配位化合物配位化合物组成命名配合物的空间构型配位平衡

合集下载

第十一章:配位化合物介绍

第十一章:配位化合物介绍

配合物中直接与中心原子结合成键的配位原子的总数目。 单齿配体 配位数等于 配体数 如[Fe(CN)6]3多齿配体 配位数不等于配体数 如[Pt(en)2]2+ 表11-1 常见金属离子的配位数 配 位 数 2 4 离 子 Ag+,Cu+,Au+ Zn2+,Cu2+,Hg2+,Ni2+,Co2+,Pd2+, Si4+,Ba2+ Fe2+,Fe3+,Co2+,Co3+,Cr3+,Pt4+, Pd4+,Al3+,Si4+,Ca2+,Ir3+
26Fe 3+ 2+ +

例如:
[Ar] 3d54s04p0 [Ar] 3d84s24p0 [Ar] 4d105s05p0 [Ar] 3d84s24p0
26Si
4+
[SiF6]2-
27Co 47Ag 28Ni
2 配位体 ( ligand ): 在中心原子周围以一定的空间 构型排列的阴离子或 分子(以配位键结合),它 们能给出孤对电子或电子
[Ni(CO)4]
配合物 [Cu(NH3)4]SO4
内层
[ Cu ( NH 3 ) 4 ] 2+ 中 心 原 子 配配 配 配 位位 位 离 原体 数 子 子 电 荷
外层
S O4 2 外 界 离 子
1 中心原子(central atom )

位于配离子中心的离子或原子 具有空的价电子轨道(通常指(n-1)d,ns,np,nd轨 道)能接受孤对电子 一般是金属离子,大多是过度金属,Ⅷ及其附近副族 元素,少数高氧化值的主族元素离子

7第十章 配位化合物及配位平衡

7第十章 配位化合物及配位平衡

6
内界:中心原子和配位体以配位键结合的部分。
外界 :与内界以离子键结合的部分。
例:[Co(NH3)6] Cl3
内界 外界
K4[Fe(CN)6]
外界 内界
离子键 :正负离子因静电吸引而形成的键。 (如:NaCl)
共价键 :两个原子共享电子对而形成的键。
(如:HCl)
7
配位键: 共享的电子对由配体单方提供的共价键。
内界: 配合物中由配位键结合的部分。 外界:通过离子键与内界结合的部分。 配位键: 共享的电子对由配体单方提供的 共价键。
12
配位原子 : 配位体中直接与中心原子结合, 并提供电子对的原子。
单齿配体: 一个配位体中只含一个配位原子。 多齿配体: 一个配位体中含多个配位原子。 常见双齿配体
缩写 符号
草酸根 (OX)
乙二胺 (en)
配位数: 配离子的 电荷数:
直接与中心原子配位的配位原子数。
区别 配位体数 与 配位数 中心离子的电荷数与 配位体电荷数的代数和。
13
指出[Co(NH3)5H2O]Cl3
CoCl2 (en)2
2
、 Al(C2O4 )3
3
外 界,内界,中心原子, 配体,配位原子,配位数。
4

[Cu(NH3 ) 4 ]2+
PtCl3 (NH3 )
多齿配体
3 1 4 2 2 2 6 3 2 6
CoCl2 (en)2 Al(C2 O4 )3
2
3
配离子的电荷数:中心离子的电荷数与 配位体电荷数的代数和。
11
复习
内界(配离子) 外界 [Co (NH3) 6] Cl3 中 配 配 心 位 位 离 体 体 子 数

配位化合物

配位化合物

8.2 配合物的空间结构和异构现象
1、配合物的空间结构 空间构型
配位数 2 杂化轨道 sp 空间构型 直线型 实例 [Ag(NH3)2]+
3
4
sp2
sp3
平面三角形
平面正方形
[HgI3][Ni(CN)4]-、[PdCl4]2-
四面体
5 dsp3或d3sp d2sp2 6 d2sp3或sp3d2 三角双锥 正方锥形 正八面体
配位数(不一定是配体数)
与中心原子直接以配位键结合的配位原子的数目 称为中心原子的配位数。中心原子的配位数一般可为 2-12,以配位数2,4,6最为常见。 中必原子的配位数与配体的齿数有关,
配体是单齿,那么中心原子的配位数就是配体的数目; 配体是多齿,那么中心原子的配位数则是配体的数目 与其齿数的乘积。 例如: [Co Br(NH3)5] (SO4),
1.62×107=(0.02-x)/4x3
x=6.8×10-4
二、配位解离平衡移动
1. 与弱电解质平衡的竞争
M+ + L+ + OHH+ [ML]
当Ka, Kb越小,配离子越易解离 平衡向生成弱酸、弱碱方向移动 MOH HL
[ Fe(C2O4 )3 ]3
Fe3 3C2O4 2
+ 6H+

3. 杂化轨道形式与配合物的空间构型
配 位 数 2 3
空间构型
直线形 平面三角形
杂化轨 道类型 sp sp2
实例
Ag(NH3)2+ , Ag(CN)2– Cu(CN)32 – ,HgI3–
4 4 5
5 6
正四面体 四方形 三角双锥
四方锥 八面体

配位化合物的基本概念

配位化合物的基本概念

K[PtCl3NH3]
三氯·氨合铂(II)酸钾
(3) 同类配体(无机或有机类)按配位原子元素符号的
英文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III)
41
(4) 同类配体同一配位原子时,将含较少原子数的配体排在前 面。如:[Pt(NO2)(NH3)(NH2OH)(Py)]Cl
19
螯合物的稳定性
螯环的大小——一般五原子环
螯合物
或六原子环
稳定性
最稳定
螯环的多少——一个配体与中 心离子形成的 螯环数越多, 越稳定。
20
螯合物特性——显特征颜色
如 在弱碱性条件下,丁二酮肟与Ni2+形成 鲜红色的螯合物沉淀,用来鉴定Ni2+。
21
常见单齿配体
阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基
+3
+5
Na[BF4 ]
NH4[P F6 ]
b. 不带电荷的金属原子,如Ni、Fe
0
[Ni(CO)4 ]
0
[Fe(CO)5 ]
13
2. 配位体和配位原子:能提供孤对电子
内界中与中心离子结合、含有孤电子对的中性分子 或阴离子叫配位体,配体中具有孤电子对并直接与中心 离子以配位键结合的原子称为配位原子。
(7) 俗名命名法:赤血盐,黄血盐,氯铂酸钾等。
42
配位化合物的类型及命名
类型
化学式
命名
配位 酸
H[BF4] H3[AlF6]
四氟合硼(Ⅲ)酸 六氟合铝(Ⅲ)酸
配位 [Zn(NH3)4](OH)2
氢氧化四氨合锌(II)

第八章 配位化合物

第八章 配位化合物
说明:最小的磁矩称为玻尔磁子,其值为9.27×10-24
A·m2
(3)测定 磁矩可通过磁天平测定。 • 顺磁性:被磁场吸引
• 反磁性:被磁场排斥
• 铁磁性:被磁场强烈吸引 (如 Fe , Co , Ni)
..
..
..
..
N
S
(a)无磁场
N
S
(b)磁场打开
顺磁性的说明
(4)影响因素 未成对电子数越多,磁矩越高,配合物
的磁性越大。
(5)意义
• 根据未成对电子数求磁矩; • 根据磁矩求未成对电子数; • 判断杂化方式、空间构型、配合物类型。
未成对电子数 0 1 2 3 4 5
µ计 / B.M
0 1.73 2.83 3.87 4.90 5.92
例: 测定FeF63-的µ为5.90 B.M,可判断: Fe3+有5个未成对电子;
Ag+
4d
[Ag(NH3)2]+
4d
5s
5p
NH3 NH3
5s
5p
sp杂化
2. 配位数为4的配合物的杂化方式及空间构型
(1)[NiCl4]2-:Ni 3d84s2
sp3杂化
Ni2+
Ni2+ 3d8 外轨型
四面体
3d
[NiCl4]2-
3d
4s
4p
Cl-
Cl- Cl- Cl-
4s
4p
sp3杂化
[NiCl4]2-
NH2-CH2-CH2-H2N
说明:
少数配体虽然有两个配位原子,由于两 个配位原子靠得太近,只能选择其中一 个与中心原子成键,故仍属单齿配体。
硝基NO(2 N是配位原子) 亚硝酸根ONO- (O是配位原子) 硫氰根SCN (S是配位原子) 异硫氰根NCS (N是配位原子)

配合物

配合物

1).配位数=2的配合物 氧化态为+1价的离子常形成配位数为2的配合物

如:[Ag(NH3)2]+ 、[ Cu(NH3)2]+ Ag+ : 4d10, 5s0 或 Cu+ : 3d10, 4s0 只能采取sp杂化
2).配位数=4的配合物
+2价的离子常形成配位数为4的配合物,有sp3正四面体及dsp2 平面正方两种杂化形式,它由中心离子的价层电子结构、配体的 性质决定。
软硬酸碱理论 金属离子——酸(接受电子对) 硬酸——正电荷高,半径小,难极化,难还原; 软酸——正电荷低,半径大,易极化,易还原。 配体——碱(提供电子对)
硬碱——配位原子是电负性大、半径小的元素,如:F- 、OH-等,
软碱——配位原子是电负性小、半径大、易极化的元素,如:I - 、 SCN-等。
用二、三、四等数字表示配位体数。不同配位名称之间用圆点“·‖分开。
阴离子次序为:简单离子——复杂离子——有机酸根离子。 中性分子次序为:NH3—H2O—有机分子。
1.配位阴离子配合物 K2[SiF6] K[PtCl5(NH3)] 2.配位阳离子配合物 [Co(NH3)6]Br3 六氟合硅(Ⅳ)酸钾 五氯· 一氨合铂(Ⅳ)酸钾 三溴化六氨合钴(Ⅲ)
八面体场中的d轨道
d 轨道在正八面体场内的能级分裂
晶体场分裂能 分裂后最高能级eg和最低能级t2g之间的能量差,用Δo或10 Dq表示。相当于一个电子由t2g轨道跃迁到eg 轨道所需要的能量。 1. 不同的配体大致按下列顺序影响Δo值: I-<Br-<Cl-~SCN-<F-<OH-<C2O42-<H2O<EDTA <NH3<SO32-

配位化合物

配位化合物
若硬水中加入少量三聚磷酸钠(Na5P3O10)将与水中 的Ca2+,Mg2+发生络合可防止锅垢的形成。
Ni2+可以利用丁二肟在氨溶液中与Ni2+配位生成桃红 色絮状螯合物沉淀物来鉴定。
首页
上一页
下一页
末页
32
利用硫氰根负离子可以与Co2+形成蓝紫色的四硫氰 根 合 钴 ( II ) [Co(SCN)4]2- 来 检 验 Co2+ 的 存 在 。 与 Fe3+形成血红色配合离子可供检验Fe3+的存在。
K4[Fe (CN)6]
六氰合铁(Ⅱ)酸钾
H4[Fe (CN)6]
六氰合铁(Ⅱ)酸
[Co(NH3)5H2O]Cl3
氯化五氨·水合钴(Ⅲ)
首页
上一页
下一页
末页
18
配合物的类型
(1)简单配合物 由单齿配体与中心原子直接配位而成的配位化合 物。
例:[Ag(NH3)2]+ BF4[Fe(H2O)6]Cl3 [CoCl3(NH3)3] 等
28Ni 3d84s2 3d
Ni2+
4s 4p
[Ni(CN)4]2-
dsp2杂化
CN- CN- CN-CN-
首页
上一页
下一页
末页
24
[NiCl4]2-的空间构型为四面体。
28Ni 3d84s2
3d
Ni2+
4s 4p
[NiCl4]2-
3d sp3杂化
4s
4p
Cl- Cl- Cl- Cl-
首页
上一页
下一页
首页
上一页
下一页
末页
38
配合物与配位作用用于医学

配位化合物课件

配位化合物课件
理 论, 提出了 配位数 这个主要概念。韦 尔纳旳理论能够说 是当代 无机化学 发
展旳基础,因为它打破了只基于碳化合 物 研究所得到旳不全方面旳构造理论,并为 化合价旳电子理论开辟了道路。韦尔纳 抛弃了 F.A.凯库勒 有关化合价恒定不变 旳观点, 大胆地提出了副价旳概念, 创建 了配位理论。韦尔纳因创建配位化学而 取得1923年诺贝尔化学奖。
外界 内界 配离子 K3[ Fe ( C N ) 6 ]
配离子以配位键结合,在水内中很稳定; K+为外界,内、外界以离子键结合,易解离
2. 配合物旳构成:
(1) 中心离子(原子):(能够接受孤对电子)位于配 离子旳几何中心,是配离子旳形成体。中心离 子(原子)一般具有接受孤对电子旳空轨道, 常见旳为过渡元素原子或离子,如:Fe3+、Fe、 Cr3+、Ag+等,还有p区旳非金属元素,还有某 些半径小和电荷高旳p区金属离子,如:B(Ⅲ)、 Si(Ⅳ)、Al3+等,也有个别旳非金属元素阴离 子,如:I—等。
中心离子: Co3+
配位体: --NO2 、 C2O42 -
配位原子:N、O、O 配位数:2×1+2×2=6
内界:[Co(NO2)2(C2O4)2]3- 外界:NH4+
配离子电荷=+3 -2×1 - 2 ×2 = -3
[CoCl(NO2)(NH3)(H2O)]Cl
中心离子
Co3+
配位体 配位原子
Cl-、-NO2 、NH3、H2O
明没有明显NH3 ,
(2)加入稀NaOH时无沉淀生成,阐 明无简朴Cu2+离子 (3)加入BaCl2+HNO3溶液有沉淀生 成,示有SO42-离子

配位化合物

配位化合物

dsp2
5 6 d2sp3 dsp3 sp3d2
正方形
三角双锥形
[Ni(CN)4]2[Fe(CO)5] [CoF6]3[Co(CN)6]320
正八面体形
(二)内轨型和外轨型 内轨配键:由次外层 (n-1)d 与最外层 ns、np 轨道杂化 所形成的配位键。 内轨型配合物:由内轨配键形成的配合物。
如 [Fe(CN)6]3-、[Co(NH3)6]3+、[Ni(CN)4]2外轨配键:全部由最外层 ns、np、nd 轨道杂化所形成的 配位键。
9
(三)配位数
1 个中心原子所具有的配位键数目,称为该中心原子的 配位数。常见配位数是 6 和 4。
若配合物中的所有配体都是单齿配体,则配位数等于配 体数;若其中某些配体含有 2 个或 2 个以上配位原子,则 配位数大于配体数。例如: [Cr(NH3)6]3+ 配位数 6,配体数 6
[Cr(H2NCH2CH2NH2)3]3+ 配位数 6,配体数 3
11
2. 若配体不止一种,则先无机,后有机;在无机或有机配 体中,先离子,后分子;不同配体之间可用圆点隔开。 化学式书写方式为:[M-无机阴离子-无机分子-有机物]
其命名方式为:无机阴离子-无机分子-有机物-合-金属(氧 化数)
例如:[CoCl(NH3)3en]2+ 一氯· 三氨· 乙二胺合钴(Ⅲ)离子 同类配体按配位原子元素符号的英文字母顺序排列。 例如:[Co(NH3)5H2O]3+ 五氨· 一水合钴(Ⅲ)离子
28
例 已知 [Mn(CN)6]4- 的磁矩 实测=1.57 B.M.,请推测这 个配合物的空间构型和稳定性。 解 由配位数为 6 可知,需要 6 个空杂化轨道,杂化方式 可能为 d 2s p 3 或 s p 3d 2 已知 Mn2+ 3d 5 根据表 实测=1.57 B.M.,与 1 个单电子相当

第八章_配位化合物

第八章_配位化合物

0.10 21 1.0 10 2 y (0.10)
y 1.0 10
20
即Ag+的平衡浓度为1.0×10-20 mol/L。
2、判断配位反应进行的方向
[Ag(NH3)2] ++ 2CN反应向哪个方向进行?
2 [ Ag ( CN ) ][ NH ] 2 3 K [ Ag ( NH 3 ) 2 ][CN ]2
[Cu( NH 3 ) ] 1 2 [Cu ][NH 3 ]

2
2

[Cu( NH 3 ) 2 ] [Cu 2 ][NH 3 ]2
2
3

[Cu( NH 3 ) 3 ] [Cu 2 ][NH 3 ]3
2
2
4

[Cu( NH 3 )4 ] K稳 2 4 [Cu ][ NH 3 ]
[Zn(NH3)4]2+ [Zn(CN)4]2+ 5×108 1.0×1016
中心离子不同,配体相同,配位数相同。
[Zn(NH3)4]2+ [Cu(NH3)4]2+ 5×108 4.8×1012
不同类型配合物稳定性要通过计算 求出溶液中的离子浓度。
CuY2[Cu(en)2]2+ 6.3×1018 4.9×1019
配位离子 [Cu(NH3)4]2+ 配位单元 配合物 配位分子 Fe(SCN)3 配离子与带有异电荷的离子 组成的中性化合物。 [Cu(NH3)4]SO4
Hale Waihona Puke 1.2 配合物的组成中心离子和配位体之 间以配位键结合。
NH3 H3N Cu NH3 NH3
2+ 2 SO4 2
配合物的组成分为内 界和外界两部分。

配位化合物

配位化合物

总解离反应: [Ag(NH3)2]+(aq) 总解离常数(不稳定常数):
Ag+(aq)+2NH3(aq) Kd
{c(Ag )}{c( NH3 )}2 Kd Kd1Kd 2 {c(Ag(NH3 ) 2 )}
无机及分析化学
显然,Kd 越大, 配合物越不稳定。
西南科技大学
13
2. 配位平衡
• 稳定

加热不放出氨气
[Co(NH3)6]Cl3
2. 特征: 有[内界]外界,如:[Ag(NH3)2]Cl;
外层 内层
从溶液中析出配合物 时,配离子常与带有相反 电荷的其他离子结合成盐, 这类盐称为配盐。
K3 [Fe ( C N )6 ]
形 成 体
配配 配 位体 位 原 数 子
西南科技大学
2
无机及分析化学
无机及分析化学
西南科技大学
14
在溶液中,配离子的生成一般是分步进行的,因此溶液中 存在着一系列的配位平衡,每一步都有相应的稳定常数,称为 逐级稳定常数。 c Ag+(aq)+NH3(aq)
(1)简单配合物
单基配位体和中心原子所形成的配合物,如 [Ag(NH3)2]Cl。
(2)螯合物
多基配位体以一个或两个配位原子与同一中 心原子配位所形成的环状化合物, 如[Zn(en)2]2+,en:NH2CH2CH2NH2 (乙二胺)。
(3)多核化合物
由配位体与多个中心原子所形成的配合物, 如[(H20)4Fe(OH)2Fe(H2O)4]4+。
(4)羰合物
以羰基配位体与金属形成的一类化合物,如 Ni(CO)4。
无机及分析化学 西南科技大学
8

第八章 配位化合物

第八章    配位化合物
2 3 2 0 K f,1 104.31 0 K f,2 103.67
NH3 Cu(NH )
2 3 3
K f,3 10
0
3.04
2 Cu ( NH3 ) 3 NH3 Cu(NH3 ) 2 4 K 0 K0 K0 K0f,3 K0f,4 1013.32 f f,1 f,2
外界: 普通阴、阳离子(Cl-,K+,SO42-等),有的配合物无外界
例如:[Ag(NH3)2]Cl
、 K[PtCl5(NH3)]、
[Ni(CO)4](无外界)
几个基本概念:
1、配合物:内界+外界(有的 无外界)
2、配离子: [Ag(NH3)2]+ 、[PtCl5(NH3)]配分子: [Ni(CO)4 ]
1

Ag(NH3 ) 2 0 0.010 0.010 x
0.030 0.030 0.020 0.010 2 x
0 x
1
0.010 x K f 1.67 107 x (0.010 2 x ) 2 0.010 x 0.010 0.010 2 x 0.010 0.010 1.67 107 x 6.0 106 x 0.0102 c ( Ag ) 6.0 106 mol L1 c ( NH3 ) c (Ag(NH3 ) 0.010mol L1 2
Cu(en)2
H 2C H 2C
2
的结构:
H2
H2
N Cu N
H2
N N
CH 2 CH 2
2+
H2
8、配离子与形成体的电荷数
Ag(S2 O3 ) 2
() ( 2 ) 3

六配位化合物简介

六配位化合物简介

中心原子 有空轨道
配体有孤 对电子
配位键的存在是配合物与其它物质最本质的区别
一、配位化合物定义
中心离子(原子)具有空轨道,通常是金属离子和原子,也 有少数是非金属元素,例如:Cu2+,Ag+,Fe3+,Fe,Ni, B(Ⅲ),P(Ⅴ)…… 配位体提供孤电子对的分子或离子。通常是非金属的阴离子 或分子,例如:F-,Cl-,Br-,I-,OH-,CN-,H2O,NH3, CO……
Ag+ Cl-
Na2S2O3
AgCl↓
NH3·H2O
[Ag(NH3)2]+ Br-
AgBr↓
[Ag(S2O3)2]- I- AgI↓ NaCN
[Ag(CN)2]-
Na2S
Ag2S↓
八、配合物的性质 螯合物
配位化合物简介
Copyright 2010 Zhangke
Байду номын сангаас
一、配位化合物定义
一、配位化合物定义
BaCl2溶液
CuSO4溶液+ 过量氨水
NaOH溶液
CuSO4溶液+ 过量氨水
无水乙醇
有 SO42-
未能查出Cu2+
X射线晶体衍射证明为 [Cu(NH3)4]SO4
一、配位化合物定义
配位化合物(简称配合物):由可以给出孤对电子或π电子 的一定数目的离子或分子(称为配体)和接受孤对电子或π 电子的原子或离子(统称中心原子)以配位键结合形成的化 合物。

1015.3 109.1
106.2
Co(H2O)62 4SCN 丙酮 Co(SCN)24 6H2O 深蓝色
八、配合物的性质
例:计算AgCl在6mol/L的氨水中的溶解度,已知Ag(NH3)2+ K稳=1.6×107 ;AgCl Ksp=1.7×10-10

第九章 配位化合物

第九章 配位化合物

(5)[BF4]-
(μJ=0 BM)
sp3 正四面体;
(6) [Ag(CN)2]- (μ=0 BM)
sp 直线形
9—3 解释下列名词
(1)配位原子
(2)配离子
(3)配位数
(4)多基(齿)配体 (5)整合效应 (6)内轨型和外轨型配合物
(7)高自旋和低白旋配合物
(8)磁矩
答:(1)配位原子:与形成体成键的原子。
103
第九章 配位化合物与配位滴定法
思考题与习题
9—l 命名下列配合物,并指出中心离子、配体、配位原子和中心离子的配位数。

(1)[CoCl2(H2O)4]Cl (2)[Pt(Cl4(en)] (3)[NiCl2(NH3)2]
(4)K2[Co(SCN)4]
(5)Na2(SiF6)
(6)[Cr(H2O)2(NH3)4]2(SO4)3
应的平衡常数,称为稳定常数。 ⑵配位平衡的移动 配离子在溶液中,在一定条件下的配位离解平衡,若平衡条件发生改变,就可能使这种平衡发生移
动,配离子的稳定性发生改变。加入酸、碱、沉淀剂、氧化剂、还原剂等均能引起配位平衡的移动。 配位平衡与酸碱平衡、配位平衡与氧化还原平衡、配位平衡与其他平衡共处一体时,这些平衡将相互影 响,相互制约,构成多重平衡体系,因此可根据其平衡常数的大小讨论平衡转化的方向。
外轨型
四面体
4
dsp2
PtCl42-、[Ni(CN)4]2-,[PtCl2(NH3)2],[PtCl4]2-
内轨型
平行四边形
dsp3 5
d2sp2
Fe(CO)5 SbF52-
内轨型 内轨型
三角双锥 四角锥
d2sp3 6
sp3d2

配位化合物配位化合物组成命名配合物的空间构型配位平衡

配位化合物配位化合物组成命名配合物的空间构型配位平衡


这样我们可以得到配位反应的方向和配合物的 稳定性: 硬+硬、软+软

所生成的配离子稳定性高。

交界酸碱不论对象如何都可生成配离子。酸: Fe2+ 、 Co2+ 、 Ni2+ 、 Cu2+ 、 Zn2+ 、 Pb2+ 、 Sn2+ 、 Sb3+、Cr3+、Bi3+等。

碱 : C6H5NH2 、 C2H5N 、 N3- 、 Br- 、 NO2- 、 SO32-、N2等。
6个配位原子都能
以孤对电子和中
心原子形成配位,
Cu2+、Zn2+、Cd2+、
Hg2+和EDTA则形
成四、六配位的 螯合离子结构如 下:
EDTA合钙
二乙二胺合铂(Ⅱ)
叶绿素
五、配合物空间结构与异构现象*
1.配合单元的空间结构:

配合物的几何构型与中心离子的配位数 有一定关系,一定的配位数有其物定的

配合物中,以空轨道接受配体孤对电子或π键 电子形成配位键的原子或离子称为中心原子 或中心离子。
2、配位体L

在配合物中,与中心离子或原子以配位键 结合的离子或分子称为配位体简称配体
(ligand)。例如[Cu(NH3)4]2+中的NH3分
子。

它们与中心原子结合构成为配合物的内界。
3、配位数


配位原子的电负性 → 大,与中心原子间的配位能
正离子名称在后。

命名内界时,配体名称列在中心原于之前,
不同配体之间以中圆点(· )分开。

相同配体的个数用数字二、三、四等表示。

普通化学-配位化合物

普通化学-配位化合物
第七章
金属及配位化合物
第二节 配位化合物的组成,分 类,命名 一.配位化合物与配合反应


中心形成体:金属离子或原子处于配离子或配合 分子的中心位置。简称中心离子或中心原子。 配合体:与中心离子相配位的中性分子或负离子。
二 配合物的组成 [Cu(NH3) 4]SO 4 K 4[Fe(CN) 6]

1.配合物的解离如同强电解质: [Cu(NH3)4]SO4→[Cu(NH3)4]2++SO42-
配离子的解离如同弱电解质:
[Cu(NH3)4]2+ 2 平衡常数:
Cu2++4NH3
4 {c(Cu2 )/c Θ }{c(NH3 )/c Θ } Ky(不稳,[Cu(NH3)4]2+) 2 Θ c([Cu(NH ) ] )/ c 3 4 56
例: 用1升NH3溶液来溶解0.1molAgCl固体,该 NH3溶液的浓度为多少? 设AgCl固体正好全部溶解时溶液中C(NH3)为 X AgCl(s) +2NH3==[Ag(NH3)2] + +Cl – 溶解时 X 0.1 0.1 代入平衡关系式:(利用上题的K值) K ° = C[Ag(NH3)2] ×C(Cl–)/C 2(NH3) 0.1×0.1 /X2=2.02×10-3 X=2.2(mol.dm-3) 注意:此X并非最终结果!

[Ag(NH3)2]+ 二氨合银(I)离子 [Zn(CN)4] 2四氰合锌(II)离子 [Co(NH3)5Cl] 2+ 一氯五氨合钴(III)离子 [Pt(NH3)2(OH)2Cl2] 二氯二羟基二氨合铂(IV)
[Cu(NH3)4]SO4 硫酸四氨合铜(II) [Co(NH3)5Cl]Cl2 二氯化一氯五氨合钴(III) [Co(NH3)3(H2O)Cl2]OH 氢氧化二氯一水三氨合钴(III) [Pt(NH3)4(NO2)Cl]CO3 碳酸一氯一硝基四氨合铂(IV) K3[Fe(CN)6] 六氰合铁(III)酸钾(赤血盐) K4[Fe(CN)6] 六氰合铁(II)酸钾(黄血盐)

第八章 配位化合物,,

第八章 配位化合物,,

出现多种配体:
先离子后分子,例如:
K[PtCl3NH3]:三氯•氨合铂(Ⅱ)酸钾; 同是离子或同是分子,按配位原子元素符
号的英文字母顺序排列,例如:
[Co(NH3)5H2O]Cl3:氯化五氨•水合钴(Ⅲ); 配位原子相同,少原子在先;配位原子相
同,且配体中含原子数目又相同,按非配位原
子的元素符号英文字母顺序排列,例如:
(M1L1) (M2L2) 与(M2L1) (M1L2)

§8.4 配合物的化学键理论
8.4.1 价键理论 * 8.4.2 晶体场理论
8.4.1 配合物的价键理论
1.价键理论的要点: (1) 中心离子(M):有空轨道
配位体(L):有孤对电子 中心离子与配体通过配位键相结合,由配 体提供孤对电子填入中心离子的空轨道, 二者形成配位键M L
• (2)配离子中成键轨道的杂化和空间构型
• 在形成配离子时,中心原子所提供的空轨 道必须进行杂化,形成一组等价的杂化轨 道,以接受配体的孤电子对。
• 杂化类型有:SP、SP2、SP3、dSP2、 SP3d2 (d2SP3)
• (3)内轨和外轨型配合物
配位数为 2 的配合物 [Ag(NH3)2]+的空间构型为直线形,μ=0。
(2)结构异构现象 • 解离异构
当配合物在溶液中电离时,由于内界和外 界配位体发生交换生成不同的配离子的异构现 象叫解离异构。 [CoBr(NH3)5]SO4 紫色 [Co(SO4)(NH3)5]Br红色
水合异构:[Cr(H2O)6]Cl3 紫色; [Cr(H2O)5Cl]Cl2·H2O蓝绿色 [Cr(H2O)4Cl2]Cl·2H2O绿色
配离子 计算磁矩 实测磁矩 杂化类型
Fe(CN)63- 1.73 2.3 内轨型(低自旋) Fe(H2O)63+ 5.92 5.88 外轨型(高自旋) 这类配合物的磁矩可按下式计算:

第12章 配位化合物与配位平衡

第12章 配位化合物与配位平衡

O
N
C
CH3NH2 甲胺
N
阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基
配位原子 F Cl Br I O
C
N
阴离子 配体
ONO-
SCN-
亚硝酸根 硫氰酸根
NCS异硫氰酸根
配位原子
O
S
N
分子式
O
O
CC
-O O-
常见多齿配体 名称
草酸根
乙二胺
N N N N
外轨型配合物:由外轨配键形成的配合物
单电子数多
Co(CN)63-
3d
d2sp3
内轨配键:由次外层(n-1)d与最外层ns、
np轨道杂化所形成的配位键 内轨型配合物:由内轨配键形成的配合物
单电子数少
b. 影响内轨型和外轨型的因素
(i) 中心离子的电子构型
离子的电子 形成配合物类型 构型
d10
外轨型
[Cu(NH3)4]2+ 四氨合铜(Ⅱ)离子 [Co(NH3)6]3+ 六氨合钴(Ⅲ)离子 [CrCl2(H2O)4]+ 二氯·四水合铬(Ⅲ)离子
2. 配位体命名原则 不同配体之间用“”隔
(1) 先阴离子,后中性开分子
[PtCl5(NH3)] 五氯·(一)氨合铂(Ⅳ)离子
(2) 先无 机配体,后有 机配体
② 中心离子的价层轨道首先杂化, 杂化类型决定于 a.中心离子的价层电子构型 b.配位数 c.配位体的配位能力
③ 中心离子的价层空轨道与配体的含孤对电子的 轨道重叠,成键形成配合物。
即M L
④中心离子的杂化类型决定配合物的空间构型。
2. 中心离子的杂化轨道

第七章 配位化合物

第七章  配位化合物

n(n 2)
波尔磁子(μB)。
分别测定自由离子和配合物的磁矩,确定各 自的单电子数n,若二者单电子数一致则为 从外轨型,不同则为内轨型。例如[FeF6]3配离子,实验测得磁矩为5.88μB,与根据 上式n = 5时所计算出磁矩理论值5.92μB接 近,由此可推知[FeF6]3-保留着5个单电子, 属于外轨型配离子。
1. 中心原子与配体中的配位原子之间以配位 键结合,即配位原子提供孤对电子,填入中心原 子的价电子层空轨道形成配位键。配体为电子对 给予体 ( Lewis碱 ),中心原子为电子对接受体 (Lewis酸),二者的结合物——配离子或配位分子 是酸碱配合物。
2. 为了增强成键能力和形成结构匀称的配 合物,中心原子所提供的空轨道首先进行杂化, 形成数目相等、能量相同、具有一定空间伸展 方向的杂化轨道,中心原子的杂化轨道与配位 原子的孤对电子轨道在键轴方向重叠成键。
[Ni(NH3)4]2+
3d
sp3
[Ar]
电子由 NH3 中N提供
外轨配合物
dsp2
-
[Ni(CN)4]2-
3d
4p
[Ar]
电子由 CN 中C提供
内轨配合物
4. 26Fe2+的价层电子组态为3d6,磁矩μ=4.9μB, 说明有4个单电子。形成6配位化合物时有2种不 同的杂化类型:[Fe(CN)6]4-,μ=0 μB。说明 配体CN-对中心原子d电子产生较强的排斥作用, 致使其重排,空出2个3d轨道,然后进行d2sp3杂 化,d2sp3杂化轨道接受来自CN-中C原子提供的 6对孤对电子,形成六个配位键,空间构型为正 八面体。由于该配离子无未成对电子,具有反 磁性,内轨型。过程如下所示:
3d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单齿配体中,配体数等于配位数。 多齿配体中配位数等于配位原子的数目。
4、配离子的电荷
中心原子的电荷数与配体电荷数的代数和。
二、配位化合物的命名
命名原则:
内界和外界之间的命名服从一般无机化 合物的命名原则。即负离子名称在前, 正离子名称在后。
命名内界时,配体名称列在中心原于之前, 不同配体之间以中圆点(·)分开。
2.螯合物:
螯合物又称内配合物,它由多基配体与同 一中心离子形在的具有环状结构的配合物。 其中配体好似螯钳一样卡住中心离子,而 形象地称为螯合物。
中心原子
乙二胺和二氯二乙二胺合镍 结构示意图
三草酸合铁(III)配离子的结构
EDTA 合铁配离子
血红素结构
➢ 6个配位原子都能 以孤对电子和中 心原子形成配位, Cu2+、Zn2+、Cd2+、 Hg2+和EDTA则形 成四、六配位的 螯合离子结构如 下:
2、8电子构型的离子,L的电负性增大,MLn越 稳定。
配位原子:N﹥P﹥As﹥Sb,F﹥Cl﹥Br﹥I。
相同配体的个数用数字二、三、四等表示。 在最后一个配体名称之后缀以“合”字。
中心原子的电荷数用圆括号内的罗马数字 表示。(Ⅰ、Ⅲ、Ⅳ、Ⅴ等)
当有多种配体时,一般按先无机配体,后有 机配体(复杂配体写在括号内);无机配体中: 先负离子,再正离子,后中性分子。
不同的中性分子配体(或离子配体)按配位原 子元素符号的英文字母顺序排列。
常见的多基配体有乙二胺用en表示,草酸根 (用ox表示),乙二胺四乙酸根(EDTA) 及丁二肟(HDMG)等。
几种常见的多齿配体示意图
EDTA分子
中心原子
卟啉环
四、配合物的类型
1.简单配合物
由一个中心原子和一定数目的单齿配体 形成,如:[Ag(NH3)2]NO3和K2[HgI4]等。
一氯四氨一 水合钴(Ⅲ)
软酸:副族元素,Mn+的极化力强、变形性大,加 层结构中含有d电子,易被激发。
硬酸:主族元素,Mn+的极化力弱、变形性小。
软碱:容易给出电子对的配体,配位原子的电 负性小的、变形大的、易于氧化的
I-、SCN-、S2-、S2O32-、C给出电子对的配体,配位原子的 电负性大的、变形小的、不易于氧化的
配位化合物:组成、命名 配合物的空间构型 配位平衡 配合物的化学键理论
配位化合物
配位化合物的组成 命名 分类
一、配位化合物的组成MLn:
[Cu(NH3)4]SO4
中心原子 配位体 配体数目 外界离子 [ ] 括号内称为内界(配离子)
1、中心原子(离子)M
配合物中,以空轨道接受配体孤对电子或π键 电子形成配位键的原子或离子称为中心原子 或中心离子。
碱:C6H5NH2、C2H5N、N3-、Br-、NO2-、SO32、N2等。
2.中心原子对配合物稳定性的影响:
稳定性与离子的电子构型有关。 2、8电子,这类离子属于硬酸,与硬碱结合生
成稳定的配合物,配合物为外轨型。
18和18+2电子, n =4、5、6,(n-1)s2(n-1)p6(n-1)d10,铜锌副族, Zn2+以外为软碱,极化力变形性大与8电子构
三、配体的分类
单基配体:只含一个配位原子且与中心 离子只形成一个配位键,其组成较简单。 NH3 、 H2O 、 S2O32- 、 Cl- 、 F- 、 CN- 、 SCN-、NO2-、CO等。
多基配体:含有两个或两个以上的配位原子, 它们与中心离子或原子可以形成多个配位键, 较复杂,多数是有机化合物。
EDTA合钙
二乙二胺合铂(Ⅱ)
叶绿素
五、配合物空间结构与异构现象*
1.配合单元的空间结构:
配合物的几何构型与中心离子的配位数 有一定关系,一定的配位数有其物定的 几何构型。
配位数为2的配合物是直一形
配位数为3的配合物为三角形
配位数为4的配合物为正四面体或平面正 方形
配位数为5的配合物为三角双锥或四方锥,
2、配位体L
在配合物中,与中心离子或原子以配位键 结合的离子或分子称为配位体简称配体 (ligand)。例如[Cu(NH3)4]2+中的NH3分 子。
它们与中心原子结合构成为配合物的内界。
3、配位数
配合物中与中心原子真接成键的配位原 子的数目称为该中心原子的配位数。
中心离子或原子都有其自己的最大配位 数。常见的配位数:2、4、6。
H2O、OH-、F-、O2-、 PO43-、 SO42-、CO32-、 NH3 、 CH3COO- 、 ClO4- 、 NO3- 、 ROH 、 N2H4等。
这样我们可以得到配位反应的方向和配合物的 稳定性: 硬+硬、软+软
所生成的配离子稳定性高。
交界酸碱不论对象如何都可生成配离子。酸: Fe2+、Co2+、Ni2+、Cu2+、Zn2+、Pb2+、Sn2+、 Sb3+、Cr3+、Bi3+等。
配位原子异构
旋光异构(optical isomerism)
六、影响配位化合物 稳定性的因素
主要讨论中心原子和配体的性质对配合物稳定 性的影响。
1.软硬酸碱*
酸碱的又一种广义定义。讨论配体、中心原子 性质对稳定性的影响。
在配离子中: 电子对接受体——是酸; 电子对给予体——是碱。
配位数为6的配合物一般为八面体。
2.配合物的空间异构:
配合物的重要异构现象有几何异构(主 要包括顺反异构、面式和经式)、对映 异构。
几种异构体
配位异构
水合异构
[Cr(H2O)6]Cl3 (紫色) [CrCl(H2O)5]Cl2·H2O 亮绿色 [CrCl2(H2O)4]Cl·2H2O 暗绿色 [CrCl3(H2O)3]·3H2O
型的离子,与软碱生成配离子稳定性大于2、8 电子构型类配离子。
7~17电子,介于上两种之间,属交界酸碱d1~9, 过渡元素,Mn+电荷高,d电子数少、变形性小故
接近同周期中的8电子构型的离子;电荷低、d电 子数大、变形性大,接近18电子软酸。
3.配体的影响: (1)配位原子的电负性
配位原子的电负性→大,与中心原子间的配位能 力→小。
相关文档
最新文档