高三数学知识点:空间角问题知识点总结

合集下载

空间角总结

空间角总结

空间角总结什么是空间角?空间角是几何学中的一个重要概念,用来描述两个向量之间的夹角。

空间角通常用希腊字母θ(theta)表示,其单位是弧度(rad)。

空间角的概念可以扩展到三维空间中,帮助我们描述物体之间的方向关系和位置关系。

空间角的特征空间角具有以下几个重要特征:1.空间角是无向角:空间角没有方向之分,只关注两个向量之间夹角的大小,与向量的起点和终点无关。

2.空间角的大小范围:空间角的取值范围是0到π(也就是0到180度)。

3.水平角和垂直角:当两个向量在同一平面内,夹角为水平角;当两个向量互相垂直,夹角为垂直角。

4.空间角的计算方法:可以使用余弦定理或向量的点积来计算空间角的大小。

空间角的计算方法余弦定理余弦定理是计算空间角的常用方法之一。

设有两个向量A和B,它们之间的夹角θ满足以下关系:cos(θ) = (A·B) / (|A| * |B|)其中,A·B表示向量A和向量B的点积,|A|和|B|表示向量A和向量B的模。

通过余弦定理,我们可以根据向量的数值计算出它们之间的夹角。

向量的点积另一种计算空间角的方法是使用向量的点积。

向量A·B的点积可以通过以下公式计算得到:A·B = |A| * |B| * cos(θ)其中,θ表示向量A和向量B的夹角。

通过这个公式,我们可以根据两个向量的点积来计算它们之间的夹角。

球面角与立体角除了空间角之外,还有两个相关概念:球面角和立体角。

球面角球面角是指由球心发出的射线与球面上两个端点所夹的角。

球面角的单位是球面度(sr),1球面度是球面上的一个单位面积所占的立体角。

球面角可以通过球面面积和球半径来计算。

立体角立体角用来描述三维空间中的角度,是由空间中一点发出的射线与空间中的两个向量所夹的角。

立体角的单位是立体度(steradian,sr),1立体度表示空间中的一个单位面积所占的立体角。

立体角可以通过空间角和距离来计算。

高考数学复习第十二讲立体几何之空间角

高考数学复习第十二讲立体几何之空间角

第十二讲立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。

1.范围:0,1)异面直线所成角2)直线与平面所成角20,2.求法:平移相交(找平行线替换)2向量法1.范围0 ,20,定义22.求法向量法m narcsin若 m n 则 a //或a若m // n则a m n1.范围:0.定义法(即垂面法)3)二面角 2.作二面角平面角的方法:三垂线定理及逆定理垂线法直接法3. 求二面角大小的方法射影面积法向量法S S cos( S为原斜面面积, S为射影面积 ,为斜面与射影所成锐二面角的平面角)m n当为锐角时,arccosm nm n当为锐角时,arccosm n二、例题讲解1.在正三棱柱 ABC A 1 B 1C 1 中,若 AB 2 BB 1 , 求 AB 1 与 C 1 B 所成的角的大小。

解:法一:如图一所示,设 O 为 B 1 C 、 C 1 B 的交点, D 为 AC 的中点,则所求角是 DOB 。

设 BB 1a , 则 AB 2 a ,于是在DOB 中,O B1 3a , BD 3 2 a6BC 12a,2 22O D1 3 2222AB 1 a , BD OBOD,2即DOB90 ,DOB90法二: 取 A 1 B 1 的中点 O 为坐标原点, 如图建立空间直角坐标系1O xyz , AB 的长度单位,2则由AB2BB1有A 0,1,2,B0,1, 2 , B10,1, 0, C 13,0,0AB 10, 2, 2 ,C1B 3 ,1, 2 ,AB1 C1B 2 2 0, AB1 C 1 B2.如图二所示,在四棱锥P ABCD 中,底面 ABCD 是一直角梯形,BAD90 ,AD // BC,AB BC a , AD 2 a , 且 PA底面 ABCD ,P D 与底面成 30角。

⑴若 AE PD , E 为垂足,求证:BE PD ;⑵求异面直线AE , CD 所成角的大小。

2023年高考数学----空间角问题规律方法与典型例题讲解

2023年高考数学----空间角问题规律方法与典型例题讲解

2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。

高三数学空间角与空间距离的计算通用版知识精讲

高三数学空间角与空间距离的计算通用版知识精讲

高三数学空间角与空间距离的计算通用版【本讲主要内容】空间角与空间距离的计算 空间直线与直线、直线与平面、平面与平面所成角的大小,直线与直线、直线与平面、平面与平面间的距离的求解【知识掌握】 【知识点精析】空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 1. 空间的角的概念及计算方法(1)空间角概念——空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值X 围,如①两异面直线所成的角θ∈(0,2π) ②直线与平面所成的角θ∈[0,2π] ③二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π).说明:对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步提高运算能力、逻辑推理能力及空间想象能力.(2)空间的角的计算方法①求异面直线所成的角常用平移法(转化为相交直线);②求直线与平面所成的角常利用射影转化为相交直线所成的角; ③求二面角α-l -β的平面角(记作θ)通常有以下几种方法: (ⅰ)根据定义; (ⅱ)过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);(ⅲ)利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB =θ或∠ACB =π-θ(图2);(ⅳ)设A 为平面α外任一点,AB ⊥α,垂足为B ,AC ⊥β,垂足为C ,则∠BAC =θ或∠BAC =π-θ(图3);(ⅴ)利用面积射影定理,设平面α内的平面图形F 的面积为S ,F 在平面β内的射影图形的面积为S ‘,则cos θ=SS '.2. 空间的距离问题 (1)空间各种距离是对点、线、面组成的空间图形位置关系进行定量分析的重要概念.空间距离是指两点间距离、点线距离、点面距离、线线距离、线面距离以及面面距离等,距离都要转化为两点间距离即线段长来计算,在实际题型中,这六种距离的重点和难点是求点到平面的距离,因线线距离、线面距离和面面距离除用定义能直接计算出结果的外,都要转化为求点到平面的距离进行计算.(2)空间的距离问题主要是:求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.(3)求距离的一般方法和步骤是: 一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值. 此外,我们还常用体积法或向量法求点到平面的距离.【解题方法指导】例1. 三棱锥P-ABC 中,∠ABC =90,PA =1,AB =3,AC =2,PA ⊥平面ABC.(1)求直线AB 与直线PC 所成的角; (2)求PC 和面ABC 所成的角; (3)求二面角A-PC-B 的大小.PA BC解:(1)作矩形ABCD.∴AB 和PC 所成角即为CD 和PC 所成角,且CD ⊥PD .CD =3,AD =1,PD =2,tanPCD =3632=.故AB 和PC 所成角为arctan 36(2)∵PA ⊥面ABC ,PC 和面ABC 所成角即为∠ACP ,求得tanACP =21, ∴∠ACP =arctan21 (3)∵PA ⊥面ABC ,∴面PAC ⊥面ABC ,过B 作BG ⊥AC 于G ,则BG ⊥面PAC.过G 作GH ⊥PC 于H ,连接BH ,则BH ⊥PC . ∴∠BHG 为二面角A-PC-B 的平面角. 在Rt △ABC 与Rt △PBC 中,PB =2,BC =1,AC =2,AB =3∴PC =5∴BH =52,BG =23. ∴sinBHG =4155223==BH BG ∴∠BHG =arcsin 45.故二面角A-PC-B 的大小为arcsin 45.例2. 在正三棱柱111C B A ABC -中,各棱长都等于a ,D 、E 分别是1AC 、1BB 的中点, (1)求证:DE 是异面直线1AC 与1BB 的公垂线段,并求其长度;(2)求二面角C AC E --1的大小; (3)求点1C 到平面AEC 的距离.解:(1)取AC 中点F ,连接DF .∵ D 是1AC 的中点,F∴DF ∥1CC ,且121CC DF =.又11//CC BB ,E 是1BB 的中点, ∴DF ∥BE ,DF =BE ,∴四边形BEDF 是平行四边形, ∴DE ∥BF ,DE =BF .∵1BB ⊥面ABC ,⊂BF 面ABC ,∴1BB ⊥BF .又∵F 是AC 的中点,△ABC 是正三角形,∴BF ⊥AC ,a BF 23=. ∵1BB ⊥BF ,1BB ∥1CC ,∴BF ⊥1CC ,∴BF ⊥面11A ACC , 又∵⊂1AC 面11A ACC ,∴BF ⊥1AC , ∵DE ∥BF ,∴DE ⊥1AC ,DE ⊥1BB ,∴DE 是异面直线1AC 与1BB 的公垂线段,且a DE 23=. (2)∵11//CC BB ,DE ⊥1BB , ∴DE ⊥1CC , 又∵为DE ⊥1AC ,∴DE ⊥面11A ACC . 又⊂DE 面1AEC ,∴面1AEC ⊥面1ACC , ∴二面角C AC E --1的大小为90°.(3)连接CE ,则三棱锥1CEC A -的底面面积为221a S CEC =∆,高a h 23=.所以32123232311a a a V CEC A ==⋅⋅-.在三棱锥AEC C -1中,底面△AEC 中,a CE AE 25==,则其高为a ,所以22a S AEC =∆.设点1C 到平面AEC 的距离为d ,由AEC C CEC A V V --=11得32123231a a d =⋅, 所以a d 23=,即点1C 到平面AEC 的距离为a 23【考点突破】【考点指要】空间角是立体几何中的一个重要概念.它是空间图形中的一个突出的量化指标,是空间图形位置关系的具体体现,故它以高频率的姿态出现在历届高考试题中,可以在填空题或选择题中出现,更多的在解答题中出现.空间中各种距离都是高考中的重点内容,可以和多种知识相结合,是诸多知识的交汇点,考查题型多以选择题、填空题为主,有时渗透于解答题中,所以复习时应引起重视.【典型例题分析】例1. (2003全国卷文)如图,已知正四棱柱2,1,11111==-AA AB D C B A ABCD ,点E 为1CC 中点,点F 为1BD 中点.(1)证明EF 为BD 1与CC 1的公垂线;(2)求点1D 到平面BDE 的距离.解法1:(1)连结AC 交BD 于点O ,则点O 为BD 中点,连OF ,则可证OCEF 为矩形, 故EF ⊥CC 1 ,EF ∥AC .又可证AC ⊥平面BD 1 ∴AC ⊥BD 1,∴EF ⊥BD 1, 故 EF 为BD 1与CC 1的公垂线.O(2)连结D 1E ,则有三棱锥D1-DBE 的高d 即为点1D 到平面BDE 的距离. 由已知可证三角形DBE 为边长为2的正三角形,故2331311⋅⋅=⋅⋅=∆-d S d V DBE DBE D ; 又31311111=⋅===∆---DBD DBD C DBD E DBE D S CO V V V∴3123=d ∴332=d , 即1D 到平面BDE 的距离为332解法2:解(1)以D 为原点,建立如图所示的直角坐标系,则 )0,0,0(D ,)2,0,0(1D)0,1,1(B ,)0,1,0(C ,)2,1,0(1C ,)1,1,0(E ,)1,21,21(F ,∴)0,21,21(-=EF ,)2,1,1(1--=BD ,)2,0,0(1=CC∴01=⋅BD EF ,01=⋅CC EF ;∴1BD EF ⊥,1BD EF ⊥ 又EF 与CC 1、BD 1分别交于E 、F ,故EF 为BD 1与CC 1的公垂线. (2)由(1))0,1,1(--=BD ,)1,0,1(-=BE ,)2,1,1(1--BD , 设 平面BDE 的法向量为 ),,(z y x n =,则BD n ⊥,BE n ⊥,∴⎪⎩⎪⎨⎧=⋅=⋅00BE n BD n , ∴⎩⎨⎧=+-=--00z x y x , 即 ⎩⎨⎧=-=z x y x ,∴ 不妨设 )1,1,1(-=n ,则点1D 到平面BDE 的距离为33232||1===n n BD d , 即为所求.例2. (2006全国卷Ⅲ文20)如图,12l l ,是互相垂直的异面直线,MN 是它们的公垂线段.点A B ,在1l 上,C 在2l 上,AM MB MN ==.(Ⅰ)证明AC NB ⊥;(Ⅱ)若60ACB ∠=,求NB 与平面ABC 所成角的余弦值.C1l2解法一:(Ⅰ)由已知221l MN l l ⊥⊥,,1MNl M =,可得2l ⊥平面ABN .由已知1MN l AM MB MN ⊥==,,可知AN NB =且AN NB ⊥. 又AN 为AC 在平面ABN 内的射影, AC NB ∴⊥.(Ⅱ)Rt Rt CNA CNB △≌△,AC BC ∴=,又已知60ACB ∠=︒,因此ABC △为正三角形. Rt Rt ANB CNB △≌△,NC NA NB ∴==,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心, 连结BH ,NBH ∠为NB 与平面ABC 所成的角.在Rt NHB △中,cos 3ABHB NBH NB ∠===.N1l l解法二:如图,建立空间直角坐标系M xyz -.1l令1MN =,则有(100)(100)(010)A B N -,,,,,,,,.(Ⅰ)MN 是12l l ,的公垂线,21l l ⊥, 2l ∴⊥平面ABN .2l ∴平行于z 轴.故可设(01)C m ,,.于是(11)(110)AC m NB ==-,,,,,, ∵0011=+-=⋅NB AC AC NB ∴⊥. (Ⅱ)(11)AC m =,,,(11)BC m =-,,,AC BC ∴=.又已知60ACB ∠=︒,ABC ∴△为正三角形,2AC BC AB ===. 在Rt CNB △中,NB =NC =(0C . 连结MC ,作NH MC ⊥于H ,设(0)(0)H λλ>,.(012)(01HN MC λλ∴=--=,,,,,.∵021=--=⋅λλMC HN ,∴31=λ1033H ⎛⎫∴ ⎪ ⎪⎝⎭,,,可得2033HN ⎛⎫=- ⎪ ⎪⎝⎭,,, 连结BH ,则1133BH ⎛⎫=- ⎪ ⎪⎝⎭,,,∵092920=-+=⋅BH HN ,HN BH ∴⊥,又MC BH H =, HN ∴⊥平面ABC ,NBH ∠为NB 与平面ABC 所成的角.又(110)BN =-,,, ∴3623234cos =⨯=⋅=∠BN BH BN BH NBH【综合测试】一、选择题1、已知AB 是异面直线a 、b 的公垂线段,AB =2,a 与b 成30°,在直线a 上取AP =4,则点P 到直线b 的距离是( )A 、22B 、25C 、142D 、5 2、将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A 、a 43B 、a 43C 、a 23 D 、64a 3、正方体ABCD-A 1B 1C 1D 1中,M 是DD 1的中点,O 为正方形A 1B 1C 1D 1的中心,P 是棱AB 上的垂足,则直线A 1M 与OP 所成的角( ).A 、30oB 、45oC 、60oD 、90o 4、二面角α-AB-β大小为θ(0°≤θ≤90°),AC ⊂α,∠CAB =45o ,AC 与平面β所成角为30o ,则θ角等于( ).A 、30oB 、45oC 、60oD 、90o 5、(2005某某卷文4)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( )A 、23 B 、22C 、21 D 、336、已知直线a 及平面α,a 与α间的距离为d .a 在平面α内的射影为a ',l 为平面α内与a '相交的任一直线,则a 与l 间的距离的取值X 围为( )A 、[),d +∞B 、(),d +∞C 、(]0,dD 、{}d二、填空题 7、(2005某某卷理12)如图,PA ⊥平面ABC ,∠ACB =90°且PA =AC =BC =a ,则异面直线PB 与AC 所成角的正切值等于____________.8、已知∠60o ,则以OC三、解答题:9. C 点到AB 1ABC DA 1E B 1C10.(2006理17)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证:PB ∥平面AEC ; (Ⅲ)求二面角E AC B --的大小.B[参考答案]一、选择题1. 选A 提示:过P 做直线b 的垂线2. 选A 提示:用异面直线距离公式求解3. 选D 提示:过A 1做OP 的平行线4. 选B 提示:过C 做平面β的垂线5. 选B. 提示:转化为求B 1到平面AB C 1D 1的距离6. 选D 提示:转化为a 与α间的距离 二、填空题7.2. 提示:将三角形ABC 补成正方形ACBD. 8. 33- 提示:利用直线与直线所成角的大小求出边长,再求二面角平面角的大小三、解答题:9. 解:由CD ⊥平面A 1B 1BA ∴CD ⊥DE ∵AB 1⊥平面CDE ∴DE ⊥AB 1,∴DE 是异面直线AB 1与CD 的公垂线段∵CE =23,AC =1 ,∴CD =.22∴21)()(22=-=CD CE DEABC DA 1E B 1C 110. 解法一:(Ⅰ)(Ⅱ)(略 解见第45讲【达标测试】第9题)(Ⅲ)过O 作FG AB ∥,交AD 于F ,交BC 于G ,则F 为AD 的中点.CDAB AC ⊥,OG AC ∴⊥. 又由(Ⅰ),(Ⅱ)知,AC PB EO PB ,⊥∥,AC EO ∴⊥. EOG ∴∠是二面角E AC B --的平面角.连接EF ,在EFO △中,1122EF PA FO AB ==,,word11 / 11 又PA AB EF FO =,⊥,45135EOF EOG ∴∠=∠=,,∴二面角E AC B --的大小为135.解法二:(Ⅰ)建立空间直角坐标系A xyz -,如图.y 设AC a PA b ==,,则有(000)(00)(00)(00)A B b C a P b ,,,,,,,,,,,,(00)(0)AC a PB b b ∴==-,,,,,,从而0=⋅PB AC ,AC PB ∴⊥.(Ⅱ)连接BD ,与AC 相交于O ,连接EO .由已知得(0)D a b -,,,002222ab b a E O ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,,, 022b b EO ⎛⎫∴=- ⎪⎝⎭,,,又(0)PB b b =-,,, 2PB EO ∴=,PB EO ∴∥,又PB ⊄平面AEC EO ,⊂平面AEC , PB ∴∥平面AEC .(Ⅲ)取BC 中点G .连接OG ,则点G 的坐标为000222a b b OG ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,,,,,, 又0(00)22b b OE AC a ⎛⎫=-= ⎪⎝⎭,,,,,,00=⋅=⋅∴AC OG AC OE ,.OE AC OG AC ∴,⊥⊥.EOG ∴∠是二面角E AC B --的平面角.22cos -=⋅<OGOE OG OE .135EOG ∴∠=. ∴二面角E AC B --的大小为135.。

高中数学知识点总结(第八章 立体几何 第九节 利用空间向量求空间角)

高中数学知识点总结(第八章 立体几何 第九节 利用空间向量求空间角)

第九节 利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a·b||a||b|, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n||a||n|.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理cos θ=cos θ1cos θ2.如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,其中θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cos θ=cos θ1cos θ2.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒]注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.。

空间角问题高三数学知识点

空间角问题高三数学知识点

空间角问题高三数学知识点空间角问题是高三数学中的重要知识点之一。

在解决空间角问题时,我们需要熟练掌握一系列概念、定理和计算方法。

本文将系统介绍空间角问题的相关内容,包括空间角的定义、分类和性质,以及求解空间角问题的具体方法和技巧。

一、空间角的定义和分类1.1 空间角的定义空间角是在三维空间中由两条射线形成的角。

它可以看作是平面角在立体空间中的推广。

通常用小写的希腊字母表示空间角,如α、β、γ等。

1.2 空间角的分类根据空间角的大小和位置关系,空间角可以分为以下几种类型:1) 零角:两条射线重合,形成的角为零角。

2) 锐角:两条射线夹角小于90度,形成的角为锐角。

3) 直角:两条射线夹角等于90度,形成的角为直角。

4) 钝角:两条射线夹角大于90度但小于180度,形成的角为钝角。

5) 平角:两条射线夹角等于180度,形成的角为平角。

二、空间角的性质空间角具有一系列重要的性质,掌握这些性质有助于我们解决空间角问题。

2.1 垂直性质若两个空间角互为互补角,则它们所对的两条射线垂直。

2.2 同位角性质若两个空间角由相同的两条射线所形成(其中一条射线相互重合),则这两个空间角互为同位角。

同位角具有以下性质:1) 同位角相等:若两个同位角中的一个角为α,则另一个角也为α。

2) 同位角的补角关系:若两个同位角中的一个角为α,则另一个角为180度减α的补角。

2.3 对顶角性质若两个空间角互为对顶角,则它们所对的两条射线互相重合。

三、求解空间角问题的方法和技巧3.1 判断空间角的类型在解决空间角问题时,首先要能够准确地判断空间角的类型。

可以通过观察两条射线的位置关系和夹角的大小来判断空间角是锐角、直角、钝角还是平角。

3.2 应用对顶角和同位角的性质对顶角和同位角的性质在求解空间角问题时经常被应用。

通过利用对顶角和同位角的性质,可以得到空间角的相关信息,进而解决问题。

3.3 运用向量方法在空间角问题的求解中,向量方法也是一种重要的技巧。

高中数学知识要点重温(19)空间中的角和距离知识点分析

高中数学知识要点重温(19)空间中的角和距离知识点分析

QBCPADON 图1-1图1-2高中数学知识要点重温(19)空间中的角和距离1.解立几题要有化平几思想:所有求空间角与距离的问题最终都要转化到平面上求解,有时还可以将要求的角(或线段)所在的平面分离出来,这样清楚醒目,便于求解,不易出错。

2.研究异面直线所成的角通常有两种方法。

①通过平移使之成为一个平面角,然后解三角形求得;②在空间直角坐标系中利用向量的夹角公式。

[注意] 异面直线所成角的范围是:(00,900], 如: cos <,>=-31,则异面直线 a, b 所成的角为arccos 31。

[举例] 如图, 已知两个正四棱锥ABCD Q ABCD P --与的高分别为1和2,4=AB ,(Ⅰ) 证明: ABCD PQ 平面⊥ ;(Ⅱ) 求异面直线AQ 与PB 所成的角;解析:(Ⅰ)记AC 、BD 交于O ,连PO 、QO , 则PO ⊥面ABCD ,QO ⊥面ABCD ,∴P 、Q 、O 共线,PQ ⊥面ABCD ; (Ⅱ)方法一:“平移”:注意到AC 、PQ 交于O , 取OC 的中点N ,连结PN ,BN ,∵11,22PO NO NO OQ OA OC ===,∴PONOOQ OA =,故AQ ∥P N. ∠BP N是异面直线AQ 与PB 所成的角(或其补角). PB ==∵BN ===∴222cos 29PB PN BN BPN PB PN+-∠===⋅ 故异面直线AQ 与PB 所成的角是.方法二:“建系”:由题设知,ABCD 是正方形, ∴AC BD ⊥.由(I ),PQ ⊥平面ABCD ,故 可以分别以直线CA 、DB 、QP 为x 轴,y 轴, z 轴建立空间直角坐标系(如图1-2),由题设,相关各点的坐标分别是(0,0,1)P ,(0,0,2)Q -,B,)2,0,22(--=AQ ,(0,1)PB =-,于是3cos ,AQ PB AQ PB AQ PB⋅<>==⋅注:在“平移”时常用到一些平面图形的性质,如:三角形的中位线、梯形中位线、平行四边形、平行线分线段成比例定理的逆定理甚至三角形相似等。

立体几何-空间角知识点

立体几何-空间角知识点

立体几何-空间角知识点1.两条异面直线所成的角(1)异面直线所成的角的范围:(0,]。

2(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。

两条异面直线a,b垂直,记作a b。

(3)求异面直线所成的角的方法:(1 )通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线;(2 )找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。

平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。

2•直线和平面所成的角(简称“线面角”)(1) 定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。

一直线垂直于平面,所成的角是直角;一直线平行于平面或在平面内,所成角为0角。

直线和平面所成角范围:(2) 最小角定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角。

(3) 公式:已知平面的斜线a与内一直线b相交成B角, 且a与相交成1角,a在上的射影c与b相交成2角,则有cos 1 cos 2 cos由(3)中的公式同样可以得到:平面的斜线和它在平面内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角。

3•二面角(1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。

若棱为I,两个面分别为,的二面角记为第1页(共2页)(2)二面角的平面角:过二面角的棱上的一点0分别在两.个半.平面内作棱的两条垂线OA,OB,贝y AOB叫做二面角l 的平面角。

说明:①二面角的平面角范围是0,,因此二面角有锐二面角、直二面角与钝二面角之分。

②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直。

(3)二面角的求法:(一)直接法:作二面角的平面角的作法:①定义法;②棱的垂面法;③三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法)(二)间接法:面积射影定理的方法。

考点08 空间角的求解问题(解析版)

考点08  空间角的求解问题(解析版)

考点08 空间角的求解问题立体几何是历年高考的必考题,其考查形式主要为空间几何体的有关计算(主要是体积计算),空间线面的位置关系以及空间角和距离的求解。

例如:2022年全国乙卷(理)[18],2022年全国甲卷(理)[18],2022年浙江高考[19],2022年新高考Ⅰ卷[19],2022年新高考Ⅱ卷[20],2022年天津高考[17],2022年北京高考[17]等都对空间几何体的体积进行了考查。

〔1〕平移法求异面直线所成的角求异面直线所成的角的方法为平移法,平移法一般有3种 (1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移; (3)补形平移.〔2〕线面角、二面角1.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,把线面角转化到一个三角形中求解.2.二面角的求法:二面角的大小用它的平面角来度量. 平面角的作法常见的有①定义法;①垂面法。

〔3〕利用空间向量求空间中的角与距离 1.异面直线所成角若异面直线1l ,2l 所成的角为θ,则|||||cos |cos b a b a b a ==θ(注意:两异面直线所成的角为锐角或直角,而不共线的两向量的夹角的取值范围为(0,π),所以公式中要加绝对值),其中a ,b 分别是直线1l ,2l 的方向向量。

2.直线与平面所成角已知直线l 与平面α,A l =α ,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则|||||cos |sin n a n a n a ==θ。

(注意:直线与平面所成角的范围为⎥⎦⎤⎢⎣⎡2,0π,而向量的夹角的取值范围为[]π,0,所以公式中要加绝对值)。

3.二面角设1n 为平面α的法向量,2n 为平面β的法向量,1n ,2n 的夹角为θ,l =βα ,则二面角βα--l 的大小为θ或θπ-。

设二面角βα--l 的大小为ϕ,则|||||cos ||cos |2121n n ==θϕ①①所示。

高中数学空间的角的计算

高中数学空间的角的计算

面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析立体几何是高中数学中的重要内容之一,其中空间角是立体几何中的一个重要概念。

本文将以具体的题目为例,详细介绍空间角的定义、性质和解题技巧,帮助高中学生更好地理解和应用空间角。

一、空间角的定义和性质空间角是指由两条射线在同一平面内围成的角,也可以理解为由两条射线在三维空间中围成的角。

具体来说,设有两条射线OA和OB,它们在同一平面内,那么角AOB就是由这两条射线所围成的空间角。

空间角的度量单位与平面角相同,可以用度(°)或弧度(rad)来表示。

在解题中,我们通常使用度来度量空间角。

空间角具有以下性质:1. 两条射线的方向不同,所围成的空间角大小在0°到180°之间;2. 如果两条射线的方向相同,所围成的空间角大小为0°;3. 如果两条射线的反向延长线相交,所围成的空间角大小为180°。

二、空间角的解题技巧1. 利用空间角的定义和性质进行解题在解题过程中,我们可以根据空间角的定义和性质来推导出一些结论,从而解决问题。

例如,如果题目给出了两条射线的夹角,我们可以利用空间角的定义直接得出答案;如果题目给出了两条射线的方向,我们可以根据空间角的性质判断空间角的大小。

举例:已知射线OA与射线OB的夹角为60°,射线OC与射线OB的夹角为120°,求射线OA与射线OC的夹角。

解析:根据空间角的定义,射线OA与射线OC的夹角等于射线OA与射线OB的夹角加上射线OB与射线OC的夹角。

即所求角度为60°+120°=180°。

根据空间角的性质,当两条射线的反向延长线相交时,所围成的空间角大小为180°。

因此,射线OA与射线OC的夹角为180°。

2. 利用平面角的知识解决空间角问题在解决空间角问题时,我们还可以利用平面角的知识进行推导和计算。

由于空间角是由两条射线在同一平面内围成的角,所以可以将空间角转化为平面角进行计算。

高三数学空间角

高三数学空间角
例3.在四棱锥P-ABCD中,已知ABCD为矩形,PA ⊥平面ABCD,设PA=AB=a,BC=2a,求二面角BPC-D的大小。
P
A B
D C
【典例剖析】
例为43如 ,图 侧6棱,A正A三1 棱柱23AB3C,-AD1B是1CC1B的延底长面线边上长一 点,且BD=BC, 求二z 面角B1-AD-B的大小。
A. 30°
B.60° C.90°
D.150°
【点击双基】
3.如果向量a=(1,0,1),b=(0,1,1)分别平行于平面α,β且都 与此两平面的交线l垂直,则二面角α-l-β的大小
是………………..( D )
A. 90°
B. 30° C.45°
D.60°
4.在△ABC中,M,N分别是AB,AC的中点,PM⊥平面
【点击双基】
1.如果平面的一条斜线长是它在这个平面上射影长
的3倍,那么这条斜线与平面所成角的余弦值
为……………………………..( A )
1
A.
B. 2 3 C.
2
3
3
2
2
D.
3
2.平面α的斜线与α所成的角为30°,则此斜线和α内所有 不过斜足的直线所成的角的最大值
为………………………………..( C )
ABC,当BC=18,PM= 3 3 时,PN和平面ABC所成
的角是 30°
【点击双基】
5.PA,PB,PC是从P点引出的三条射线,他
们之间每两条的夹角都是60°,则直线
PC与平面PAB所成的角的余弦值

3
.
3
【典例剖析】 一、异面直线所成的角
例1(04高考广东18(2))如右下图,在长方体 ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2。 E、F分别是线段AB、BC上的点,且EB=BF=1。求 直线EC1与FD1所成的角的余弦值。

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

高三数学空间角

高三数学空间角

【点击双基】
3.如果向量a=(1,0,1),b=(0,1,1)分别平行于平面α,β且都 与此两平面的交线l垂直,则二面角α-l-β的大小
是………………..( D )
A. 90°
B. 30° C.45°
D.60°
4.在△ABC中,M,N分别是AB,AC的中点,PM⊥平面
ABC,当BC=18,PM= 3 3 时,PN和平面ABC所成
9.8空Байду номын сангаас角
【教学目标】
掌握二面角及其平面角的概念,能 灵活作出二面角的平面角,并能求 出大小
【知识梳理】
空间角,能比较集中反映空间想象能力的要 求,历来为高考命题者垂青,几乎年年必考。 空间角是异面直线所成的角、直线与平面所 成的角及二面角总称。其取值范围分别是: 0° ≤90°、0°≤ ≤90°、0° ≤180°.空间角的计算思想主要是转化:即 把空间角转化为平面角,把角的计算转化到 三角形边角关系或是转化为空间向量的坐标 运算来解。空间角的求法一般是:一找、二 证、三求解,手段上可采用:几何法和向量 法.
的角是 30°
【点击双基】
5.PA,PB,PC是从P点引出的三条射线,他
们之间每两条的夹角都是60°,则直线
PC与平面PAB所成的角的余弦值

3
.
3
【典例剖析】 一、异面直线所成的角
例1(04高考广东18(2))如右下图,在长方体 ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2。 E、F分别是线段AB、BC上的点,且EB=BF=1。求 直线EC1与FD1所成的角的余弦值。
A. 30°
B.60° C.90°
D.150°
;台州出海捕鱼 台州出海捕鱼

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

高考数学中的空间角与直线夹角知识点整理

高考数学中的空间角与直线夹角知识点整理

高考数学中的空间角与直线夹角知识点整理数学是高考中必考科目,涉及了很多知识点。

空间角与直线夹角是其中比较重要的一个知识点。

掌握好这些知识点,有助于我们在高考中取得好成绩。

下面,本文将对这个知识点进行整理。

一、空间角空间角是三维空间中两条射线所夹的角度。

在高中数学中,我们主要学习了以下三个方面的内容:1. 空间角的度量方法空间角可以用角度或者弧度表示。

一般情况下,我们使用角度来度量空间角。

空间角的度量方法和平面角是一样的,都有度、分、秒三个单位。

2. 空间角的性质空间角的性质包括:对顶角相等、余角相等、补角相等、同位角相等等。

这些性质在计算空间角时非常有用。

3. 空间角的平面角平面角是二维平面中的角度,它可以用来计算空间角。

在计算空间角时,我们一般会把空间中的角度投影到一个平面上,然后用平面角来度量。

二、直线夹角直线夹角是在平面内的两条直线相交时形成的角度。

它也是高考数学中比较重要的一个知识点。

我们主要学习了以下两个方面的内容:1. 直线夹角的度量方法直线夹角可以用角度或者弧度表示。

一般情况下,我们使用角度来度量直线夹角。

直线夹角的度量方法和空间角是一样的,都有度、分、秒三个单位。

2. 直线夹角的性质直线夹角的性质包括:对顶角相等、余角相等、补角相等、同位角相等等。

这些性质在计算直线夹角时非常有用。

三、空间角与直线夹角的联系空间角与直线夹角之间有一定的联系。

当两个直线在空间中相交时,它们之间的夹角就是一个空间角。

而当两个直线在平面内相交时,它们之间的夹角就是一个直线夹角。

这就是它们的联系。

四、应用举例下面,我们通过几个例子来应用上文所学的知识点。

例1:如图,求空间角BAC的大小。

解:因为在平面AGD内,∠BED=∠JGF,所以角BED和角JGF是同位角。

同时,在平面BCE内,∠AED=∠FGJ,所以角AED和角FGJ是同位角。

因此,∠BED=∠JGF=74°,∠AED=∠FGJ=106°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学知识点:空间角问题知识点总结
下面整理了高三数学知识点:空间角问题,希望大家能把觉得有用的知识点摘抄下来,在空余时间进行复习。

一、直线与直线所成的角
①两平行直线所成的角:规定为。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

二、直线和平面所成的角
①平面的平行线与平面所成的角:规定为。

②平面的垂线与平面所成的角:规定为。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:一作,二证,三计算。

在作角时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,三、解题技巧
在解题时,注意挖掘题设中两个主要信息
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如
果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
以上就是高三数学知识点:空间角问题,希望能帮助到大家。

相关文档
最新文档