。

乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0 补。

例:66 × 373 + 1)× 6 = 24--6 ×7 = 422442例:99 × 19(1 + 1)× 9 = 18-- 9 × 9 = 811881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助 6 的方法相似。

两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0例:46 × 994 × 9 + 9 = 45-6 × 9 = 544554例:82 × 338 × 3 + 3 = 27-2 ×3 = 62706八、两首位和是10,两尾数相同的两位数相乘。

两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方)得数作为后积,没有十位补0。

例:78 × 387 × 3 + 8 = 29--8 × 8 = 642964例:23 × 832 × 8 +3 = 19-3 × 3 = 91909B、平方速算一、求11~19 的平方底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

相关文档
最新文档