四川成都2017届高三二诊模拟考试数学试题理含答案
四川省成都市2017届高考数学模拟试卷(理科)Word版含解析
四川省成都市2017届高考模拟试卷(理科数学)一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,a ∈R ,若(a 2+2a ﹣3)+(a+3)i 为纯虚数,则a 的值为( )A .1B .﹣3C .﹣3或1D .3或12.已知集合M={x||x|≤2,x ∈R},N={x||x ﹣1|≤a ,a ∈R},若N ⊆M ,则a 的取值范围为( )A .0≤a ≤1B .a ≤1C .a <1D .0<a <13.设命题p :存在四边相等的四边形不是正方形;命题q :若cosx=cosy ,则x=y ,则下列判断正确的是( )A .p ∧q 为真B .p ∨q 为假C .¬p 为真D .¬q 为真4.已知抛物线x 2=﹣2py (p >0)经过点(2,﹣2),则抛物线的焦点坐标为( )A .B .C .D .5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有( )种.A .14B .18C .12D .166.执行如图所示的程序框图,输出P 的值为( )A .﹣1B .1C .0D .20167.设x ,y 满足约束条件,则的最大值为( )A .1024B .256C .8D .48.已知O 为△ABC 内一点,且有,记△ABC ,△BCO ,△ACO 的面积分别为S 1,S 2,S 3,则S 1:S 2:S 3等于( )A .3:2:1B .3:1:2C .6:1:2D .6:2:19.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A.B. C.D.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为_______.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为_______.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为_______.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为_______.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.18.如图所示,在三棱锥P ﹣ABQ 中,PB ⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB ∥GH ;(Ⅱ)求异面直线DP 与BQ 所成的角;(Ⅲ)求直线AQ 与平面PDC 所成角的正弦值.19.已知数列{a n }的前n 项和为S n ,S n =2a n ﹣4,数列{b n }满足b n+1﹣b n =1,其n 项和为T n ,且T 2+T 6=32. (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)若不等式nlog 2(S n +4)≥λb n +3n ﹣7对任意的n ∈N *恒成立,求实数λ的取值范围.20.已知椭圆C : +=1(a >b >0)的左、右顶点分别为A 1,A 2,且|A 1A 2|=4,上顶点为B ,若直线BA 1与圆M :(x+1)2+y 2=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线l :x=2与x 轴交于D ,P 是椭圆C 上异于A 1、A 2的动点,直线A 1P 、A 2P 分别交直线l 于E 、F 两点,求证:|DE|•|DF|为定值.21.设函数f (x )=x 2﹣x+t ,t ≥0,g (x )=lnx .(Ⅰ)若对任意的正实数x ,恒有g (x )≤x 2α成立,求实数α的取值范围;(Ⅱ)对于确定的t ,是否存在直线l 与函数f (x ),g (x )的图象都相切?若存在,讨论直线l 的条数,若不存在,请说明理由.四川省成都市2017届高考模拟试卷(理科数学)参考答案与试题解析一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或1【考点】复数的基本概念.【分析】直接由实部等于0且虚部不为0列式求得a值.【解答】解:∵(a2+2a﹣3)+(a+3)i为纯虚数,∴,解得:a=1.故选:A.2.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<1【考点】集合的包含关系判断及应用.【分析】分别化简集合M,N,对a分类讨论,利用集合之间的关系即可得出.【解答】解:集合M={x||x|≤2,x∈R}=[﹣2,2],N={x||x﹣1|≤a,a∈R},∴当a<0时,N=∅,满足N⊆M.当a≥0时,集合N=[1﹣a,1+a].∵N⊆M,∴,解得0≤a≤1.综上可得:a的取值范围为a≤1.故选:B.3.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真【考点】命题的否定.【分析】根据复合命题的真假关系进行判断即可.【解答】解:菱形的四边形的边长相等,但不一定是正方形,故命题p是真命题,当x=﹣y时,满足cosx=cosy,但x=y不成立,即命题q是假命题,故¬q为真,其余都为假命题,故选:D4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.【考点】抛物线的简单性质.【分析】抛物线x2=﹣2py(p>0)经过点(2,﹣2),代值计算即可求出p,能求出焦点坐标.【解答】解:抛物线x2=﹣2py(p>0)经过点(2,﹣2),∴4=4p,∴p=1,∴抛物线的焦点坐标为(0,﹣),故选:C.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.16【考点】计数原理的应用.【分析】小明不站排头,小张不站排尾,可按小明在排尾与不在排尾分为两类,根据分类计数原理可得.【解答】解:小明不站排头,小张不站排尾排法计数可分为两类,第一类小明在排尾,其余3人全排,故有A33=6种,第二类小明不在排尾,先排小明,有A21种方法,再排小张有A21种方法,剩下的2人有A22种排法,故有2×2×2=8种根据分类计数原理可得,共有6+8=14种,故选:A.6.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.2016【考点】程序框图.【分析】模拟执行程序框图的运行过程,写出每次循环得到的P,i的值,当i=2017>2016时,满足条件,终止循环,输出P的值.【解答】解:执行程序框图,有p=0,i=1,P=0+cosπ=﹣1,i=2,不满足条件i>2016?,有P=﹣1+cos2π=0,i=3,不满足条件i>2016,有P=0+cos3π=﹣1,,…,i=2016,不满足条件i>2016,有P=﹣1+cos2016π=0,i=2017,满足条件i>2016,输出P的值为0.故选:C .7.设x ,y 满足约束条件,则的最大值为( )A .1024B .256C .8D .4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z==22x ﹣y ,令u=2x ﹣y ,作出约束条件,对应的平面区域如图(阴影部分):平移直线y=2x ﹣u由图象可知当直线y=2x ﹣u 过点A 时,直线y=2x ﹣u 的截距最小,此时u 最大,由,解得,即A (5,2).代入目标函数u=2x ﹣y ,得u=2×5﹣2=8,∴目标函数z==22x ﹣y ,的最大值是28=256.故选:B .8.已知O 为△ABC 内一点,且有,记△ABC ,△BCO ,△ACO 的面积分别为S 1,S 2,S 3,则S 1:S 2:S 3等于( )A .3:2:1B .3:1:2C .6:1:2D .6:2:1【考点】平面向量的基本定理及其意义.【分析】如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,由于+2+3=,可得﹣=3.又=2,可得=2.于是=,得到S△ABC =2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.即可得出.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,∵+2+3=,∴﹣=3.又=2,可得=2.于是=,∴S△ABC =2S△AOB.同理可得:S△ABC =3S△AOC,S△ABC=6S△BOC.∴ABC,△BOC,△ACO的面积比=6:1:2.故选:C.9.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.【考点】圆与圆锥曲线的综合.【分析】由题设知,由,得2c>b,再平方,4c2>b2,;由,得b+2c<2a,.综上所述,.【解答】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a 2=b 2+c 2<5c 2,∴;由,得b+2c <2a ,再平方,b 2+4c 2+4bc <4a 2,∴3c 2+4bc <3a 2,∴4bc <3b 2,∴4c <3b ,∴16c 2<9b 2,∴16c 2<9a 2﹣9c 2,∴9a 2>25c 2,∴,∴.综上所述,. 故选A .10.已知函数,若存在x 1,x 2,当0≤x 1<x 2<2时,f (x 1)=f (x 2),则x 1f (x 2)﹣f (x 2)的取值范围为( )A .B .C .D .【考点】分段函数的应用.【分析】先作出函数图象然后根据图象,根据f (x 1)=f (x 2),确定x 1的取值范围然后再根据x 1f (x 2)﹣f (x 2),转化为求在x 1的取值范围即可.【解答】解:作出函数的图象:∵存在x 1,x 2,当0≤x 1<x 2<2时,f (x 1)=f (x 2)∴0≤x 1<,∵x+在[0,)上的最小值为;2x ﹣1在[,2)的最小值为,∴x 1+≥,x 1≥,∴≤x 1<.∵f (x 1)=x 1+,f (x 1)=f (x 2)∴x 1f (x 2)﹣f (x 2)=x 1f (x 1)﹣f (x 1)2=﹣(x 1+)=x 12﹣x 1﹣,设y=x 12﹣x 1﹣=(x 1﹣)2﹣,(≤x 1<),则对应抛物线的对称轴为x=,∴当x=时,y=﹣,当x=时,y=,即x 1f (x 2)﹣f (x 2)的取值范围为[﹣,).故选:B .二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x 1,x 2,…,x 10的平均数为8,则数据2x 1﹣1,2x 2﹣1,…,2x 10﹣1的平均数为 15 .【考点】众数、中位数、平均数.【分析】根据平均数与方差的公式即可求出数据2x 1﹣1,2x 2﹣1,…,2x 10﹣1的平均数.【解答】解:∵样本数据x 1,x 2,…,x 10的平均数是10,∴=(x 1+x 2+…+x 10)=8;∴数据2x 1﹣1,2x 2﹣1,…,2x 10﹣1的平均数是:=[(2x 1﹣1)+(2x 2﹣1)+…+(2x 10﹣1)]=2×(x 1+x 2+…+x 10)﹣1=2×8﹣1=15.故答案为:15.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x 5的系数为 35 .【考点】二项式定理的应用.【分析】由条件利用二项式系数的性质求得n=7,再利用二项展开式的通项公式求得x5的系数.【解答】解:由题意可得2n=128,n=7,∴=,它的通项公式为Tr+1=•x21﹣4r,令21﹣4r=5,求得r=4,故展开式中x5的系数为=35,故答案为:35.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为 a .【考点】棱柱的结构特征.【分析】由图形可知AC⊥平面BB1D1D,且A到平面BB1D1D的距离与C到平面BB1D1D的距离相等,故EA=EC,所以EC就是EP+EP的最小值;【解答】解:连接AC交BD于N,连接EN,EC,则AC⊥BD,∵BB1⊥平面ABCD,∴BB1⊥AC,∴AC⊥平面BB1D1 D,∴AC⊥EN,∴△AEN≌△CEN,∴EA=EC,连接EC,∴线段EC的长就是EP+EA的最小值.在Rt△EAC中,AC=a,EA=a,∴EC==a.故答案为: a.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为2π.【考点】直线与圆的位置关系.【分析】圆半径r=,a=﹣1时,r min ==1,a=1时,r max ==,由此能求出最大圆面积与最小圆面积的差.【解答】解:∵圆以(0,﹣1)为圆心且与直线ax+y++1=0(a ∈R )相切,∴圆半径r===, ∴a=﹣1时,r min ==1,最小圆面积S min =π×12=π,a=1时,r max ==,最大圆面积S max ==3π,∴最大圆面积与最小圆面积的差为:3π﹣π=2π.故答案为:2π.15.已知a >0,f (x )=a 2lnx ﹣x 2+ax ,若不等式e ≤f (x )≤3e+2对任意x ∈[1,e]恒成立,则实数a 的取值范围为 [e+1,] .【考点】利用导数求闭区间上函数的最值.【分析】利用导数可求得f (x )的单调区间,由f (1)=﹣1+a ≥e 可得a ≥e+1,从而可判断f (x )在[1,e]上的单调性,得到f (x )的最大值,令其小于等于3e+2可得答案.【解答】解:f′(x )=﹣2x+a=,∵x >0,又a >0,∴x ∈(0,a )时f′(x )>0,f (x )递增;x ∈(a ,+∞)时,f′(x )<0,f (x )递减.又f (1)=﹣1+a ≥e ,∴a ≥e+1,∴f (x )在[1,e]上是增函数,∴最大值为f (e )=a 2﹣e 2+ae ≤3e+2,解得:a ≤,又a ≥e+1,而e+1<,∴a 的取值集合是[e+1,],故答案为:[e+1,].三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.【考点】平面向量数量积的运算.【分析】(I)将切化弦,利于和角公式和正弦定理化简得出cosA;(II)求出+的坐标,计算|+|2,根据B的范围解出|+|的范围.【解答】解:(I)∵=,∴,整理得cosA=.∴A=.(II)∵2cos2=1+cosC=1﹣cos(B+)=1﹣cosB+sinB,∴=(cosB,1﹣cosB+sinB).∴=(cosB,﹣cosB+sinB),∴()2=cos2B+(﹣cosB+sinB)2=+﹣sin2B=1+cos(2B+).∵0<B<,∴<2B+<.∴﹣1≤cos(2B+)<,∴≤()2<.∴≤|+|<.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)12名学生中成绩是“优良”的学生人数为9人,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,由此能求出至少有1人成绩是“优良”的概率.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)∵随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87,根据学校体制标准,成绩不低于76的为优良,∴12名学生中成绩是“优良”的学生人数为9人,从这12名学生中任选3人进行测试,基本事件总数n==220,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,∴至少有1人成绩是“优良”的概率:p=1﹣=.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,Eξ==.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(I)根据中位线及平行公理可得CD∥EF,于是CD∥平面EFQ,利用线面平行的性质得出CD∥GH,从而GH∥AB;(II)由AQ=2BD可得AB⊥BQ,以B为原点建立空间直角坐标系,求出,的坐标,计算,的夹角得出异面直线DP与BQ所成的角;(III)求出和平面PDC的法向量,则直线AQ与平面PDC所成角的正弦值为|cos<>|.【解答】证明:(I)∵CD是△ABQ的中位线,EF是△PAB的中位线,∴CD∥AB,EF∥AB,∴CD∥EF,又EF⊂平面EFQ,CD⊄平面EFQ,∴CD∥平面EFQ,又CD⊂平面PCD,平面PCD∩平面EFQ=GH,∴GH∥CD,又CD∥AB,∴GH∥AB.(II)∵D是AQ的中点,AQ=2BD,∴AB⊥BQ.∵PB⊥平面ABQ,∴BA,BP,BQ两两垂直.以B为原点以BA,BQ,BP为坐标轴建立空间直角坐标系如图:设BA=BP=BQ=1,则B(0,0,0),P(0,0,1),D(,,0),Q(0,1,0).∴=(﹣,﹣,1),=(0,1,0).∴=﹣,||=,||=1,∴cos<>=﹣.∴异面直线DP与BQ所成的角为arccos.(III)设BA=BP=BQ=1,则A(1,0,0),Q(0,1,0),P(0,0,1),D(,,0),C(0,,0).=(﹣1,1,0),=(,0,0),=(0,﹣,1).设平面CDP的一个法向量为=(x,y,z),则, =0,∴,令z=1,得=(0,2,1).∴=2,||=,||=,∴cos<>==,∴直线AQ与平面PDC所成角的正弦值为.19.已知数列{a n }的前n 项和为S n ,S n =2a n ﹣4,数列{b n }满足b n+1﹣b n =1,其n 项和为T n ,且T 2+T 6=32. (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)若不等式nlog 2(S n +4)≥λb n +3n ﹣7对任意的n ∈N *恒成立,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(I )利用等差数列与等比数列的通项公式及其前n 项和公式、递推关系即可得出.(Ⅱ)S n =2×4n ﹣4.不等式nlog 2(S n +4)≥λb n +3n ﹣7,化为:λ≤,利用单调性求出的最小值即可得出.【解答】解:(I )∵S n =2a n ﹣4,∴n=1时,a 1=2a 1﹣4,解得a 1=4;当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣4﹣(2a n ﹣1﹣4),化为:a n =2a n ﹣1. ∴数列{a n }是等比数列,首项为4,公比为2,∴a n =4×2n ﹣1=2n+1.∵数列{b n }满足b n+1﹣b n =1,∴数列{b n }是等差数列,公差为1.∵T 2+T 6=32,∴2b 1+1+6b 1+×1=32,解得b 1=2.∴b n =2+(n ﹣1)=n+1.(Ⅱ)S n =2×2n+1﹣4.∴不等式nlog 2(S n +4)≥λb n +3n ﹣7,化为:λ≤,∵=(n+1)+﹣3≥2﹣3=3,当n=2时,取得最小值3,∴实数λ的取值范围是λ≤3.20.已知椭圆C : +=1(a >b >0)的左、右顶点分别为A 1,A 2,且|A 1A 2|=4,上顶点为B ,若直线BA 1与圆M :(x+1)2+y 2=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线l :x=2与x 轴交于D ,P 是椭圆C 上异于A 1、A 2的动点,直线A 1P 、A 2P 分别交直线l 于E 、F 两点,求证:|DE|•|DF|为定值.【考点】椭圆的简单性质.【分析】(Ⅰ)由条件可得到A 1(﹣2,0),B (0,b ),从而可以写出直线BA 1的方程,这样即可得出圆心(﹣1,0)到该直线的距离为,从而可以求出b ,这便可得出椭圆C 的标准方程为;(Ⅱ)可设P (x 1,y 1),从而有,可写出直线A 1P 的方程为,从而可以求出该直线和直线x=的交点E 的坐标,同理可得到点F 的坐标,这样即可得出|DE|,|DF|,然后可求得|DE|•|DF|=3,即得出|DE|•|DF|为定值.【解答】解:(Ⅰ)由题意得A 1(﹣2,0),B (0,b );∴直线BA 1的方程为;∴圆心(﹣1,0)到直线BA 1的距离为;解得b 2=3;∴椭圆C 的标准方程为;(Ⅱ)证明:设P (x 1,y 1),则,;∴直线A 1P 的方程为;∴;同理得,;∴;∴|DE|•|DF|为定值.21.设函数f (x )=x 2﹣x+t ,t ≥0,g (x )=lnx .(Ⅰ)若对任意的正实数x ,恒有g (x )≤x 2α成立,求实数α的取值范围;(Ⅱ)对于确定的t ,是否存在直线l 与函数f (x ),g (x )的图象都相切?若存在,讨论直线l 的条数,若不存在,请说明理由.【考点】利用导数研究曲线上某点切线方程.【分析】(1)由题意可得lnx ﹣x 2α≤0恒成立,讨论当α≤0时,h (x )=lnx ﹣x 2α递增,无最大值;当α>0时,求出导数,求得单调区间,可得极大值,也为最大值,由恒成立思想解不等式即可得到所求范围;(2)分别设出切点,再根导数的几何意义求出切线方程,构造方程组,消元,再构造函数F (x )=ln x +﹣(t +1),利用导数求出函数F (x )的最小值,再分类讨论,得到方程组的解得个数,继而得到切线的条数.【解答】解:(1)对任意的正实数x ,恒有g (x )≤x 2α成立,即为lnx ﹣x 2α≤0恒成立,当α≤0时,h (x )=lnx ﹣x 2α递增,无最大值;当α>0时,h′(x )=﹣2α•x 2α﹣1,当x >时,h′(x )<0,h (x )递减;当0<x <时,h′(x )>0,h (x )递增.即有x=时,h (x )取得最大值,且为ln ﹣,由ln ﹣≤0,可得α≥,综上可得,实数α的取值范围是[,+∞); (2)记直线l 分别切f (x ),g (x )的图象于点(x 1,x 12﹣x 1+t ),(x 2,ln x 2),由f′(x )=2x ﹣1,得l 的方程为y ﹣(x 12﹣x 1+t )=(2x 1﹣1)(x ﹣x 1),即y =(2x 1﹣1)x ﹣x 12+t .由g′(x )=,得l 的方程为y ﹣ln x 2=(x ﹣x 2),即y =•x +ln x 2﹣1.所以(*)消去x 1得ln x 2+﹣(t +1)=0 (**).令F (x )=ln x +﹣(t +1),则F′(x )=﹣==,x >0.由F'(x )=0,解得x =1.当0<x <1时,F'(x )<0,当x >1时,F'(x )>0,所以F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而F (x )min =F (1)=﹣t .当t=0时,方程(**)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条满足题意的直线;当t>0时,F(1)<0,由于F(e t+1)>ln(e t+1)﹣(t+1)=0,故方程(**)在(1,+∞)上存在唯一解;令k(x)=ln x+﹣1(x≤1),由于k'(x)=﹣=≤0,故k(x)在(0,1]上单调递减,故当0<x<1时,k(x)>k(1)=0,即ln x>1﹣,从而ln x+﹣(t+1)>(﹣)2﹣t.所以F()>(+)2﹣t=+>0,又0<<1,故方程(**)在(0,1)上存在唯一解.所以当t>0时,方程(**)有两个不同的正数解,方程组(*)有两组解.即存在两条满足题意的直线.综上,当t=0时,与两个函数图象同时相切的直线的条数为1;当t>0时,与两个函数图象同时相切的直线的条数为2.。
2017年四川省成都市高考数学二诊试卷(理科)
2017年四川省成都市高考数学二诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U =R ,集合2{|230} {|10}A x x x B x x =--<=-,≥,则图中阴影部分所表示的集合为 (A){|1x x -≤或3}x ≥ (B){|1x x <或3}x ≥ (C){|1}x x ≤ (D){|1}x x -≤2.已知等差数列{}n a 的前项和为n S ,且530S =,则3a =(A) 6(B) 7(C) 8(D) 93.已知i 为虚数单位,若复数21(1)i z a a =-++(其中a ∈R )为纯虚数,则2iz=- (A)42i 55- (B)24i 55-+(C)42i 55+(D)24i 55--4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为 (A)2π43+ (B)22π43+ (C)42π83+(D)82π83+5.双曲线E :22221x y a b-=(0a >,0b >)的一个焦点F 到E 的渐近线的距离为3a ,则E 的离心率是 (A)2(B)32(C) 2(D) 36.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是 (A) 40 (B) 60 (C) 80 (D) 1007.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i 的值为(A) 7 (B) 8 (C) 9 (D) 108.已知函数()sin()6f x x ωπ=+,其中0ω>.若()()12f x f π≤对x ∈R 恒成立,则ω的最小值为 (A) 2(B) 4(C) 10(D) 169.已知01c <<,1a b >>,下列不等式成立的是(A)a b c c >(B)a ba cb c>-- (C)c c ba ab >(D)log log a b c c >10.正方形ABCD 与等边三角形BCE 有公共边BC ,若∠ABE =120°,则BE 与平面ABCD 所成角的大小为 (A)6π(B)3π(C)4π(D)2π11.过抛物线24y x =的焦点F 作互相垂直的弦AC ,BD ,则点A ,B ,C ,D 所构成四边形的面积的最小值为 (A) 16(B) 32(C) 48(D) 6412.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x y ∈R ,,则4x y -的取值范围是(A)32[23]4+, (B)5[23]2+, (C)25[33]42-+,(D)1717[33]22-+, 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.由直线x=1,x=2,曲线及x 轴所围成的封闭图形的面积是 .14.已知角的始边是x 轴非负半轴.其终边经过点,则sinα的值为 .15.在直角坐标系xOy 中,点A (0,3),直线l :y=2x ﹣4,设圆C 的半径为1,圆心在l 上,若圆C 上存在唯一一点M ,使|MA |=2|MO |,则圆心C 的非零横坐标是 . 16.数列{a n }满足,,且,则4a 2018﹣a 1的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如表:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退休”人数 5 10 10 2 1(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上合计支持不支持合计(Ⅱ)若从年龄在[45,55),[55,65]的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为ξ,求随机变量ξ的分布列及数学期望.参考数据:P(K2≥k)0.100 0.050 0.010 0.001k 2.706 3.841 6.635 10.828K2=.18.已知函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减;如图,四边形OACB中,a,b,c为△ABC的内角A,B,C的对边,且满足.(Ⅰ)证明:b+c=2a;(Ⅱ)若b=c,设∠AOB=θ,(0<θ<π),OA=2OB=2,求四边形OACB面积的最大值.19.在斜三棱柱ABC﹣A1B1C1中,侧面AC1⊥平面ABC,,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E﹣A1C1﹣A的大小为.20.已知两点A(﹣2,0)、B(2,0),动点P满足.(1)求动点P的轨迹E的方程;(2)H是曲线E与y轴正半轴的交点,曲线E上是否存在两点M、N,使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.21.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x(a∈R,e为自然对数的底)(Ⅰ)求f(x)的单调区间;(Ⅱ)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.22.直角坐标系中曲线C的参数方程为(θ为参数).(1)求曲线C的直角坐标方程;(2)经过点M(0,1)作直线l交曲线C于A,B两点(A在B上方),且满足|BM|=2|AM|,求直线l的方程.2017年四川省成都市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
成都2017届二诊模拟考试数学试卷(理科)试题及答案
成都2017届二诊模拟考试数学试卷(理科)(时间:120分钟,总分:150分)一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上.) 1.已知集合}2,1,0,1,2{--=A ,}0lg |{≤=x x B ,则B A =( )A }1{B }1,0{C }2,1,0{D }2,1{2.已知i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则ab 的值是( ) A -15 B -3 C 3 D 153.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( ) A π44+ B π48+ C π344+ D π348+ 4.为了得到函数41log 2+=x y 的图像,只需把函数x y 2log =的图象上所有的点( )A 向左平移1个单位长度,再向上平移2个单位长度B 向右平移1个单位长度,再向上平移2个单位长度C 向左平移1个单位长度,再向下平移2个单位长度D 向右平移1个单位长度,再向下平移2个单位长度 5. 某程序框图如图所示,若使输出的结果不大于20,则输入的整数的最大值为( )A 3B 4C 5D 6 6.如图,圆锥的高2=PO ,底面⊙O 的直径2=AB , C 是圆上一点,且︒=∠30CAB ,D 为AC 的中点,则直线OC 和平面所成角的正弦值为( ) A 21 B 23 C 32D 317.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A (3-,3) B (3-0)∪(0,3)C [-∞,∪+∞)iPAC 正视图侧视图俯视图8.三棱锥A BCD -中,,,AB AC AD 两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( )A 4B 6C 8D 16 9.已知221)a ex dx π-=⎰,若2017220170122017(1)()ax b b x b x b x x R -=++++∈,则20171222017222b b b +++的值为( ) A 0 B -1 C 1 D e10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N=Q ,M ∩N=∅,M 中的每一个元素都小于N 中的每一个元素,则称(M ,N )为戴金德分割.试判断,对于任一戴金德分割(M ,N ),下列选项中一定不成立的是( ) A M 没有最大元素,N 有一个最小元素 B M 没有最大元素,N 也没有最小元素 C M 有一个最大元素,N 有一个最小元素 D M 有一个最大元素,N 没有最小元素11.已知函数3211()201732f x mx nx x =+++,其中{2,4,6,8},{1,3,5,7}m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A 7120B 760C 730D 以上都不对12.若存在正实数,,x y z 满足 2zx ez ≤≤且ln y z x z =,则ln y x 的取值范围为( )A [1,)+∞B [1,1]e -C (,1]e -∞-D 1[1,ln 2]2+二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.) 13. 在中,边、、分别是角、、的对边,若,则=B c o s .14.已知点的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点为坐标原点,点(1,1)M --,那么OM OP ⋅的最大值等于_________.15.动点(,)M x y 到点(2,0)的距离比到y 轴的距离大2,则动点M 的轨迹方程为_______.16.在△ABC 中,A θ∠=,,D E 分别为,AB AC 的中点,且BE CD ⊥,则cos 2θ的最小值为___________.三.解答题(17-21每小题12分, 22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或(,)P x y O演算步骤.)17.设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)求数列1{}nn a -的前n 项和n T .18. 为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X表示甲队总得分.(1)求随机变量X 的分布列及其数学期望()E X ; (2)求甲队和乙队得分之和为4的概率.19.已知等边△//AB CBCD中,1,BD CD BC ==1所示),现将B 与/B ,C 与/C 重合,将△//AB C向上折起,使得AD =2所示).(1)若BC 的中点O ,求证:⊥平面BCD 平面AOD ;(2)在线段AC 上是否存在一点E ,使ED BCD 与面成30角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.BACD20.已知圆222:2,E x y +=将圆2E按伸缩变换://x x y y ⎧=⎪⎨=⎪⎩后得到曲线1E , (1)求1E 的方程;(2)过直线2x =上的点M 作圆的两条切线,设切点分别是A ,B ,若直线AB 与交于C ,D 两点,求的取值范围.21.已知函数()sin ln sin g x x x θθ=--在[1,)+∞单调递增,其中(0,)θπ∈ (1)求θ的值; (2)若221()()x f x g x x-=+,当[1,2]x ∈时,试比较()f x 与/1()2f x +的大小关系(其中/()f x 是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,1(1)xe x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.2E 1E CD AB22.选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,又过点(2,4)P --的直线l的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数),l 与曲线C 分别交于M ,N.(1)写出曲线C 的平面直角坐标系方程和l 的普通方程; (2)若,,PM MN PN 成等比数列,求a 的值.23.选修4-5:不等式选讲设函数()f x =1(0)x x a a a++->(1)证明:()2f x ≥;(2)若()35f <,求a 的取值范围.成都2017届二诊模拟考试数学试卷(理科参考答案)一、 选择题 1-5:ABDCB 6-10:CBCBC 11-12:BB 二、填空题 13.31 14. 4 15. 28(0)y x x =≥或0(0)y x =< 16.725三、解答题 17 .解:(1)由已知12n n S a a =-有1122(1)n n n n n a S S a a n --=-=->,即12(1)n n a a n -=>. 从而21312,4a a a a ==. 又∵123,1,a a a +成等差数列,即1322(1)a a a +=+,∴11142(21)a a a +=+,解得12a =.∴数列{}n a 是首项为2,公比为2的等比数列 故2n n a =.…………6分 (2)由(1)得112n n n n a -=-, 因数列⎭⎬⎫⎩⎨⎧n a 1是首项为21,公比为21的等比数列,∴11[1()](1)1(1)221122212n n n n n n n T -++=-=---.………………12分 18.解:(1)X 的可能取值为0,1,2,3.1111(0)43224P X ==⨯⨯= ,3111211111(1)4324324324P X ==⨯⨯+⨯⨯+⨯⨯=,32112131111(2)43243243224P X ==⨯⨯+⨯⨯+⨯⨯=,3211(3)4324P X ==⨯⨯=,X ∴…………………………………………6分1111123()012324424412E X =⨯+⨯+⨯+⨯=.………………………………7分 (2)设“甲队和乙队得分之和为4”事件A,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:31)32(4131)32(2411)31(3241)(3223213=⨯+⨯⨯⨯+⨯⨯⨯=C C A P .………………12分 19. 解:(1)∵△ABC 为等边三角形,△BCD 为等腰三角形,且O 为中点 ∴,BC AO BC DO ⊥⊥,AO DO O ⋂=,BC AOD ∴⊥平面,又BC ABC ⊂面 ∴⊥平面BCD 平面AOD ………………3分(2)(法1)作,A H D O ⊥交DO 的延长线于H ,则平面BCD ⋂平面,AOD HD =则AH BCD ⊥平面,在Rt BCD ∆中,122OD BC ==, 在Rt ACO ∆中,AO AC ==AOD ∆中,222cos 2AD OD AO ADO AD OD +-∠==⋅,sin 3ADO ∴∠=,在R t A D H ∆中sin 1AH AD ADO =∠=,设(0C E x x =≤≤,作E F C H F ⊥于,平面A H C ⊥平面B C D ,,EF BCD EDF ∴⊥∠平面就是E D B C D 与面所成的角。
【四川省成都七中】2017届高三二诊模拟考试数学(理)试卷(附答案)
四川省成都七中2017届高三二诊模拟考试数学(理)试卷一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上).1.已知集合{}2,1,0,1,2A =--,{}|lg 0B x x =≤,则AB =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,22.已知i 是虚数单位,若()17ii ,2i a b a b +=+∈-R ,则ab 的值是( ) A .15-B .3-C .3D .153.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( )A .44π+B .84π+C .44π3+D .48π3+4.为了得到函数21log 4x y +=的图像,只需把函数2log y x =的图像上所有的点( ) A 向左平移1个单位长度,再向上平移2个单位长度 B 向右平移1个单位长度,再向上平移2个单位长度 C 向左平移1个单位长度,再向下平移2个单位长度 D 向右平移1个单位长度,再向下平移2个单位长度5.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .6正视图侧视图俯视图6.如图,圆锥的高PO =底面⊙O 的直径2AB =,C 是圆上一点,且30CAB ∠=,D 为AC 的中点,则直线OC 和平面PAC 所成角的正弦值为( ) A .12BCD .137.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A.⎛ ⎝⎭B.30,⎛⎫⎛⎫⎪ ⎪⎪⎪⎝⎭⎝⎭ C .33⎡-⎢⎣⎦D .3,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭8.三棱锥A BCD -中,AB AC AD 、、两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( ) A .4B .6C .8D .169.已知)221e πa x dx -=⎰,若()20172201701220171()ax b b x b x b x x -=++++∈R ,则20171222017222b b b +++的值为( ) A .0 B .1- C .1D .e10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足(),,MN M N =∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任意戴金德分割(),M N ,下列选项中一定不成立的是( ) A .M 没有最大元素,N 有一个最小元素 B .M 没有最大元素,N 也没有最小元素 C .M 有一个最大元素,N 有一个最小元素 D .M 有一个最大元素,N 没有最小元素11.已知函数()3211201732f x mx nx x =+++,其中{}{}2,4,6,8,1,3,5,7m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A .7120B .760 C .730D .以上都不对 12.若存在正实数x y z 、、满足e 2z x z ≤≤且ln y z x z =,则ln yx的取值范围为( )A .[)1,+∞B .[]1,e 1-C .(],e 1-∞-D .11,ln 22⎡⎤+⎢⎥⎣⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.在ABC △中,边a 、b 、c 分别是角A 、B 、C 的对边,若()cos 3cos b C a c B =-,则cos B =_________.14.已知点(,)P x y 的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点O 为坐标原点,点()1,1M --,那么OM OP 的最大值等于_________.15.动点(),M x y 到点()2,0的距离比到y 轴的距离大2,则动点M 的轨迹方程为_________.16.在ABC △中,A θ∠=,D E 、分别为AB AC 、的中点,且BE CD ⊥,则cos2θ的最小值为_________. 三、解答题(17~21每小题12分,22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤).17.设数列{}n a 的前n 项和12n n S a a =-,且1231a a a +、、成等差数列. (1)求数列{}n a 的通项公式;(2)求数列1n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T .18.为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X 表示甲队总得分.(1)求随机变量X 的分布列及其数学期望()E X ; (2)求甲队和乙队得分之和为4的概率.19.已知等边AB C ''△,BCD △中,1,BD CD BC ===1所示),现将B 与B ',C 与C '重合,将AB C ''△向上折起,使得AD =2所示).(1)若BC 的中点O ,求证:BCD AOD ⊥平面平面;(2)在线段AC 上是否存在一点E ,使ED BCD 与面成30︒角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.20.已知圆222:2,E x y +=将圆2E按伸缩变换:x x y y '=⎧⎪⎨'=⎪⎩后得到曲线1E(1)求1E 的方程;(2)过直线2x =上的点M 作圆的两条切线,设切点分别是A B 、,若直线AB 与交于C D 、两点,求||||CD AB 的取值范围. 21.已知函数()sin ln sin g x x x θθ=--在[)1,+∞单调递增,其中()0,πθ∈(1)求θ的值; (2)若()()221x f x g x x -=+,当[]1,2x ∈时,试比较()f x 与()12f x '+的大小关系(其中()f x '是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,()e 11x x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4—4:坐标系与参数方程】在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :()2sin 2cos 0a a ρθθ=>,又过点()2,4P --的直线l的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与曲线C 分别交于M N 、. (1)写出曲线C 的平面直角坐标系方程和l 的普通方程;(2)若,,PM MN PN 成等比数列,求a 的值. 23.【选修4—5:不等式选讲】 设函数()f x =()10x x a a a++-> (1)证明:()2f x ≥;2E 1E BA CDf ,求a的取值范围.(2)若(3)5四川省成都七中2017届高三二诊模拟考试数学(理)试卷答 案一、选择题 1~5.ABDCB 6~10.CBCBC 11~12.BB二、填空题 13.1314.415.()280y x x =≥或()00y x =<16.725三、解答题17.解:(1)由已知12n n S a a =-有()11221n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>,从而21312,4a a a a ==. 又123,1,a a a +成等差数列,即()13221a a a +=+,∴()1114221a a a +=+,解得12a =.∴数列{}n a 是首项为2,公比为2的等比数列故2n n a =.…………6分(2)由(1)得112nn n n a -=-,因数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公比为12的等比数列, ∴()()111221*********nn nn n n n T ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦=-=---.………………12分 18.解:(1)X 的可能取值为0,1,2,3.()1111043224P X ==⨯⨯=,()311121111114324324324P X ==⨯⨯+⨯⨯+⨯⨯=,()32112131111243243243224P X ==⨯⨯+⨯⨯+⨯⨯=,()321134324P X ==⨯⨯=,X ∴的分布列为()11111012324424412E X =⨯+⨯+⨯+⨯=.…………………………………………………………7分 (2)设“甲队和乙队得分之和为4”事件A ,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:()223123312111211214332433433P A C C ⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………………………………12分19.解:(1)ABC △为等边三角形,BCD △为等腰三角形,且O 为中点 ∴,BCAO BC DO ⊥⊥,AO DO O =,BC ∴⊥平面AOD ,又BC ⊂面ABC BCD AOD ∴⊥平面平面∴平面BCD ⊥平面AOD …………3分(2)法一:作,AH DO ⊥交DO 的延长线于H ,则平面BCD 平面,AOD HD=则AH ⊥平面BCD ,在t R BCD △中,12OD BC ==,在Rt ACO △中,AO AC =,在AOD △中, 222cos 2AD OD AO ADO AD OD +-∠==⋅sin ADO ∴∠=Rt ADH △中sin 1AH AD ADO =∠=,设(0CE x x =≤,作EF CH F ⊥于,平面AHC ⊥平面BCD ,,EF BCD EDF ∴⊥∠平面就是ED BCD 与面所成的角.由,2EF CE EF xAH AC =∴=(※), 在Rt CDE △中,DE =ED BCD 与面成30︒1,12xx =∴=,当1CE =时,ED BCD 与面成30角………………………………………………………………………9分DABCOEFH法二:在解法1中接(※),以D 为坐标原点,以直线DB DC 、分别为x 轴,y 轴的正方向,以过D 与平面BCD 垂直的直线为z 轴,建立空间直角坐标系则()0,0,0,,D E x ⎫⎪⎪⎝⎭2DE ⎛⎫= ⎪⎪⎝⎭, 又平面BCD 的一个法向量为(0,0,1)n =,要使ED BCD 与面成30角,只需使DE 与n 成60, 只需使cos60DE nDEn=1,12xx =∴=, 当1CE =时ED BCD与面成30角法三:将原图补形成正方体(如右图所示),再计算 (3)将原图补形成正方体,则外接球的半径r=,表面积:3π………………………………12分 20.解:(1)按伸缩变换:2x x y y '=⎧⎪⎨'=⎪⎩得:()()2222,x y ''+=则1E :2212x y +=…………………3分(2)设直线2x =上任意一点M 的坐标是()2,,t t ∈R 切点A B 、坐标分别是()()1122,,x y x y 、则经过A点的切线斜率是11x y -,方程是,经过B 点的切线方程是,又两条切线AM BN 、相112x x y y +=222x x y y +=z交于()2,M t 11222222x ty x ty +=⎧∴⎨+=⎩ 所以经过A B 、两点的直线l 的方程是22x ty +=当()()0,1,1,1,1,,1,22t A B C D ⎛⎛=-- ⎝⎭⎝⎭,|||||2,||2CD CD AB AB ∴==∴= 当0t ≠时,联立222212x y t x y -⎧=⎪⎪⎨⎪+=⎪⎩,整理得()222816820t x x t +-+-=设,C D 坐标分别为()()3344,,x y x y 、则3422342168828x x t t x x t ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩)224||8t CD t +=+||AB =)3224||||t CD AB +∴=244,t x +=>设()110,4f x u x ⎛⎫==∈ ⎪⎝⎭又令 ()313261,0,4x u u u ϕ⎛⎫=-++∈ ⎪⎝⎭()201960,4x u b u ϕ=-+=⇒=()104u ϕ⎛⎫∴ ⎪⎝⎭在,()()104u ϕϕϕ⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭,(()(1,f x∴∈,∴||||2CD AB ⎛⎫∈ ⎪ ⎪⎝⎭综上所述,||||CD AB ∴的取值范围是⎫⎪⎪⎣⎭……………………………………………………………………………………………12分 21.解:(1)由题:()1sin 0g x x θ'=-≥恒成立[)()1sin 1,x x θ∴≥∈+∞恒成立 sin 1θ∴≥sin 1θ∴=()0,πθ∈π2θ∴=……2分(2)()()222121ln 1x f x g x x x x x x -=+=-+--()231221f x x x x '∴=--+ ()()23312ln 2f x f x x x x x x '∴-=-++--令()ln h x x x =-,()233122H x x x x =+--()110h x x'∴=-≥()h x ∴单调递增则()()11h x h ≥=又()24326x x H x x--+'=令()2326x x x ϕ=--+显然()x ϕ在[]1,2单调递减 且()()11,210,ϕϕ==-则()01,2x ∃∈使得()H x 在()01,x 单调增,在()0,2x 单调递减∴()()(){}()min1min 1,222H x H H H ===-∴()()122H x H ≥=- ∴()()()()()()min min12f x f x h x H x h x H x '-=+≥+=又两个函数的最小值不同时取得;∴()()12f x f x '->即:()()12f x f x '>+……………………………………………………………7分(3)()e 11x x kg x --≥+恒成立,即:()()e ln 1110xk x k x ++-+-≥恒成立,令()()()e ln 111xF x k x k x =++-+-,则()()e 11x kF x k x '=+-++ 由(1)得:()()1g x g ≥即()ln 101x x x --≥≥,即:()()1ln 110x x x +≥++≥ 即:()()ln 10x x x ≥+≥e 1x x ∴≥+()()()111kF x x k x '∴≥++-++ 当1k =时,0x ≥()()()11112011k F x x k x x x '≥++-+≥++-≥++∴()F x 单调增,∴()()00F x F ≥=满足当(0,1)k ∈0x ≥由对角函数性质()()()()111101kF x x k k k x '≥++-+≥+-+=+ ∴()F x 单调增,∴()()00F x F ≥=满足当0k ≤时,0x ≥由函数的单调性知()()()()111101kF x x k k k x '≥++-+≥+-+=+ ∴()F x 单调增,∴()()00F x F ≥=满足当1k >时,()()2e 1xkF x x ''=-+则()F x ''单调递增,又()010F k ''=-<且(),0x F x ''→+∞>则()F x ''在(0,)+∞存在唯一零点0t ,则()F x '在0(0,)t 单减,在0(,)t +∞单增,∴当0(0,)x t ∈时,()()00F x F '<=∴()F x 在0(0,)t 单减,∴()(0)0F x F <=不合题意综上:1k ≤………………………………………………………………………………………………12分22.解:(Ⅰ)曲线C 的直角坐标方程为()220y ax a >=- 11 - / 11直线l 的普通方程为2=0x y --.………………………………………………………………………4分 (Ⅱ)将直线l 的参数方程与C 的直角坐标方程联立,得()()()()224840840t a t a a a +++=*∆=+>-.设点M N 、分别对应参数12,t t 、恰为上述方程的根. 则1212,,||PM t PN t MN t t ===-.由题设得()()221212121212.4t t t t t t t t t t -+-即=,=由(*)得()()121224,840t t a t t a =>+=++则有 ()()24540,a a -=++得1,a =或4,a =-因为1a >,所以1a =.…………………………………10分 23.解:(1)证明:由绝对值不等式的几何意义可知:()min 12,f x a a=+≥当且仅当1a =取等,所以()2f x ≥.…………………………………………………………………………………………………4分 (2)因为()35f <,所以1|3||3|5a a ++-<⇔13|3|5a a ++-<⇔1|3|2a a-<-⇔ 11232a a a -<-<-a <10分。
2017年四川省成都市高考数学二诊试卷(理科)(详细解析)
2017年省市高考数学二诊试卷(理科)(附详细解析)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]2.若复数z1=a+i(a∈R),z2=1﹣i,且为纯虚数,则z1在复平面所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{an }中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.364.已知平面向量,的夹角为,且||=1,||=,则+2与的夹角是()A.B.C.D.5.若曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值围是()A.(﹣,+∞)B.[﹣,+∞) C.(0,+∞) D.[0,+∞)6.若实数x,y满足不等式,且x﹣y的最大值为5,则实数m的值为()A.0 B.﹣1 C.﹣2 D.﹣57.已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.38.已知函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,).若函数g (x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是()A .g (π)<g (3)<g ()B .g (π)<g ()<g (3)C .g ()<g (3)<g (π) D .g ()<g (π)<g (3)9.执行如图所示的程序框图,若输入a ,b ,c 分别为1,2,0.3,则输出的结果为( )A .1.125B .1.25C .1.3125D .1.37510.已知函数f (x )=sin (ωx +2φ)﹣2sinφcos(ωx +φ)(ω>0,φ∈R )在(π,)上单调递减,则ω的取值围是( ) A .(0,2] B .(0,] C .[,1] D .[,]11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( ) A . B . C . D .12.把平面图形M 上的所有点在一个平面上的射影构成的图形M′叫作图形M 在这个平面上的射影.如图,在三棱锥A ﹣BCD 中,BD ⊥CD ,AB ⊥DB ,AC ⊥DC ,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S 1,S 2,S 3,S 4,设面积为S 2的三角形所在的平面为α,则面积为S 4的三角形在平面α上的射影的面积是( )A.2 B.C.10 D.30二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为.16.在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),则数列{}的前n项和Tn=.三、解答题(本大题共5小题,共70分)17.(12分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.18.(12分)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次 x 555559 551 563 552y 601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=, =﹣)19.(12分)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.20.(12分)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.21.(12分)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.2017年省市高考数学二诊试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A=[﹣1,2],B={y|y=x2,x∈A}=[0,4],∴A∩B=[0,2].故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若复数z1=a+i(a∈R),z2=1﹣i,且为纯虚数,则z1在复平面所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义、几何意义即可得出.【解答】解:复数z1=a+i(a∈R),z2=1﹣i,且===+i为纯虚数,∴ =0,≠0,∴a=1.则z1在复平面所对应的点(1,1)位于第一象限.故选:A.【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,考查了推理能力与计算能力,属于基础题.3.在等比数列{an }中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.36【考点】等比数列的通项公式.【分析】设公比为q,由题意求出公比,再根据等比数列的性质即可求出.【解答】解:设公比为q,∵a3=6,a3+a5+a7=78,∴a3+a3q2+a3q4=78,∴6+6q2+6q4=78,解得q2=3∴a5=a3q2=6×3=18,故选:B【点评】本题考查了等比数列的性质,考查了学生的计算能力,属于基础题.4.已知平面向量,的夹角为,且||=1,||=,则+2与的夹角是()A.B.C.D.【考点】平面向量数量积的运算.【分析】结合题意设出,的坐标,求出+2的坐标以及+2的模,代入公式求出+2与的夹角余弦值即可求出角的度数.【解答】解:平面向量,的夹角为,且||=1,||=,不妨设=(1,0),=(,),故+2=(,),|+2|=,(+2)•=×+×=,故cos<+2,>===,故+2与的夹角是,故选:A.【点评】本题考查了平面向量数量积的运算,考查向量夹角的余弦公式,是一道中档题.5.若曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值围是()A.(﹣,+∞)B.[﹣,+∞) C.(0,+∞) D.[0,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】令y′≥0在(0,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的围.【解答】解:y′=+2ax,x∈(0,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥0在(0,+∞)上恒成立,∴a≥﹣恒成立,x∈(0,+∞).令f(x)=﹣,x∈(0,+∞),则f(x)在(0,+∞)上单调递增,又f(x)=﹣<0,∴a≥0.故选D.【点评】本题考查了导数的几何意义,函数单调性与函数最值,属于中档题.6.若实数x,y满足不等式,且x﹣y的最大值为5,则实数m的值为()A.0 B.﹣1 C.﹣2 D.﹣5【考点】简单线性规划.【分析】画出约束条件表示的可行域,然后根据目标函数z=x﹣2y的最大值为2,确定约束条件中a的值即可.【解答】解:画出约束条件,的可行域,如图:x﹣y的最大值为5,由图形可知,z=x﹣y经过可行域的A时取得最大值5,由⇒A(3,﹣2)是最优解,直线y=m,过点A(3,﹣2),所以m=﹣2,故选:C.【点评】本题考查简单的线性规划,考查学生分析问题解决问题的能力,属于中档题.7.已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.3【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面,平面和平面平行或垂直的判定定理,分别判断,即可得出结论.【解答】解:①若α∥β,则m∥n或m,n异面,不正确;②若α∥β,根据平面与平面平行的性质,可得m∥β,正确;③若α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确;④若α∩β=l,且m⊥l,m⊥n,l与n相交则α⊥β,不正确.故选:B.【点评】本题主要考查命题的真假判断,涉及空间直线和平面,平面和平面平行或垂直的判定,根据相应的判定定理和性质定理是解决本题的关键.8.已知函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,).若函数g (x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是()A.g(π)<g(3)<g()B.g(π)<g()<g(3)C.g()<g(3)<g(π)D.g()<g(π)<g(3)【考点】反函数.【分析】根据函数的奇偶性,推导出g(﹣x+2)=g(x+2),再利用当x∈[﹣2,2]时,g(x)单调递减,即可求解.【解答】解:函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,),则a=,∵y=g(x+2)是偶函数,∴g(﹣x+2)=g(x+2),∴g(3)=g(1),g(π)=f(4﹣π),∵4﹣π<1<,当x∈[﹣2,2]时,g(x)单调递减,∴g(4﹣π)>g(1)>g(),∴g()<g(3)<g(π),故选C.【点评】本题考查反函数,考查函数单调性、奇偶性,考查学生的计算能力,正确转化是关键.9.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为()A.1.125 B.1.25 C.1.3125 D.1.375【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的a,b的值,当a=1.25,b=1.5时满足条件|a﹣b|<0.3,退出循环,输出的值为1.375.【解答】解:模拟程序的运行,可得a=1,b=2,c=0.3执行循环体,m=,不满足条件f(m)=0,满足条件f(a)f(m)<0,b=1.5,不满足条件|a﹣b|<c,m=1.25,不满足条件f(m)=0,不满足条件f(a)f(m)<0,a=1.25,满足条件|a﹣b|<c,退出循环,输出的值为1.375.故选:D.【点评】本题考查了程序框图的应用,模拟程序的运行,正确依次写出每次循环得到的a,b的值是解题的关键,属于基础题.10.已知函数f(x)=sin(ωx+2φ)﹣2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,)上单调递减,则ω的取值围是()A .(0,2]B .(0,]C .[,1]D .[,] 【考点】三角函数中的恒等变换应用.【分析】利用积化和差公式化简2sinφcos (ωx +φ)=sin (ωx +2φ)﹣sinωx.可将函数化为y=Asin (ωx +φ)的形式,在(π,)上单调递减,结合三角函数的图象和性质,建立关系可求ω的取值围.【解答】解:函数f (x )=sin (ωx +2φ)﹣2sinφcos(ωx +φ)(ω>0,φ∈R ).化简可得:f (x )=sin (ωx +2φ)﹣sin (ωx +2φ)+sinωx =sinωx,由+,(k ∈Z )上单调递减, 得: +,∴函数f (x )的单调减区间为:[,],(k ∈Z ). ∵在(π,)上单调递减, 可得: ∵ω>0, ω≤1. 故选C .【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( ) A . B . C . D .【考点】双曲线的简单性质.【分析】设F 1N=ON=MN=r ,则OF 2=2r ,根据勾股定理NF 2=2r ,再利用相似三角形和双曲线的离心率公式即可求得 【解答】解:设F 1N=ON=MN=r , 则OF 2=2r ,根据勾股定理NF2=2r,又△MF2N∽△PF1F2,∴e======,故选:D【点评】此题要求学生掌握定义:到两个定点的距离之差等于|2a|的点所组成的图形即为双曲线.考查了数形结合思想、本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.12.把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在三棱锥A﹣BCD中,BD⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是()A.2 B.C.10 D.30【考点】平行投影及平行投影作图法.【分析】由题意,面积为S4的三角形在平面α上的射影为△OAC,即可得出结论.【解答】解:如图所示,面积为S4的三角形在平面α上的射影为△OAC,面积为=2,故选A.【点评】本题考查射影的概念,考查三角形面积的计算,比较基础.二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a= ﹣2 .【考点】二项式系数的性质.【分析】利用通项公式即可得出.==a5﹣r,【解答】解:二项式(ax2+)5的展开式中,通项公式Tr+1令10﹣=0,解得r=4.∴常数项=a=﹣10,∴a=﹣2.故答案为:﹣2.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是36 .【考点】极差、方差与标准差.【分析】设这组数据的最后2个分别是:10+x,y,得到x+y=10,表示出S2,根据x的取值求出S2的最大值即可.【解答】解:设这组数据的最后2个分别是:10+x,y,则9+10+11+(10+x)+y=50,得:x+y=10,故y=10﹣x,故S2= [1+0+1+x2+(﹣x)2]= + x2,显然x最大取9时,S2最大是36,故答案为:36.【点评】本题考查了求数据的平均数和方差问题,是一道基础题.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为 4 .【考点】抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为4.【点评】本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.16.在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),则数列{}的前n项和Tn=.【考点】数列的求和.【分析】由条件可得=•,令bn =,可得bn=•bn﹣1,由bn=b1••…•,求得bn,进而得到an,可得==2(﹣),再由数列的求和方法:裂项相消求和,即可得到所求和.【解答】解:在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),可得=•,令bn =,可得bn=•bn﹣1,由bn =b1••…•=1••…•=,可得an=,即有==2(﹣),则前n项和Tn=2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.【点评】本题考查数列的求和,注意运用构造数列法,结合数列恒等式,考查裂项相消求和,考查化简整理的运算能力,属于难题.三、解答题(本大题共5小题,共70分)17.(12分)(2017•模拟)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.【考点】三角形中的几何计算.【分析】(Ⅰ)在△CBE中,正弦定理求出sin∠BCE;(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°即可【解答】解:(Ⅰ)在△CBE中,由正弦定理得,sin∠BCE=,(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=.⇒sin∠BEC=,sin∠AED=sin(1200+∠BEC)=,⇒cos∠AED=,在直角△ADE中,AE=5,═cos∠AED=,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.【点评】本题考查了正余弦定理在解三角形中的应用,是中档题18.(12分)(2017•模拟)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次 x 555559 551 563 552y 601605 597 599 598(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=, =﹣)【考点】线性回归方程.【分析】(Ⅰ)利用对立事件的概率公式,可得结论;(Ⅱ)求出回归系数,即可求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.【解答】解:(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都小于600,有=3种方法,∴至少有一个大于600的概率==0.7;(Ⅱ)=554, =600, ===0.25, =﹣=461.5,∴ =0.25x+461.5,x=570, =604,即当特征量x为570时特征量y的值为604.【点评】本题考查概率的计算,考查独立性检验知识的运用,正确计算是关键.19.(12分)(2017•模拟)如图,已知梯形CDEF与△ADE所在平面垂直,AD ⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,利用向量法能证明EG∥平面BCF.(Ⅱ)求出平面BEF的法向量和平面BFC的法向量,利用向量法能求出二面角E ﹣BF﹣C的余弦值.【解答】证明:(Ⅰ)∵梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,∴以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,∵AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.G为AD边上一点,DG=DA,∴E(0,4,0),G(0,0,),B(3,0,4),C(12,0,0),F(9,4,0),=(9,0,﹣4),=(6,4,﹣4),=(0,﹣4,),设平面BCF的法向量=(x,y,z),则,取z=3,得=(4,3,3),∵=﹣12+12=0,EG⊄平面BCF,∴EG∥平面BCF.解:(Ⅱ) =(3,﹣4,4),=(9,0,0),设平面BEF的法向量=(a,b,c),则,取c=1, =(0,,1),平面BFC的法向量=(4,3,3),设二面角E﹣BF﹣C的平面角为θ,则cosθ===.∴二面角E﹣BF﹣C的余弦值为.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•模拟)在平面直角坐标系xOy中,已知椭圆E: +=1(a >b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E 相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,⇒m=,⇒A(0,),B(,0)代入椭圆方程,求出a、b即可(2)由原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2.联立直线方程和与椭圆的方程,利用求解.【解答】解:(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,∴,⇒m=,切线l:y=﹣x+,⇒A(0,),B(,0)∴a=,b=,∴椭圆E的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0...∵以AB为直径的圆经过坐标原点O,∴;⇒(k2+1)x1x2+km(x1+x2)=m2(a2+b2)=(k2+1)a2b2…①又∵圆O的一条切线l:y=kx+m,∴原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2…②由①②得r2(a2+b2)=a2b2.∴以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关为:r2(a2+b2)=a2b2.【点评】本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.21.(12分)(2017•模拟)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数f(x)的导数,得到a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),求出a的围即可;(Ⅱ)求出函数f(x)的导数,得到[f(x2)﹣f(x1)]max=f(n)﹣f(m),求出M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),根据函数的单调性求出M(a)的最大值即可.【解答】解:(Ⅰ)f′(x)=﹣1﹣=,x∈(0,+∞),由题意得,x2﹣ax+1=0在x∈(2,+∞)上有根(不为重根),即a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),检验,a>时,f(x)在x∈(2,+∞)上存在极值点,∴a∈(,+∞);(Ⅱ)若0<a≤2,∵f′(x)=在(0,+∞)上满足f′(x)≤0,∴f(x)在(0,+∞)上递减,∴f(x2)﹣f(x1)<0,∴f(x2)﹣f(x1)不存在最大值,则a>2;∴方程x2﹣ax+1=0有2个不相等的正实数根,令其为m,n,且不妨设0<m<1<n,则,f(x)在(0,m)递减,在(m,n)递增,在(n,+∞)递减,对任意x1∈(0,1),有f(x1)≥f(m),对任意x2∈(1,+∞),有f(x2)≤f(n),∴[f(x2)﹣f(x1)]max=f(n)﹣f(m),∴M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),将a=m+n=+n,m=代入上式,消去a,m得:M(a)=2[(+n)lnn+(﹣n)],∵2<a≤e+,∴ +n≤e+,n>1,由y=x+在x∈(1,+∞)递增,得n∈(1,e],设h(x)=2(+x)lnx+2(﹣x),x∈(1,e],h′(x)=2(1﹣)lnx,x∈(1,e],∴h′(x)>0,即h(x)在(1,e]递增,∴[h(x)]max=h(e)=,∴M(a)存在最大值为.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2,θ),θ∈(,π),即可求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.【解答】解:(Ⅰ)曲线C的参数方程为(α为参数),普通方程为x2+(y﹣2)2=4,极坐标方程为ρ=4sinθ,∵点A的极坐标为(2,θ),θ∈(,π),∴θ=;(Ⅱ)直线l的参数方程为(t为参数),普通方程为x+y﹣4=0,点A的直角坐标为(﹣,3),射线OA的方程为y=﹣x,代入x+y﹣4=0,可得B(﹣2,6),∴|AB|==2.【点评】本题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.[选修4-5:不等式选讲]23.(2017•模拟)已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(I)由题意,分类讨论,去掉绝对值,解不等式即可;(Ⅱ)运用柯西不等式,可3p+2q+r的最小值.【解答】解:(Ⅰ)f(x+)≥0,即|x+|+|x﹣|≤4,x≤﹣,不等式可化为﹣x﹣﹣x+≤4,∴x≥﹣2,∴﹣2≤x≤﹣;﹣<x<,不等式可化为x+﹣x+≤4恒成立;x≥,不等式可化为x++x﹣≤4,∴x≤2,∴≤x≤2,综上所述,不等式的解集为[﹣2,2];(Ⅱ)∵(++)(3p+2q+r)≥(1+1+1)2=9, ++=4∴3p+2q+r≥,∴3p+2q+r的最小值为.【点评】本题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.21 / 21。
【精品】2017年四川省成都市高考数学摸底试卷及参考答案(理科)
2017年四川省成都市高考数学摸底试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={x|﹣1<x<3},B={x|x2+x﹣2>0},则A∩B=()A.(2,3) B.(1,3) C.(﹣∞,﹣2)∪(1,3)D.(﹣∞,﹣2)∪(1,+∞)2.(5分)复数z=﹣i(1+2i)的共轭复数为()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.(5分)执行如图所示的程序框图,输出的结果是()A.13 B.14 C.15 D.174.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.﹣1 B.1 C.2 D.35.(5分)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为()A.1 B.2 C.3 D.46.(5分)已知函数f(x)=sinx+cosx在x=θ时取得最大值,则cos(2θ+)=()A.﹣B.﹣ C.D.7.(5分)已知函数f(x)=x3﹣ax在(﹣1,1)上单调递减,则实数a的取值范围为()A.(1,+∞)B.[3,+∞)C.(﹣∞,1]D.(﹣∞,3]8.(5分)如图,一个三棱锥的三视图均为直角三角形.若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A.4πB.16πC.24πD.25π9.(5分)小明在花店定了一束鲜花,花店承诺将在第二天旱上7:30~8:30之间将鲜花送到小明家,若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前能收到这束鲜花的概率是()A.B.C.D.10.(5分)下列判断正确的是()A.若事件A与事件B互斥,则事件A与事件B对立B.函数y=(x∈R)的最小值为2C.若直线(m+1)x+my﹣2=0与直线mx﹣2y+5=0互相垂直,则m=1D.“p∧q为真命题”是“p∨q为真命题”的充分不必要条件11.(5分)△ABC的内角A,B,C的对边分别为a,b,c,且2(sin2A﹣sin2C)=(a﹣b)sinB,△ABC的外接圆半径为,则△ABC面积的最大值为()A.B.C.D.12.(5分)定义在R上的偶函数f(x)满足f(1﹣x)=f(1+x),当x∈[1,2]时,f(x)=lnx.则直线x﹣5y+3=0与曲线y=f(x)的交点个数为(参考数据:ln2≈0.69,ln3≈1.10)()A.3 B.4 C.5 D.6二、填空题(共4小题,每小题5分,满分20分)13.(5分)求(﹣2sinx)dx=.14.(5分)已知双曲线﹣=1(a>0)和抛物线y2=8x有相同的焦点,则双曲线的离心率为.15.(5分)已知数列{a n}是首项为2018,公比为2018的等比数列,设数列{}的前n项和为S n,则S1•S2•S3•…S519=.16.(5分)在平面直角坐标系xOy中,已知点P在曲线Γ:y=(x≥0)上,曲线Γ与x轴相交于点B,与y轴相交于点C,点D(2,1)和点E(1,0)满足=λ+μ(λ,μ∈R),则λ+μ的最小值为.三、解答题(共5小题,满分60分)17.(12分)已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.(I)求实数a,b的值;(Ⅱ)当a>0时,求曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程.18.(12分)某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程=x+;(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.参考公式:==,=﹣.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥平面ABC,AB⊥AC,AA1=2,A1C=CA=AB=2.(1)若D是AA1的中点,求证:CD⊥平面ABB1A1;(2)若E是侧棱BB1上的点,且EB1=BB1,求二面角E﹣A1C1﹣A的大小.20.(12分)在平面直角坐标系xOy中,已知△ABC的两个顶点A,B的坐标分别为(﹣1,0),(1,0),且AC,BC所在直线的斜率之积等于﹣2,记顶点C的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设直线y=kx+2(0<k<2)与y轴相交于点P,与曲线E相交于不同的两点Q,R(点R在点P和点Q之间),且=λ,求实数λ的取值范围.21.(12分)已知函数f(x)=,a∈R.(1)求函数f(x)的单调区间;(2)设函数g(x)=(x﹣k)e x+k,k∈Z,e=2.71828…为自然对数的底数,当a=1时,若∃x1∈(0,+∞),∀x2∈(0,+∞),不等式5f(x1)+g(x2)>0成立,求k的最大值.四、选做题:[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2cos(+θ).(I)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.2017年四川省成都市高考数学摸底试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={x|﹣1<x<3},B={x|x2+x﹣2>0},则A∩B=()A.(2,3) B.(1,3) C.(﹣∞,﹣2)∪(1,3)D.(﹣∞,﹣2)∪(1,+∞)【解答】解:B={x|x2+x﹣2>0}={x|(x﹣1)(x+2)>0}={x|x>1或x<﹣2},则A∩B={x|1<x<3}=(1,3),故选:B2.(5分)复数z=﹣i(1+2i)的共轭复数为()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i【解答】解:∵z=﹣i(1+2i)=﹣2i2﹣i=2﹣i,∴.故选:A.3.(5分)执行如图所示的程序框图,输出的结果是()A.13 B.14 C.15 D.17【解答】解:模拟程序的运行,可得a=1执行循环体,a=3不满足条件a>10,执行循环体,a=7不满足条件a>10,执行循环体,a=15满足条件a>10,退出循环,输出a的值为15.故选:C.4.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.﹣1 B.1 C.2 D.3【解答】解:作出约束条件所对应的可行域(如图△ABC),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点C(1,0)时,直线的截距最小,z取最大值,代值计算可得z=2x﹣y的最大值为2,故选:C.5.(5分)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为()A.1 B.2 C.3 D.4【解答】解:函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为:1个.即图象中的d点.故选:A.6.(5分)已知函数f(x)=sinx+cosx在x=θ时取得最大值,则cos(2θ+)=()A.﹣B.﹣ C.D.【解答】解:函数函数f(x)=sinx+cosx=2sin(x+).故当θ+=2kπ+,k∈Z,即θ=2kπ+,k∈Z时,函数f(x)取得最大值为2.则cos(2θ+)=cos(4kπ++)=cos(+)==,故选:C.7.(5分)已知函数f(x)=x3﹣ax在(﹣1,1)上单调递减,则实数a的取值范围为()A.(1,+∞)B.[3,+∞)C.(﹣∞,1]D.(﹣∞,3]【解答】解:∵函数f(x)=x3﹣ax在(﹣1,1)内单调递减,∴f′(x)=3x2﹣a≤0在(﹣1,1)内恒成立,即a≥3x2在(﹣1,1)内恒成立,∵3x2<3,∴a≥3,故选:B.8.(5分)如图,一个三棱锥的三视图均为直角三角形.若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A.4πB.16πC.24πD.25π【解答】解:由三视图还原原几何体如图:该几何体为三棱锥,底面三角形BCD为直角三角形,BC⊥BD,侧棱AB⊥底面BCD,AB=BC=2,BD=4.该几何体的外接球即为以B为顶点,以BC,BA,BD为棱的长方体的外接球,则外接球的直径2R=,∴R=.∴该球的表面积为4π×.故选:C.9.(5分)小明在花店定了一束鲜花,花店承诺将在第二天旱上7:30~8:30之间将鲜花送到小明家,若小明第二天离开家去公司上班的时间在早上8:00~9:00之间,则小明在离开家之前能收到这束鲜花的概率是()A.B.C.D.【解答】解:设送花人到达的时间为x,小明离家去工作的时间为y,记小明离家前能看到报纸为事件A;以横坐标表示报纸送到时间,以纵坐标表示小明离家时间,建立平面直角坐标系,小明离家前能得到报纸的事件构成区域如图示:于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示小明在离开家前能得到鲜花,即事件A 发生,所以P(A)=1﹣=;故选D.10.(5分)下列判断正确的是()A.若事件A与事件B互斥,则事件A与事件B对立B.函数y=(x∈R)的最小值为2C.若直线(m+1)x+my﹣2=0与直线mx﹣2y+5=0互相垂直,则m=1D.“p∧q为真命题”是“p∨q为真命题”的充分不必要条件【解答】解:对于A,若事件A与事件B互斥,则事件A与事件B不一定对立,故A错;对于B,函数y=(x∈R),令t=(t≥3),则y=t+的导数为y′=1﹣>0,可得函数y在[3,+∞)递增,即有t=3时,取得最小值3+=,故B错;对于C,若直线(m+1)x+my﹣2=0与直线mx﹣2y+5=0互相垂直,则m(m+1)﹣2m=0,解得m=1或m=0,故C错;对于D,“p且q为真命题”可得p,q均为真命题,可推得p∨q为真命题,反之p∨q为真命题,不一定p∧q为真命题,则“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故D正确.故选:D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c,且2(sin2A﹣sin2C)=(a﹣b)sinB,△ABC的外接圆半径为,则△ABC面积的最大值为()A.B.C.D.【解答】解:∵△ABC的外接圆半径为R=,∴由正弦定理,可得a=2RsinA=2sinA,b=2RsinB=2sinB,代入已知等式得2sin2A﹣2sin2C=2sinAsinB﹣2sin2B,即sin2A+sin2B﹣sin2C=sinAsinB,∴a2+b2﹣c2=ab,由此可得cosC==,结合C∈(0°,180°),得C=60°.∵ab=a2+b2﹣c2=a2+b2﹣(2RsinC)2=a2+b2﹣9≥2ab﹣9,∴ab≤9(当且仅当a=b时,取等号),∵△ABC面积为S=absinC≤×9×=,∴当且仅当a=b=3时,△ABC的面积的最大值为.故选:D.12.(5分)定义在R上的偶函数f(x)满足f(1﹣x)=f(1+x),当x∈[1,2]时,f(x)=lnx.则直线x﹣5y+3=0与曲线y=f(x)的交点个数为(参考数据:ln2≈0.69,ln3≈1.10)()A.3 B.4 C.5 D.6【解答】解:由f(1﹣x)=f(1+x),得f(x)的图象关于直线x=1对称.且f(﹣x)=f(2+x),∵f(x)是R上的偶函数,∴f(2+x)=f(x),得函数f(x)的周期为2.又当x∈[1,2]时,f(x)=lnx.作出函数f(x)的图象如图:由图可知,直线x﹣5y+3=0与曲线y=f(x)的交点个数为4.故选:B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)求(﹣2sinx)dx=﹣2.【解答】解:(﹣2sinx)dx=2cosx=2cos﹣2cos0=﹣2,∴(﹣2sinx)dx=﹣2,故答案为:﹣2.14.(5分)已知双曲线﹣=1(a>0)和抛物线y2=8x有相同的焦点,则双曲线的离心率为.【解答】解:抛物线y2=8x的焦点(2,0),则双曲线的焦点坐标(2,0),可得a2+2=4,解得a=,双曲线的离心率为:=.故答案为:15.(5分)已知数列{a n}是首项为2018,公比为2018的等比数列,设数列{}的前n项和为S n,则S1•S2•S3•…S519=.【解答】解:数列{a n}是首项为2018,公比为2018的等比数列,可得a n=2018n,n∈N*,===﹣,则S n=1﹣+﹣+…+﹣=1﹣=,即有则S1•S2•S3•…•S519=••…=.故答案为:.16.(5分)在平面直角坐标系xOy中,已知点P在曲线Γ:y=(x≥0)上,曲线Γ与x轴相交于点B,与y轴相交于点C,点D(2,1)和点E(1,0)满足=λ+μ(λ,μ∈R),则λ+μ的最小值为.【解答】解:由y=(x≥0)可知=1,∴B(2,0),C(0,1),设P(2cosα,sinα),α∈[0,],则=(1,﹣1),=(2cosα,sinα),=(2,1),∴,解得,∴λ+μ═,令f(α)=,则f′(α)=>0,∴f(α)在[0,]上单调递增,∴当α=0时,f(α)取得最小值f(0)=.故答案为:.三、解答题(共5小题,满分60分)17.(12分)已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.(I)求实数a,b的值;(Ⅱ)当a>0时,求曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程.【解答】解:(Ⅰ)f′(x)=3x2+2ax+b,由f(x)在x=1处有极值4,得,解得:或;(Ⅱ)a>0时,由(Ⅰ)得a=3,b=﹣9,故f(x)=x3+3x2﹣9x+9,f′(x)=3x2+6x﹣9,故f(﹣2)=31,f′(﹣2)=﹣9,故切线方程是:y﹣31=﹣9(x+2),整理得:9x+y﹣13=0.18.(12分)某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程=x+;(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.参考公式:==,=﹣.【解答】解:(1)根据题意,计算=×(5+7+6+9+8)=7,=×(2+2+3+4+4)=3,====,=﹣=3﹣×7=﹣,∴y关于x的线性回归方程为=x﹣;(2)从这5只小白鼠中随机抽取3只,基本事件数为:223,224,224,234,234,244,234,234,244,344共10种不同的取法;其中至少有一只B项指标数据高于3的基本事件是:224,224,234,234,244,234,234,244,344共9种不同的取法,故所求的概率为P=.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥平面ABC,AB⊥AC,AA1=2,A1C=CA=AB=2.(1)若D是AA1的中点,求证:CD⊥平面ABB1A1;(2)若E是侧棱BB1上的点,且EB1=BB1,求二面角E﹣A1C1﹣A的大小.【解答】(1)证明:∵面ACC1A1⊥面ABC,AB⊥AC,∴AB⊥面ACC1A1,即AB⊥CD;又AC=A1C,D为AA1中点,∴CD⊥AA1,且AA1∩AB=A∴CD⊥面ABB1A1.(6分)(2)解:如图所示,以点C为坐标系原点,CA为x轴,过C点平行于AB的直线为y轴,CA1为z轴,建立空间直角坐标系C﹣xyz,则有A(2,0,0),B(2,2,0),A1(0,0,2),B1(0,2,2),C1(﹣2,0,2),则,=(0,2,0)+=()设面A 1C1E的法向量为由,可取由条件得面A 1C1A的一个法向量为.cos==∵二面角E﹣A1C1﹣A为锐角,∴二面角E﹣A1C1﹣A的大小为…12分20.(12分)在平面直角坐标系xOy中,已知△ABC的两个顶点A,B的坐标分别为(﹣1,0),(1,0),且AC,BC所在直线的斜率之积等于﹣2,记顶点C的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设直线y=kx+2(0<k<2)与y轴相交于点P,与曲线E相交于不同的两点Q,R(点R在点P和点Q之间),且=λ,求实数λ的取值范围.【解答】解:(Ⅰ)设点C(x,y),∵△ABC的两个顶点A,B的坐标分别为(﹣1,0),(1,0),且AC,BC所在直线的斜率之积等于﹣2,∴=﹣2,化简得曲线E的方程为:2x2+y2=2(y≠0);(Ⅱ)设直线y=kx+2(0<k<2)与y轴相交于点P(0,2),与曲线E相交于不同的两点Q,R(点R在点P和点Q之间),设Q(x1,y1),R (x2,y2)∴∴(2+k2)x2+4kx+2=0;,x1x2=…①△=16k2﹣16﹣8k2=8k2﹣16>0,⇒k2>2又0<k<2,∴2<k2<4…②∵,,且=λ,∴x1=λx2…③由①②得(1+λ)x2=,⇒结合②得⇒实数λ的取值范围.⇒⇒且λ≠1.∵点R在点P和点Q之间,∴λ>1综上,实数λ的取值范围:(1,3)21.(12分)已知函数f(x)=,a∈R.(1)求函数f(x)的单调区间;(2)设函数g(x)=(x﹣k)e x+k,k∈Z,e=2.71828…为自然对数的底数,当a=1时,若∃x1∈(0,+∞),∀x2∈(0,+∞),不等式5f(x1)+g(x2)>0成立,求k的最大值.【解答】解:(1)f′(x)=,(x>0),由f′(x)=0,解得:x=e1﹣a,0<x<e1﹣a时,f′(x)>0,此时f(x)递增,x>e1﹣a时,f′(x)<0,此时f(x)递减,故函数f(x)在(0,e1﹣a)递增,在(e1﹣a,+∞)递减;(2)a=1时,由(1)得f(x)≤f(e1﹣a)=1,故原不等式等价于5+(x﹣k)e x+k>0,当x∈(0,+∞)时恒成立,∵x∈(0,+∞)时,e x﹣1>0,即原不等式等价于x+>k对x∈(0,+∞)时恒成立,设h(x)=x+,则h′(x)=,令F(x)=e x﹣x﹣6,则F′(x)=e x﹣1,x∈(0,+∞)时,F′(x)>0,∴函数F(x)在(0,+∞)递增,而F(2)=e2﹣8<0,F(3)=e3﹣9>0,故F(2)F(3)<0,故存在唯一的x0∈(2,3),使得F(x0)=0,即=x0+6,x∈(0,x0)时,F(x)<0,h′(x)<0,∴函数h(x)递减,x∈(x0,+∞)时,F(x)>0,h′(x)>0,∴函数h(x)递增,∴x=x0时,函数h(x)有极小值(即最小值)h(x0),∵h(x0)=x0+=x0+1∈(3,4),又k<h(x0),k∈Z,∴k的最大整数值是3.四、选做题:[选修4-4:坐标系与参数方程](共1小题,满分10分)22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2cos(+θ).(I)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数),∴消去参数t,得直线l的直角坐标方程为=0.∵曲线C的极坐标方程为ρ=2cos(+θ).即=2cosθ﹣2sinθ,即ρ2=2ρcosθ﹣2ρsinθ,∴曲线C的直角坐标方程为x2+y2=2x﹣2y,即(x﹣1)2+(y+1)2=2.(Ⅱ)曲线C是以C(1,﹣1)为圆心,以r=为半径的圆,圆心C(1,﹣1)到直线l的距离d==,∵直线l与曲线C相交于M,N两点,∴|MN|=2=2=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2017届四川省成都市高三第二次诊断性考试理科数学试题及答案 精品
四川省成都市2017届高三第二次诊断性检测理数试题数学(理工类)本试卷分选择题和非选择题两部分,第I卷(选择题)第1至2页,第II卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名,考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦拭干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上做答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 设复数i=3(i为虚数单位)在复平面中对应点A,z+将OA绕原点O逆时针旋转0°得到OB,则点B在(A)第一象限(B)第二象限(C)第三象限(D)第四象限2. 执行如图的程序框图,若输入的x值为7,则输出的x的值为 (A )41(B )3log 2 (C )2 (D )33. ()101-x 的展开式中第6项系的系数是(A )510C - (B )510C (C )610C - (D )610C4. 在平面直角坐标系xoy 中,P 为不等式⎪⎩⎪⎨⎧≤--≥-+≤01021y x y x y 所表示的平面区域上一动点,则直线OP 斜率的最大值为(A )2 (B )31 (C )21 (D )15. 已知βα,是两个不同的平面,则“平面//α平面β”成立的一个充分条件是(A )存在一条直线l ,βα//,l l ⊂ (B )存在一个平面γ,βγαγ⊥⊥,(C )存在一条直线βα⊥⊥l l l ,, (D )存在一个平面βγαγγ⊥,//,6. 设命题();000000cos cos --cos ,,:βαβαβα+∈∃R p 命题,,:R y x q ∈∀且ππk x +≠2,Z k k y ∈+≠,2ππ,若y x >,则y x tan tan >,则下列命题中真命题是(A )q p ∧ (B )()q p ⌝∧ (C )()q p ∧⌝ (D )()()q p ⌝∧⌝7. 已知P 是圆()1122=+-y x 上异于坐标原点O 的任意一点,直线OP 的倾斜角为θ,若d OP =,则函数()θf d =的大致图像是8. 已知过定点()0,2的直线与抛物线y x =2相交于()()2211,,,y x B y x A 两点.若21,x x 是方程0cos sin 2=-+ααx x 的两个不相等实数根,则αtan 的值是(A )21 (B )21- (C )2 (D )-29. 某市环保部门准备对分布在该市的H G F E D C B A ,,,,,,,等8个不同检测点的环境监测设备进行监测维护.要求在一周内的星期一至星期五检测维修完所有监测点的设备,且每天至少去一个监测点进行检测维护,其中B A ,两个监测点分别安排在星期一和星期二,E D C ,,三个监测点必须安排在同一天,F 监测点不能安排在星期五,则不同的安排方法种数为(A )36 (B )40 (C )48 (D )6010. 已知定义在[)+∞,0上的函数()x f ,当[]1,0∈x 时,;2142)(--=x x f 当1>x 时,()()a R a x af x f ,,1∈-=为常数.下列有关函数()x f 的描述:①当2=a 时,423=⎪⎭⎫⎝⎛f ; ②当,<1a 函数()x f 的值域为[]2,2-; ③当0>a 时,不等式()212-≤x ax f 在区间[)+∞,0上恒成立;④当01-<<a 时,函数()x f 的图像与直线()*-∈=N n a y n 12在[]n ,0内的交点个数为()211nn -+-.其中描述正确的个数有 (A )4 (B )3 (C )2 (D )1第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2017年四川省成都市高考数学二诊试卷
2017年四川省成都市高考数学二诊试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.复数z满足1+i=(其中i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合A={x∈R|x﹣1>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x ∈A∪B“是“x∈C“的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.在等比数列{a n}中,首项a1=1,若数列{a n}的前n项之积为T n,且T5=1024,则该数列的公比的值为()A.2 B.﹣2 C.±2 D.±34.函数f(x)=sin(ωx+)(ω>0)的图象与x轴的交点横坐标构成一个公差为的等差数列,要得到g(x)=cos(ωx+)的图象,可将f(x)的图象()A.向右平移个单位B.向左平移个单位C.向左平移个单位D.向右平移个单位5.下列选项中,说法正确的是()A.命题“∃x0∈R,x02﹣x0≤0”的否定为“∃x∈R,x2﹣x>0”B.命题“在△ABC中,A>30°,则sinA>”的逆否命题为真命题C.设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的充分必要条件D.若非零向量、满足|,则与共线6.执行如图所示的程序框图,若输出的结果是6,则判断框内m的取值范围是()A.(30,42]B.(20,30)C.(20,30]D.(20,42)7.某几何体的三视图如图所示,则该几何体的体积是()A.6 B.7 C.8 D.98.已知实数x,y满足,则的取值范围是()A.[2,] B.[,]C.(0,]D.[,]9.设函数f(x)=8lnx+15x﹣x2,数列{a n}满足a n=f(n),n∈N+,数列{a n}的前n项和S n最大时,n=()A.15 B.16 C.17 D.1810.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从後表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,前后两杆相距BD=1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,则山峰的高度AH=()步(古制:1步=6尺,1里=180丈=1800尺=300步)A.1250 B.1255 C.1230 D.120011.设M、N是直线x+y﹣2=0上的两动点,且|MN|=,则•的最小值为()A.1 B.2 C.D.12.设函数f(x)=,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,则e•e的最大值为()A.B.2(ln2﹣1) C.D.ln2﹣1二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为.16.在数列{a n}中,a1=1,a n=a n(n≥2,n∈N*),则数列{}的前n﹣1项和T n=.三、解答题(本大题共5小题,共70分)17.(12分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.18.(12分)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559 551563552y601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=,=﹣)19.(12分)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.20.(12分)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B 两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.21.(12分)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值范围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.2017年四川省成都市高考数学二诊试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.复数z满足1+i=(其中i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】解:由1+i=,得=,∴z在复平面内对应的点的坐标为(,﹣1),位于第三象限角.故选:C.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.设集合A={x∈R|x﹣1>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x ∈A∪B“是“x∈C“的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用不等式的解法化简集合A,B,C,再利用集合的运算性质、简易逻辑的判定方法即可得出.【解答】解:集合A={x∈R|x﹣1>0}={x|x>1},B={x∈R|x<0},C={x∈R|x(x﹣2)>0}={x|x>2或x<0},A∪B={x|x<0,或x>1},则“x∈A∪B“是“x∈C“的必要不充分条件.故选:B.【点评】本题考查了不等式的解法、集合的运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.在等比数列{a n}中,首项a1=1,若数列{a n}的前n项之积为T n,且T5=1024,则该数列的公比的值为()A.2 B.﹣2 C.±2 D.±3【考点】等比数列的前n项和.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵首项a1=1,T5=1024,∴15×q1+2+3+4=1024,即q10=210,解得q=±2.故选:C.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.4.函数f(x)=sin(ωx+)(ω>0)的图象与x轴的交点横坐标构成一个公差为的等差数列,要得到g(x)=cos(ωx+)的图象,可将f(x)的图象()A.向右平移个单位B.向左平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意可得可得函数的周期为π,即=π,求得ω=2,可得f(x)=sin (2x+).再根据函数y=Asin(ωx+φ)的图象变换规律得出结论.【解答】解:根据函数f(x)=sin(ωx+)(ω>0)的图象与x轴的交点的横坐标构成一个公差为的等差数列,可得函数的周期为π,即:=π,可得:ω=2,可得:f(x)=sin(2x+).再由函数g(x)=cos(2x+)=sin[﹣(2x+)]=sin[2(x+)+],故把f(x)=sin(2x+)的图象向左平移个单位,可得函数g(x)=cos(2x+)的图象,故选:B.【点评】本题主要考查等差数列的定义和性质,函数y=Asin(ωx+φ)的图象变换规律,考查了转化思想,属于基础题.5.下列选项中,说法正确的是()A.命题“∃x0∈R,x02﹣x0≤0”的否定为“∃x∈R,x2﹣x>0”B.命题“在△ABC中,A>30°,则sinA>”的逆否命题为真命题C.设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的充分必要条件D.若非零向量、满足|,则与共线【考点】命题的真假判断与应用.【分析】由特称命题的否定为全称命题,即可判断A;由A=150°,可得sinA=,再结合原命题与逆否命题等价,即可判断B;由a1<0,0<q<1,即可判断C;再由向量共线的条件,即可判断D.【解答】解:对于A,由特称命题的否定为全称命题,可得命题“∃x0∈R,x02﹣x0≤0”的否定为“∀x∈R,x2﹣x>0”,故A错;对于B,命题“在△ABC中,A>30°,则sinA>”为假命题,比如A=150°,则sinA=.再由原命题与其逆否命题等价,则其逆否命题为假命题,故B错;对于C,设{a n}是公比为q的等比数列,则“q>1”推不出“{a n}为递增数列”,比如a1<0,不为增函数;反之,可得0<q<1.故不为充分必要条件,故C错;对于D,若非零向量、满足|+|=||+||,则,同向,则与共线,故D正确.故选:D.【点评】本题考查命题的真假判断,主要是命题的否定、四种命题的真假、充分必要条件的判断和向量共线的条件,考查判断和推理能力,属于基础题.6.执行如图所示的程序框图,若输出的结果是6,则判断框内m的取值范围是()A.(30,42]B.(20,30)C.(20,30]D.(20,42)【考点】程序框图.【分析】由程序框图依次求得程序运行的结果,再根据输出的k值判断运行的次数,从而求出输出的S值.【解答】解:由程序框图知第一次运行第一次运行S=0+2,k=2;第二次运行S=0+2+4,k=3;第三次运行S=0+2+4+6,k=4;第四次运行S=0+2+4+6+8,k=5;第五次运行S=0+2+4+6+8+10,k=6∵输出k=6,∴程序运行了5次,此时S=0+2+4+6+8+10=30,∴m的取值范围为20<m≤30.故选:C.【点评】本题考查了循环结构的程序框图,根据程序运行的结果判断程序运行的次数是关键.7.某几何体的三视图如图所示,则该几何体的体积是()A.6 B.7 C.8 D.9【考点】棱柱、棱锥、棱台的体积.【分析】根据三视图得出空间几何体是以俯视图为底面的四棱锥,代入锥体体积公式,可得答案.【解答】解:根据三视图得出空间几何体是以俯视图为底面的四棱锥,其底面面积S=×(2+4)×2=6,高h=3,故体积V==6,故选:A【点评】本题考查的知识点是棱锥的体积与表面积,简单几何体的三视图,难度中档.8.已知实数x,y满足,则的取值范围是()A.[2,] B.[,]C.(0,]D.[,]【考点】简单线性规划.【分析】画出约束条件的可行域,求出的范围,化简目标函数,转化为函数的值域,求解即可.【解答】解:实数x,y满足的可行域如图:由图形可知:的最小值:K OB,最大值是K OA,由解得A(2,3),由可得B(3,),K OB=,K OA=,则=,令t=,t∈,g(t)=+t≥2,等号成立的条件是t=1,1∈[,],当t=时,g()=,当t=时,g()=,可得=∈[,].故选:D.【点评】本题考查线性规划的简单应用,考查数形结合以及转化思想的应用,考查计算能力.9.设函数f(x)=8lnx+15x﹣x2,数列{a n}满足a n=f(n),n∈N+,数列{a n}的前n项和S n最大时,n=()A.15 B.16 C.17 D.18【考点】数列的求和.【分析】求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再计算f(1),f(8),f(16),f(17)的符号,即可得到所求数列{a n}的前n项和S n最大时,n的值.【解答】解:函数f(x)=8lnx+15x﹣x2,x>0导数为f′(x)=+15﹣2x==,当x>8时,f′(x)<0,f(x)递减;当0<x<8时,f′(x)>0,f(x)递增,可得x=8处f(x)取得极大值,且为最大值,f(8)=8ln8+120﹣64>0,由a n=f(n),n∈N+,可得f(1)=15﹣1=14>0,f(16)=8ln16+15×16﹣162=8ln16﹣16>0,f(17)=8ln17+15×17﹣172=8ln17﹣34<0,由单调性可得a1,a2,…,a16都大于0,a17<0,则数列{a n}的前n项和S n最大时,n=16.故选:B.【点评】本题考查数列前n项和的最值,注意运用导数判断单调性,考查运算能力,属于中档题.10.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从後表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,前后两杆相距BD=1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,则山峰的高度AH=()步(古制:1步=6尺,1里=180丈=1800尺=300步)A.1250 B.1255 C.1230 D.1200【考点】解三角形的实际应用.【分析】根据“平行线法”证得△BCF∽△HAF、△DEG∽△HAG,然后由相似三角形的对应边成比例即可求解线段AH的长度.【解答】解:∵AH∥BC,∴△BCF∽△HAF,∴,又∵DE∥AH,∴△DEG∽△HAG,∴,又∵BC=DE,∴,即,∴BH=30750(步)=102.5里,又∵,∴AH==1255(步).故选:B.【点评】本题考查利用数学知识解决实际问题,能够熟练运用三角形的相似解决是关键.11.设M、N是直线x+y﹣2=0上的两动点,且|MN|=,则•的最小值为()A.1 B.2 C.D.【考点】平面向量数量积的运算.【分析】设M(m,2﹣m),N(n,2﹣n),且m>n,运用两点的距离公式可得m﹣n=1,再由向量的数量积的坐标表示,转化为n的二次函数,配方即可得到所求最小值.【解答】解:设M(m,2﹣m),N(n,2﹣n),且m>n,由|MN|=,可得=,可得m﹣n=1,即m=1+n,则•=mn+(2﹣m)(2﹣n)=2mn+4﹣2(m+n)=2n(1+n)+4﹣2(1+2n)=2(n2﹣n+1)=2[(n﹣)2+]≥,当n=,m=时,可得•的最小值为,故选:D.【点评】本题考查向量数量积的坐标表示,注意运用转化思想,运用二次函数的最值求法,考查化简整理的运算能力,属于中档题.12.设函数f(x)=,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,则e•e的最大值为()A.B.2(ln2﹣1) C.D.ln2﹣1【考点】根的存在性及根的个数判断.【分析】求出f(f(x))的解析式,根据f(f(x))的函数图象判断x1,x2的范围和两根的关系,构造函数h(x1)=e•e,求出h(x1)的最大值即可.【解答】解:令g(x)=f(f(x))=,∵y=f(x)在(﹣∞,0)上单调递减,在[0,+∞)上单调递增,∴g(x)=f(f(x))在(﹣∞,0)上单调递减,在[0,+∞)上单调递增.做出g(x)=f(f(x))的函数图象如图所示:∵方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,不妨设x1<x2,则x1≤﹣1,x2≥0,且f(x1)=f(x2),即x12=e.∴e•e=e•x12,令h(x1)=e•x12,则h′(x1)=e(x12+2x1)=e•x1•(x1+2),∴当x1<﹣2时,h′(x1)>0,当﹣2<x1<﹣1时,h′(x1)<0,∴h(x1)在(﹣∞,﹣2)上单调递增,在(﹣2,﹣1)上单调递减,∴当x1=﹣2时,h(x1)取得最大值h(﹣2)=.故选C.【点评】本题考查了根的个数与函数图象的关系,函数单调性判断与函数最值的计算,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=﹣2.【考点】二项式系数的性质.【分析】利用通项公式即可得出.=【解答】解:二项式(ax2+)5的展开式中,通项公式T r+1=a5﹣r,令10﹣=0,解得r=4.∴常数项=a=﹣10,∴a=﹣2.故答案为:﹣2.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是36.【考点】极差、方差与标准差.【分析】设这组数据的最后2个分别是:10+x,y,得到x+y=10,表示出S2,根据x的取值求出S2的最大值即可.【解答】解:设这组数据的最后2个分别是:10+x,y,则9+10+11+(10+x)+y=50,得:x+y=10,故y=10﹣x,故S2= [1+0+1+x2+(﹣x)2]= +x2,显然x最大取9时,S2最大是36,故答案为:36.【点评】本题考查了求数据的平均数和方差问题,是一道基础题.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为4.【考点】抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为4.【点评】本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.16.在数列{a n}中,a1=1,a n=a n(n≥2,n∈N*),则数列{}的前n﹣1项和T n=.【考点】数列的求和.【分析】由条件可得=•,令b n=,可得b n=•b n﹣1,由b n=b1••…•,求得b n,进而得到a n,可得==2(﹣),再由数列的求和方法:裂项相消求和,即可得到所求和.【解答】解:在数列{a n}中,a1=1,a n=a n﹣1(n≥2,n∈N*),可得=•,令b n=,可得b n=•b n﹣1,由b n=b1••…•=1••…•=,可得a n=,即有==2(﹣),则前n项和T n=2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.【点评】本题考查数列的求和,注意运用构造数列法,结合数列恒等式,考查裂项相消求和,考查化简整理的运算能力,属于难题.三、解答题(本大题共5小题,共70分)17.(12分)(2017•成都模拟)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.【考点】三角形中的几何计算.【分析】(Ⅰ)在△CBE中,正弦定理求出sin∠BCE;(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°即可【解答】解:(Ⅰ)在△CBE中,由正弦定理得,sin∠BCE=,(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=.⇒sin∠BEC=,sin∠AED=sin(1200+∠BEC)=,⇒cos∠AED=,在直角△ADE中,AE=5,═cos∠AED=,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.【点评】本题考查了正余弦定理在解三角形中的应用,是中档题18.(12分)(2017•成都模拟)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559 551563552y601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=,=﹣)【考点】线性回归方程.【分析】(Ⅰ)利用对立事件的概率公式,可得结论;(Ⅱ)求出回归系数,即可求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.【解答】解:(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都小于600,有=3种方法,∴至少有一个大于600的概率==0.7;(Ⅱ)=554,=600,===0.25,=﹣=461.5,∴=0.25x+461.5,x=570,=604,即当特征量x为570时特征量y的值为604.【点评】本题考查概率的计算,考查独立性检验知识的运用,正确计算是关键.19.(12分)(2017•成都模拟)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,利用向量法能证明EG∥平面BCF.(Ⅱ)求出平面BEF的法向量和平面BFC的法向量,利用向量法能求出二面角E ﹣BF﹣C的余弦值.【解答】证明:(Ⅰ)∵梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,∴以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,∵AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.G为AD边上一点,DG=DA,∴E(0,4,0),G(0,0,),B(3,0,4),C(12,0,0),F(9,4,0),=(9,0,﹣4),=(6,4,﹣4),=(0,﹣4,),设平面BCF的法向量=(x,y,z),则,取z=3,得=(4,3,3),∵=﹣12+12=0,EG⊄平面BCF,∴EG∥平面BCF.解:(Ⅱ)=(3,﹣4,4),=(9,0,0),设平面BEF的法向量=(a,b,c),则,取c=1,=(0,,1),平面BFC的法向量=(4,3,3),设二面角E﹣BF﹣C的平面角为θ,则cosθ===.∴二面角E﹣BF﹣C的余弦值为.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•成都模拟)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m 与椭圆E相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,⇒m=,⇒A(0,),B(,0)代入椭圆方程,求出a、b即可(2)由原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2.联立直线方程和与椭圆的方程,利用求解.(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,∴,【解答】解:⇒m=,切线l:y=﹣x+,⇒A(0,),B(,0)∴a=,b=,∴椭圆E的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0...∵以AB为直径的圆经过坐标原点O,∴;⇒(k2+1)x1x2+km(x1+x2)=m2(a2+b2)=(k2+1)a2b2…①又∵圆O的一条切线l:y=kx+m,∴原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2…②由①②得r2(a2+b2)=a2b2.∴以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关为:r2(a2+b2)=a2b2.【点评】本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.21.(12分)(2017•成都模拟)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值范围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数f(x)的导数,得到a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),求出a的范围即可;(Ⅱ)求出函数f(x)的导数,得到[f(x2)﹣f(x1)]max=f(n)﹣f(m),求出M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),根据函数的单调性求出M(a)的最大值即可.【解答】解:(Ⅰ)f′(x)=﹣1﹣=,x∈(0,+∞),由题意得,x2﹣ax+1=0在x∈(2,+∞)上有根(不为重根),即a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),检验,a>时,f(x)在x∈(2,+∞)上存在极值点,∴a∈(,+∞);(Ⅱ)若0<a≤2,∵f′(x)=在(0,+∞)上满足f′(x)≤0,∴f(x)在(0,+∞)上递减,∴f(x2)﹣f(x1)<0,∴f(x2)﹣f(x1)不存在最大值,则a>2;∴方程x2﹣ax+1=0有2个不相等的正实数根,令其为m,n,且不妨设0<m<1<n,则,f(x)在(0,m)递减,在(m,n)递增,在(n,+∞)递减,对任意x1∈(0,1),有f(x1)≥f(m),对任意x2∈(1,+∞),有f(x2)≤f(n),∴[f(x2)﹣f(x1)]max=f(n)﹣f(m),∴M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),将a=m+n=+n,m=代入上式,消去a,m得:M(a)=2[(+n)lnn+(﹣n)],∵2<a≤e+,∴ +n≤e+,n>1,由y=x+在x∈(1,+∞)递增,得n∈(1,e],设h(x)=2(+x)lnx+2(﹣x),x∈(1,e],h′(x)=2(1﹣)lnx,x∈(1,e],∴h′(x)>0,即h(x)在(1,e]递增,∴[h(x)]max=h(e)=,∴M(a)存在最大值为.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•成都模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2,θ),θ∈(,π),即可求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.【解答】解:(Ⅰ)曲线C的参数方程为(α为参数),普通方程为x2+(y﹣2)2=4,极坐标方程为ρ=4sinθ,∵点A的极坐标为(2,θ),θ∈(,π),∴θ=;(Ⅱ)直线l的参数方程为(t为参数),普通方程为x+y﹣4=0,点A的直角坐标为(﹣,3),射线OA的方程为y=﹣x,代入x+y﹣4=0,可得B(﹣2,6),∴|AB|==2.【点评】本题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.[选修4-5:不等式选讲]23.(2017•成都模拟)已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(I)由题意,分类讨论,去掉绝对值,解不等式即可;(Ⅱ)运用柯西不等式,可3p+2q+r的最小值.【解答】解:(Ⅰ)f(x+)≥0,即|x+|+|x﹣|≤4,x≤﹣,不等式可化为﹣x﹣﹣x+≤4,∴x≥﹣2,∴﹣2≤x≤﹣;﹣<x<,不等式可化为x+﹣x+≤4恒成立;x≥,不等式可化为x++x﹣≤4,∴x≤2,∴≤x≤2,综上所述,不等式的解集为[﹣2,2];(Ⅱ)∵(++)(3p+2q+r)≥(1+1+1)2=9, ++=4∴3p+2q+r≥,∴3p+2q+r的最小值为.【点评】本题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.。
2017年四川省成都市高考数学二诊试卷(理科)
2.若复数z1=a+i a∈R,z2=1−i,且z1为纯虚数,则z1在复平面内所对应的点位于 2.若函数g x的定义域为R,2017年四川省成都市高考数学二诊试卷(理科)一、选择题(共12小题;共60分)1.设集合A=−1,2,B=y y=x2,x∈A,则A∩B= A.1,4B.1,2C.−1,0D.0,2z2A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列an 中,已知a3=6,a3+a5+a7=78,则a5= A.12B.18C.24D.364.已知平面向量a,b的夹角为π,且a=1,b=1,则a+2b与b的夹角是 32A.πB.65π C.π D.3π6445.若曲线y=ln x+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值范围是 A.−1,+∞2B.−1,+∞2C.0,+∞D.0,+∞2x+y+2≥0,6.若实数x,y满足不等式x+y−1≤0,且x−y的最大值为5,则实数m的值为 y≥m,A.0B.−1C.−2D.−57.已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是 A.0B.1C.28.已知函数f x=a x(a>0,a≠1)的反函数的图象经过点2,12D.3当x∈−2,2时,有g x=f x,且函数g x+2为偶函数,则下列结论正确的是 A.gπ<g3<g2 C.g2<g3<gπB.gπ<g2<g3 D.g2<gπ<g39.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为 11.设双曲线C:x−y=1(a>0,b>0)的左右焦点分别为F1,F2,以F1F2为直径的圆与双4C.3D.3+6A.1.125B.1.25C.1.3125D.1.37510.已知函数f x=sinωx+2φ−2sinφcosωx+φω>0,φ∈R在π,3π上单调递减,则ω2的取值范围是 A.0,2B.0,12C.1,1D.21,52422a2b2曲线左支的一个交点为P,若以OF1(O为坐标原点)为直径的圆与PF2相切,则双曲线C的离心率为 A.2B.−3+627212.把平面图形M上的所有点在一个平面上的射影构成的图形Mʹ叫作图形M在这个平面上的射影.如图,在三棱锥A−BCD中,B D⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是 21+x的展开式中,若常数项为−10,则a=______.x i−xA.234B.25C.10D.302二、填空题(共4小题;共20分)13.在二项式ax514.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,S2可能的最大值是______.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA至点C,使OA=AC,过点C,D作y轴的垂线,垂足分别为E,G,则EG的最小值为______.16.在数列an中,a1=1,an=n2n2−1an−1n≥2,n∈N∗,则数列a nn2的前n项和Tn=______.三、解答题(共7小题;共91分)17.如图,在平面四边形ABCD中,已知∠A=π,∠B=2π,AB=6,在AB边上取点E,使得23BE=1,连接EC,ED.若∠CED=2π,EC=7.3(1)求sin∠BCE的值;(2)求CD的长.18.某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559551563552(附:回归直线的斜率和截距的最小二乘y601605597599598法估计公式分别为b=n i=1x i−x y i−yn2i=1,a=y−b x)(1)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(2)求特征量y关于x的线性回归方程y=b x+a,并预测当特征量x为570时特征量y的值.20.在平面直角坐标系xOy中,已知椭圆E:x+y=1a>b>0,圆O:x2+y2=r20<r<b,2,π.e2q+1=4,求3p+2q+r的最小值.3p+19.如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,连接BC,BF.(1)若G为AD边上一点,DG=1DA,求证:EG∥平面BCF;3(2)求二面角E−BF−C的余弦值.22a2b2若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.(1)当k=−1,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;2(2)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.21.已知函数f x=a ln x−x+1,其中a>0.x(1)若f x在2,+∞上存在极值点,求a的取值范围;(2)设x1∈0,1,x2∈1,+∞,若f x2−f x1存在最大值,记为M a.则a≤e+1时,M a是否存在最大值?若存在,求出最大值;若不存在,请说明理由.x=2cosα,22.在直角坐标系xOy中,曲线C的参数方程为y=2+2sinα(α为参数),直线l的参数方程为x=3−3t,2(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过y=3+1t2极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为23,θ,其中θ∈π(1)求θ的值;(2)若射线OA与直线l相交于点B,求AB的值.23.已知函数f x=4−x−x−3,(1)求不等式f x+3≥0的解集;2(2)若p,q,r为正实数,且11rsin∠BCE ,sin∠BCE=BE sin B=7=2210=0.7.bni=1xi−x yi−yxi−x2答案第一部分1.D2.A3.B 6.C7.B8.C 11.D12.A第二部分13.−214.32.815.42n16.n+1第三部分4.A9.D5.D10.C17.(1)在△CBE中,由正弦定理得,CE=BEsin B CE 1×3221.14(2)在△CBE中,由余弦定理得CE2=BE2+CB2−2BE⋅CB cos120∘,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2−2BE⋅CE cos∠BEC⇒cos∠BEC=27.⇒sin∠BEC=7sin∠AED=sin120∘+∠BEC327121=×−×272721=,1421,7⇒cos∠AED=57,14在直角△ADE中,AE=5,AE=cos∠AED=57,⇒DE=27,DE14在△CED中,由余弦定理得CD2=CE2+DE2−2CE⋅DE cos120∘=49,∴CD=7.18.(1)从5次特征量y的试验数据中随机地抽取两个数据,共有C5=10种方法,都小于600,有C3=3种方法,所以至少有一个大于600的概率=7(2)x=556,y=600,=ni=1−1×1+3×5+−5×−3+7×−1+−4×−2=1+9+25+49+16=0.3,bx=433.2,所以y=0.3x+433.2,x=570,y=604.2,所以椭圆 E 的方程为:x + y 2= 1.5联立 x 2 ,x 1x 2 = a m −a b即当特征量 x 为 570 时特征量 y 的值为 604.2.19. (1) 因为梯形 CDEF 与 △ ADE 所在平面垂直,AD ⊥ DE ,CD ⊥ DE ,AB ∥CD ∥EF , 所以以 D 为原点,DC 为 x 轴,DE 为 y 轴,DA 为 z 轴,建立空间直角坐标系,因为 AE = 2DE = 8,AB = 3,EF = 9,CD = 12,连接 BC ,BF ,G 为 AD 边上一点,DG = 1 DA , 3E 0,4,0 ,G 0,0, 4 33,B 3,0,4 3 ,C 12,0,0 ,F 9,4,0 ,BC = 9,0, −4 3 ,BF = 6,4, −4 3 ,EG = 0, −4, 4设平面 BCF 的法向量 n = x , y , z ,3 3 ,则n ⋅ BC = 9x − 4 3z = 0, n ⋅ BF = 6x + 4y − 4 3z = 0.取 z = 3 3,得 n = 4,3,3 3 ,因为 EG ⋅ n = −12 + 12 = 0,EG ⊄ 平面BCF , 所以 EG ∥平面BCF .(2) EB = 3, −4,4 3 ,EF = 9,0,0 ,设平面 BEF 的法向量 n = a , b , c ,则m ⋅ EB = 3a − 4b + 4 3c = 0, m ⋅ EF = 9a = 0. 取 c = 1,n = 0, 3, 1 ,平面 BFC 的法向量 n = 4,3,3 3 ,设二面角 E − BF − C 的平面角为 θ,则 cos θ =m ⋅n m ⋅ n=6 3 2 52 = 3 39 26. 所以二面角 E − BF − C 的余弦值为 339 26 .20. (1) 依题意原点 O 到切线 l : y = − 1x + m 的距离为半径 1, 2所以m1+14= 1,⇒ m =5 , 2切线 l : y = − 1 x +2所以 a = 5,b = 5 ,⇒ A 0, 5,B 5, 0 ,2 2 5,22 5 4(2) 设 A x 1, y 1 ,B x 2, y 2 , y = kx + m ,+ y 2 = 1,a 2b 2得 b 2 + a 2k 2 x 2 + 2a 2kmx + a 2m 2 − a 2b 2 = 0.Δ = 2a 2km 2 − 4 b 2 + a 2k 2 a 2m 2 − a 2b 2 .x 1 + x 2 = −2a 2kmb 2+a 2k 22 2 2 2 b 2+a 2k 2因为以 AB 为直径的圆经过坐标原点 O , 所以 OA ⋅ OB = x 1x 2 + y 1y 2 = 0;⇒ k 2 + 1 x 1x 2 + km x 1 + x 2 + m 2 = 0, 所以 m 2 a 2 + b 2 = k 2 + 1 a 2b 2, ⋯ ⋯ ①由y=x+在x∈2,+∞上递增,检验,a>时,f x在x∈2,+∞上存在极值点,m+n=a,mn=1.n−n +n ln n+n−n,所以1+n≤e+,n>1,x −x,x∈1,e,x+x ln x+2x2ln x,x∈1,e,又因为圆O的一条切线l:y=kx+m,所以原点O到切线l:y=kx+m的距离为半径r⇒m2=1+k2r2, ⋯⋯②由①②得r2a2+b2=a2b2.所以以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关系为:r2a2+b2=a2b2.21.(1)fʹx=a−1−x 1x2=−x2−ax+1,x∈0,+∞,x2由题意得,x2−ax+1=0在x∈2,+∞上有根(不为重根),即a=x+1在x∈2,+∞上有解,x1x得x+1∈x 5,+∞2,52所以a∈5,+∞2.(2)若0<a≤2,因为fʹx=−x2−ax+1x2在0,+∞上满足fʹx≤0,所以f x在0,+∞上递减,所以f x2−f x1<0,所以f x2−f x1不存在最大值,则a>2;所以方程x2−ax+1=0有2个不相等的正实数根,令其为m,n,且不妨设0<m<1<n,则,f x在0,m递减,在m,n递增,在n,+∞递减,对任意x1∈0,1,有f x1≥f m,对任意x2∈1,+∞,有f x2≤f n,max=f n−f m,所以f x2−f x1所以M a=f n−f m=a ln n+m−n+m 11m,将a=m+n=1+n,m=1代入上式,消去a,m得:n nM a=211因为2<a≤e+1,e1n e由y=x+1在x∈1,+∞递增,得n∈1,e,x设 x=211ʹx=21−1第7页(共8页)e所以M a存在最大值为.(t为参数),普通方程为x+3y−43=0,3p ++13p+2q+r≥1+1+12=9,1++1=4,所以x max=e=4,4ex=2cosα,22.(1)曲线C的参数方程为y=2+2sinα(α为参数),普通方程为x2+y−2方程为ρ=4sinθ,2=4,极坐标因为点A的极坐标为23,θ,θ∈所以θ=2π.3π,π2,(2)直线l的参数方程为x=3−3t,2 y=3+1t2点A的直角坐标为−3,3,射线OA的方程为y=−3x,代入x+3y−43=0,可得B−23,6,所以AB=3+9=23.23.(1)f x+3≥0,即x+3+x−3≤4,222x≤−3,不等式可化为−x−3−x+3≤4,222所以x≥−2,所以−2≤x≤−3;2−3<x<3,不等式可化为x+3−x+3≤4恒成立;2222x≥3,不等式可化为x+3+x−3≤4,222所以x≤2,所以3≤x≤2,2综上所述,不等式的解集为−2,2;(2)因为1112q r3p2q r 所以3p+2q+r≥9,4所以3p+2q+r的最小值为9.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都2017届二诊模拟考试数学试卷(理科)(时间:120分钟,总分:150分)命题人: 刘在廷 审题人: 张世永一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上.)1.已知集合}2,1,0,1,2{--=A ,}0lg |{≤=x x B ,则B A =( )A }1{B }1,0{C }2,1,0{D }2,1{2.已知i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则ab 的值是( ) A -15 B -3 C 3 D 15 3.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( ) A π44+ B π48+ C π344+ D π348+ 4.为了得到函数41log 2+=x y 的图像,只需把函数x y 2log =的图象上所有的点( )A 向左平移1个单位长度,再向上平移2个单位长度B 向右平移1个单位长度,再向上平移2个单位长度C 向左平移1个单位长度,再向下平移2个单位长度D 向右平移1个单位长度,再向下平移2个单位长度5. 某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A 3B 4C 5D 6 6.如图,圆锥的高2=PO ,底面⊙O 的直径2=AB , C 是圆上一点,且︒=∠30CAB ,D 为AC 的中点,则直线OC 和平面PAC 所成角的正弦值为( ) A21 B 23 C 32D 317.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A (3-,3) B (3-0)∪(0,3)C [-∞,∪+∞)正视图侧视图俯视图8.三棱锥A BCD -中,,,AB AC AD 两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( )A 4B 6C 8D 16 9.已知221)a ex dx π-=⎰,若2017220170122017(1)()ax b b x b x b x x R -=++++∈,则20171222017222b b b +++的值为( ) A 0 B -1 C 1 D e 10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N=Q ,M ∩N=∅,M 中的每一个元素都小于N 中的每一个元素,则称(M ,N )为戴金德分割.试判断,对于任一戴金德分割(M ,N ),下列选项中一定不成立的是( ) A M 没有最大元素,N 有一个最小元素 B M 没有最大元素,N 也没有最小元素 C M 有一个最大元素,N 有一个最小元素 D M 有一个最大元素,N 没有最小元素11.已知函数3211()201732f x mx nx x =+++,其中{2,4,6,8},{1,3,5,7}m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A 7120B 760C 730D 以上都不对12.若存在正实数,,x y z 满足 2zx ez ≤≤且ln y z x z =,则ln y x 的取值范围为( )A [1,)+∞B [1,1]e -C (,1]e -∞-D 1[1,ln 2]2+二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13. 在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,若cos (3)cos b C a c B =-,则=B cos .14.已知点(,)P x y 的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点O 为坐标原点,点(1,1)M --,那么OM OP ⋅的最大值等于_________.15.动点(,)M x y 到点(2,0)的距离比到y 轴的距离大2,则动点M 的轨迹方程为_______.16.在△ABC 中,A θ∠=,,D E 分别为,AB AC 的中点,且BE CD ⊥,则cos 2θ的最小值为___________.三.解答题(17-21每小题12分, 22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17.设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)求数列1{}nn a -的前n 项和n T .18. 为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X 表示甲队总得分. (1)求随机变量X 的分布列及其数学期望()E X ; (2)求甲队和乙队得分之和为4的概率.19.已知等边△//AB CBCD中,1,BD CD BC ==1所示),现将B 与/B ,C 与/C 重合,将△//AB C向上折起,使得AD =2所示). (1)若BC 的中点O ,求证:⊥平面BCD 平面AOD ;(2)在线段AC 上是否存在一点E ,使E D B C D 与面成30角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.BACD20.已知圆222:2,E x y +=将圆2E按伸缩变换://2x x y y ⎧=⎪⎨=⎪⎩后得到曲线1E , (1)求1E 的方程;(2)过直线2x =上的点M 作圆2E 的两条切线,设切点分别是A ,B ,若直线AB 与1E 交于C ,D 两点,求CDAB的取值范围.21.已知函数()sin ln sin g x x x θθ=--在[1,)+∞单调递增,其中(0,)θπ∈ (1)求θ的值; (2)若221()()x f x g x x -=+,当[1,2]x ∈时,试比较()f x 与/1()2f x +的大小关系(其中/()f x 是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,1(1)xe x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,又过点(2,4)P --的直线l的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与曲线C 分别交于M ,N.(1)写出曲线C 的平面直角坐标系方程和l 的普通方程; (2)若,,PM MN PN 成等比数列,求a 的值.23.选修4-5:不等式选讲设函数()f x =1(0)x x a a a++->(1)证明:()2f x ≥;(2)若()35f <,求a 的取值范围.成都2017届二诊模拟考试数学试卷(理科参考答案)一、 选择题 1-5:ABDCB 6-10:CBCBC 11-12:BB 二、填空题 13.31 14. 4 15. 28(0)y x x =≥或0(0)y x =< 16.725三、解答题 17 .解:(1)由已知12n n S a a =-有1122(1)n n n n n a S S a a n --=-=->,即12(1)n n a a n -=>. 从而21312,4a a a a ==. 又∵123,1,a a a +成等差数列,即1322(1)a a a +=+,∴11142(21)a a a +=+,解得12a =.∴数列{}n a 是首项为2,公比为2的等比数列 故2n n a =.…………6分(2)由(1)得112n n n n a -=-, 因数列⎭⎬⎫⎩⎨⎧n a 1是首项为21,公比为21的等比数列,∴11[1()](1)1(1)221122212n n n n n n n T -++=-=---.………………12分 18.解:(1)X 的可能取值为0,1,2,3.1111(0)43224P X ==⨯⨯= ,3111211111(1)4324324324P X ==⨯⨯+⨯⨯+⨯⨯=,32112131111(2)43243243224P X ==⨯⨯+⨯⨯+⨯⨯=,3211(3)4324P X ==⨯⨯=,X ∴6分1111123()012324424412E X =⨯+⨯+⨯+⨯=.………………………………7分 (2)设“甲队和乙队得分之和为4”事件A,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:31)32(4131)32(2411)31(3241)(3223213=⨯+⨯⨯⨯+⨯⨯⨯=C C A P .………………12分 19. 解:(1)∵△ABC 为等边三角形,△BCD 为等腰三角形,且O 为中点 ∴,BC AO BC DO ⊥⊥,AO DO O ⋂=,BC AOD ∴⊥平面,又BC ABC ⊂面∴⊥平面BCD 平面AOD………………3分(2)(法1)作,AH DO ⊥交DO 的延长线于H ,则平面BCD ⋂平面,AOD HD =则AH BCD ⊥平面,在Rt BCD ∆中,122OD BC ==, 在Rt ACO ∆中,AO AC ==AOD ∆中, DABCOEF H222cos 23AD OD AO ADO AD OD +-∠==⋅,sin ADO ∴∠=,在Rt ADH ∆中sin 1AH AD ADO =∠=,设(0CE x x =≤≤,作EF CH F ⊥于,平面AHC ⊥平面B C D ,,EF BCD EDF ∴⊥∠平面就是E D B C D与面所成的角。
由,2EF CE EF x AH AC =∴=(※), 在Rt CDE ∆中,DE ,要使ED BCD 与面成30角,只需使1,12xx =∴=, 当1CE =时,ED BCD 与面成30角…………9分(法2)在解法1中接(※),以D 为坐标原点,以直线,DB DC以过D 与平面BCD 垂直的直线为z 轴,建立空间直角坐标系 则(0,0,0),(,1,),22D E x x 2(,1,)22DE x x =, 又平面BCD 的一个法向量为(0,0,1)n =,要使ED BCD 与面成30角,只需使DE n 与成60,只需使cos60DE n DE n⋅=⋅1,12x x =∴=, 当1CE =时ED BCD 与面成30角(法3)将原图补形成正方体(如右图所示),再计算 (3)将原图补形成正方体,则外接球的半径r =表面积:3π …………………………12分z20.解:(1)按伸缩变换://2x xy y ⎧=⎪⎨=⎪⎩得:/2/2()2()2,x y += 则1E :2212x y +=…3分 (2)设直线2x =上任意一点M 的坐标是(2,),,t t R ∈切点A ,B 坐标分别是1122(,),(,)x y x y 则经过A 点的切线斜率是11y x -,方程是112x x y y +=,经过B 点的切线方程是222x x y y +=,又两条切线A M ,B M 相交于(2,)M t 112222,22,x ty x ty +=⎧∴⎨+=⎩ 所以经过A 、B 两点的直线l 的方程是22x ty +=当0,(1,1),(1,1),(1,)22t A B C D =--则,2,CD CD AB AB∴==∴=当0t ≠时,联立2222,1.2x y t x y -⎧=⎪⎪⎨⎪+=⎪⎩,整理得222(8)16820t x x t +-+-=设C 、D 坐标分别为3344(,),(,)x y x y 则3422342168828x x t tx x t ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩224)||8t CD t +=+||AB =322||||CD AB ∴=244,t x +=>令设11()(0,),4f x u x ==∈又令31()326 1.(0,).4x u u u ϕ=-++∈201()960,4u u b u ϕ'=-+=⇒=1()(0,)4u ϕ∴在1()((0)()4u ϕϕϕ∴∈,)()(1,f x ∴∈CD AB ∴∈综上所述,CDAB ∴的取值范围是⎫⎪⎣⎭. ………………12分21.解:(1)由题:/1()sin 0g x x θ=-≥恒成立 ∴1sin ([1,))x xθ≥∈+∞恒成立 ∴sin 1θ≥ ∴sin 1θ= ∵(0,)θπ∈ ∴2πθ= ……2分(2)∵222121()()ln 1x f x g x x x x x x -=+=-+-- ∴/23122()1f x x x x =--+ ∴/23312()()ln 2f x f x x x x x x-=-++-- 令()ln h x x x =-,23312()2H x x x x =+-- ∴/1()10h x x =-≥ ∴()h x 单调递增 则()(1)1h x h ≥=又2/4326()x x H x x--+= 令2()326x x x ϕ=--+ 显然()x ϕ在[1,2]单调递减 且(1)1,(2)10,ϕϕ==-则0(1,2)x ∃∈使得()H x 在0(1,)x 单调增,在0(,2)x 单调递减∴min 1()min{(1),(2)}(2)2H x H H H ===- ∴1()(2)2H x H ≥=-∴/min min 1()()()()()()2f x f x h x H x h x H x -=+≥+= 又两个函数的最小值不同时取得;∴/1()()2f x f x ->即:/1()()2f x f x >+…………7分 (3)1(1)x e x kg x --≥+恒成立, 即:ln(1)(1)10x e k x k x ++-+-≥恒成立,令()ln(1)(1)1x F x e k x k x =++-+-,则/()(1)1xk F x e k x =+-++ 由(1)得:()(1)g x g ≥ 即ln 10(1)x x x --≥≥,即:1ln(1)1(0)x x x +≥++≥即:ln(1)(0)x x x ≥+≥ ∴1x e x ≥+ ∴/()(1)(1)1k F x x k x ≥++-++ 当1k =时,∵0x ≥ ∴/1()(1)(1)12011k F x x k x x x ≥++-+≥++-≥++ ∴()F x 单调增,∴()(0)0F x F ≥= 满足当(0,1)k ∈∵0x ≥ 由对角函数性质/()(1)(1)1(1)01k F x x k k k x ≥++-+≥+-+=+ ∴()F x 单调增,∴()(0)0F x F ≥= 满足当0k ≤时,∵0x ≥由函数的单调性知/()(1)(1)1(1)01k F x x k k k x ≥++-+≥+-+=+ ∴()F x 单调增,∴()(0)0F x F ≥= 满足当1k >时,//2()(1)x k F x e x =-+ 则//()F x 单调递增,又//(0)10F k =-<且 //,()0x F x →+∞> 则//()F x 在(0,)+∞存在唯一零点0t ,则/()F x 在0(0,)t 单减,在0(,)t +∞单增,∴ 当0(0,)x t ∈时,//()(0)0,F x F <= ∴()F x 在0(0,)t 单减, ∴()(0)0F x F <= 不合题意 综上:1k ≤…………12分22. 解: (Ⅰ)曲线C 的直角坐标方程为y 2=2ax(a >0);直线l 的普通方程为x -y -2=0. …………4分 (2)将直线l 的参数方程与C 的直角坐标方程联立,得t 2-2(4+t +8(4+a)=0 (*) △=8a(4+a)>0. 设点M ,N 分别对应参数t 1,t 2,恰为上述方程的根. 则|PM|=|t 1|,|PN|=|t 2|,|MN|=|t 1-t 2|.由题设得(t 1-t 2)2=|t 1t 2|,即(t 1+t 2)2-4t 1t 2=|t 1t 2|.由(*)得t 1+t 2=2(4+t 1t 2=8(4+a)>0,则有(4+a)2-5(4+a)=0,得=1,或a =-4.因为a >0,所以a =1. …………10分23. 解:(1)证明:由绝对值不等式的几何意义可知:min ()f x =12a a+≥,当且仅当1a =取等,所以()2f x ≥.…………4分 (2)因为(3)5f <,所以1|3||3|5a a ++-<⇔13|3|5a a ++-<⇔1|3|2a a-<-⇔11232a a a -<-<-a <<.…………10分。