公开课《二次函数复习课》教案

合集下载

《二次函数专题复习课》教案

《二次函数专题复习课》教案

《二次函数》专题复习课(1)主讲人:云梦县道桥中学许运山教学任务分析
教学过程
附:板书设计
活动1:
1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;
⑵y=-x2+4x
2、已知抛物线顶点是M(2,3)且交y轴于点A(0,5),求抛物线的解析式。

活动2:拱桥问题:在水面在l时,拱桥离水面2m,水面宽4m,水面下降1m,水面宽度增加多少m?
活动3:若上述拱桥,桥下面在正常水位时水面AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m
⑴建立适当坐标系求抛物线的解析式;
⑵若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时能到桥顶?
活动4:应用拓展——投篮问题一场篮球赛中,小明跳起投篮,已知球出手时离地面高20/9 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。

问题:⑴1能否投中呢?⑵如果不能,他又该如何调整才能投中球呢?
-5510
6
4
2
-2
-4
-6
y
x
-5510
6
4
2
-2
-4
-6
y
X。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

《二次函数》复习课教案

《二次函数》复习课教案

二次函数》复习课教案一、教材分析:这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。

二、教学目标及重难点:教学目标1.知识与技能初步认识二次函数;掌握二次函数的表达式,体会二次函数的意义;会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;会画二次函数,能利用二次函数求一元二次方程的近似解;利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。

2.过程与方法通过利用二次函数的图像解决问题,体会数形结合的数学方法;在学习探索的过程中逐步体会和认识二次函数。

3.情感、态度与价值观体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;树立主动参与积极探索尝试、猜想和发现的精神;注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。

教学重点:二次函数的图像和性质。

2教学难点:二次函数y= ax2 bx c 的图像及性质;二次函数的应用。

三、教学策略选择与设计教学方法:讨论法、引导式。

四、教学过程:I.知识复习师:这堂课是这章的总结课,下面我们来看这章整体知识框架图: (幻灯片)乐斫Jt - —►y —hx+r衍齐0、、性顶'应用丿解析法列农陆①顶点*对枚轴、幵口方向件I蛙仏②増誡性r最大利測I③厳泡巖大面积元二次力柞I根的个数)观看这章的知识整体框架,思考下面的问题:1 •你能用二次函数的知识解决哪些问题?2•日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?3•你知道二次函数与一元二次方程的关系吗?你能解决什么问题?同学们,想想你们学习本章的收获是____________________ 。

同学们相互讨论,然后师生互动共同探讨上面的问题。

n.典型例题例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?要求:(1)请提供四条信息;(2 )不必求函数的解析式。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

二次函数复习课教案

二次函数复习课教案

二次函数复习课〔一〕
真北中学张礼莉
一、教学目的:
1.梳理二次函数知识,加深对二次函数概念和二次函数图像及其性质的理解;
2.能从二次函数图像上获取正确、有用的信息,并能用合理的方法求函数解析式,进步观察、分析、归纳和概括的才能.
3.在综合运用二次函数知识的过程中领会图形运动、数形结合以及分类、化归等数学思想方法.
二、教学重点与难点:
重点:二次函数概念和从二次函数图像上获取正确有用的信息.
难点:二次函数知识综合运用中的分类讨论.
三、教学过程:
此函数解析式. 的图像如图所示,
-43
2
问:从图像上得到什么信息?你如何求?
90。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计复习教学设计:二次函数一、教学目标:1.理解二次函数的定义及其特点;2.掌握二次函数的图像、顶点、轴、对称轴等性质;3.能够根据二次函数的特点解决实际问题。

二、教学内容:1.二次函数的定义和基本形式;2.二次函数的图像和性质;3.二次函数的最值、零点及其应用。

三、教学步骤:步骤一:导入新知1.导入教学话题:“二次函数”,以回顾前几节课所学内容,引发学生对二次函数的认识和兴趣。

2.提问:“你能简单回忆一下二次函数是什么吗?”让学生简单复述二次函数的定义。

步骤二:概念及定义讲解1. 讲解二次函数的定义和基本形式,即f(x) = ax^2 + bx + c,其中a、b和c为实数。

2.引导学生理解a、b和c对二次函数图像的影响,如a决定了抛物线的开口方向和宽度,b决定了抛物线的位置偏移,c决定了抛物线与y轴的交点位置。

步骤三:图像及性质讲解1.讲解二次函数图像的性质,包括图像的开口方向、顶点、对称轴等。

2.通过示例分析,引导学生找出二次函数的顶点、对称轴及其它特征,让学生能够根据函数表达式确定图像的形状。

步骤四:实例分析及概念巩固1.给出一些具体的函数表达式,引导学生根据图像的特征进行分析,并求出对应的顶点、对称轴、开口方向等。

2.提问:“当a为正数时,抛物线的开口方向是向上还是向下?当a为负数时又怎样?”让学生总结出结论。

3.给出一些特殊情况的函数表达式,让学生分析并给出对应的图像和性质。

步骤五:最值、零点及应用讲解1.讲解二次函数的最值和零点,包括二次函数最值的判断和求解,以及二次函数零点的判断和求解。

2.引导学生通过实例分析,掌握解二次函数实际问题的方法和步骤。

3.给出一些实际问题,让学生通过建立等式或不等式解决,加深对二次函数的运用和理解。

步骤六:巩固练习1.布置相应的练习题,让学生通过计算和绘图巩固所学内容。

2.引导学生将练习题的解答和图像进行对比,分析解题方法和图像的关系。

二次函数 复习课(第一课时) 优秀教案

二次函数 复习课(第一课时) 优秀教案

二次函数复习课(第一课时)教学设计一、目标确定的依据(一)课程标准对《二次函数》的相关要求1.通过对实际问题的分析,体会二次函数的意义.2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3.会用配方法将数字系数的二次函数的表达式化为()2=-+的形式,并能y a x h k由此得到二次函数图象的顶点坐标,说出开口方向,画出图象的对称轴,并能解决实际问题.4.*知道给定不共线三点的坐标可以确定一个二次函数.(二)学情分析1.学生的已有基础初三学生在新课的学习中已通过经历探索的过程,总结出二次函数的定义、图象与性质及多种方法确定二次函数表达式等基本知识.2.已有的活动经验具备一定的学习能力,包括自学和合作交流,知道多向别人请教来解决问题.学习具有一定的主动性,具备分析问题和一定的表达能力,思维正逐步由具体走向抽象,当然依然倾向于通过形象的材料来理解相关知识和概念。

3.课堂模式形成了独立解决问题→寻求帮助→敢于展示→总结升华的课堂模式.4.学生面临的问题(1)在研究函数图象时,用数形结合的方法来判断a+b+c,4a+2b+c,4a-2b+c等的取值范围有困难.(2)对于不在同一区间内,如何比较其函数值大小有困难.(3)从表格中读取有用信息有困难.二、复习目标;依据《课程标准》,根据教材内容和学生的实际情况,确定本节课的复习目标为:1、通过独立思考,结合二次函数定义,能从题意里说出二次项系数的范围,并能说出理由.2、通过向同伴求助,能利用数形结合,逆推等思想解决二次函数图象与性质问题.3、通过认真分析题意,同桌能合作建立恰当平面直角坐标系,得到有用信息,并选取恰当的方法求二次函数的表达式.4、通过小组合作,能说出每个题目的考点,数学思想,能总结出做题技巧. 复习重、难点:重点:函数图象与性质的综合运用 难点:数形结合思想的运用 评价设计1、通过题目1检测目标1的达成.2、通过题目2、3、4检测目标2的达成. 3、通过题目5检测目标3的达成.4、目标4贯穿始终.一、课前小测试1、用一根长50cm 的铁丝,把它弯成一个矩形框,设矩形框的一边长为x cm ,面积为y 2cm ,写出y 关于x 的函数解析式:____________.2、当m ____时,函数()2245y m x x =-+-(m 是常数)是二次函数.3、2P (3,1y ),2P (5,2y ),都在二次函数22y x x c =-++的图象上,则12,y y 的大小关系是________4、将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.5、小聪做作业时不小心将题目:“已知二次函数y =x 2■x ■的图象如图所示”污染,则题目中二次函数的表达式为_____________________.【设计意图】在复习课设计之前进行,题目要基础,通过测试发现学生的问题比较多的类型,这样我们的复习会更有针对性和有效性.二、知识树【设计意图】学生依据知识树复习二次函数前三课时的主要内容,明确知识与考点,为本节课的复习做准备.三、聚焦中考考点一:二次函数的定义1、若关于x 的函数()234223m m y m x x -+=-++是二次函数,则m= ____问:(1)本题的考核点是? (2)易错点是?为什么? (3)用到了什么数学思想?(变式训练)若关于x 的二次函数2343232m m y m xx -+⎛⎫=-++ ⎪⎝⎭,开口向上,则m= ____ 问:开口向上,你能得到什么信息?【设计意图】二次项系数不能为0,学生是一个易错点.让学生体会检验的必要性.考点二:二次函数的图象与性质2、二次函数2y x bx c =-++的图象向右平移2个单位长度,再向下平移3个单位长度,所得的图象的函数表达式为()214y x =--+,则b 、c 的值分别是? (逆向思维)3、点1P (-2,1y ),2P (3,2y ),2P (5,3y ),都在二次函数22y x x c =-++的图象上,则123,,y y y 的大小关系是________(一题多解,找到最佳方法)4、下图为二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法:①abc >0;②2a +b =0;③当-1<x <3时,y >0;④a +b +c >0.其中正确的是________变式训练:当x=___时,y=4a +2b +c,则4a +2b +c ___0; 当x=___时,y=4a-2b +c, 则4a-2b +c ___0. 问:如何确定x 的值,你能总结一下结论吗? (总结提升:描点、画、数形结合)先独立完成2-4题.然后小组合作交流: 1、解决疑惑,并分享你的解题方法。

二次函数综合复习课教案

二次函数综合复习课教案

二次函数综合复习课一、教学目标:(1)使学生进一步理解二次函数解析式的求法,通过例题讲解,使学生了解二次函数与已学过有关知识之间的联系(2)全面回顾平行四边形,相似形的判定,一元二次方程的解法。

二、重点、难点:几何图形在二次函数中综合运用。

三、教学过程:1、复习(1)、二次函数解析式的三种求法;(2)、平行四边形的判定、矩形的判定;(3)、一元二次方程的解法。

2、例题分析与讲解:﹣,点P,对称轴为直线x=),B(是抛物,)A如图,已知二次函数的图象过点(0,﹣3PC=MPPMON上分别截取,⊥y轴于点N,在四边形PM线上的一动点,过点P分别作⊥x轴于点M,PN NF=NP.,OE=ON,MD=OM(1)求此二次函数的解析式;(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用顶点式和待定系数法求出抛物线的解析式;(2)证明△PCF≌△OED,得CF=DE;证明△CDM≌△FEN,得CD=EF.这样四边形CDEF 两1CDEF是平行四边形;组对边分别对应相等,所以四边PMO是正方形.这样∽MD,可以证明矩)根据已知条件,利用相似三角PC分别求的交点联立解析式解方程组与坐标象限角平分y=y就是抛物y=+的坐标.符合题意的有四个,在四个坐标象限内各一个P解答:2 +ky=a(x+),(1)解:设抛物线的解析式为:)在抛物线上,B(,∵点A(0,﹣3),,∴k=.解得:a=1,22 3.+xx+)=x﹣∴抛物线的解析式为:y=(FC.DE、EF、)证明:如右图,连接(2CD、,y轴于点N,∵PM⊥x轴于点MPN⊥∴四边形PMON为矩形,,PN=OM.∴PM=ON∵PC=MP,OE=ON,;∴PC=OE OMMD=,NF=NP,∵∴MD=NF,.∴PF=OD 中,PCF在△与△OED),SASOEDPCF∴△≌△(.∴CF=DE FEN≌△,CDM同理可证:△CD=EF∴.,CF=DE ∵CD=EF,∴四边形是平行四边形.CDEF2为矩形.,使四边形)解:假设存在这样的点PCDEF(3n,PF=n.,PMON的边长PM=ON=m,PN=OM=n,则PC=m,MC=mMD=设矩形△PCF,∽△MDC若四边形CDEF为矩形,则∠DCF=90°,易证22∴,即,化简得:m=n,为正方形.PMON ∴m=n,即矩形2 3与坐标象限角平分线y=x或y=﹣x的交点.﹣∴点P为抛物线y=x+x联立,,解得,(﹣;),﹣P∴(,P),21,联立,解得,1).,P,P∴(﹣33),(﹣143为矩形.这样的点有四个,在四个坐标象限内各一个,其坐,使四边形CDEF∴抛物线上存在点P).11(﹣,33(﹣,,﹣(﹣,,(标分别为:P)P)P,)P,4213相似三角形、全等三角形、待定系数法、考查了二次函数的图象与性质、点评:本题是二次函数综合题型,)问的要2解方程、矩形、正方形等知识点,所涉及的考点较多,但难度均匀,是一道好题.第((第点是全等三角形的证明,PMON问的要点是判定四边形)3然后列方程组求解.必须是正方形,3:练习:课后作业:22+bx﹣,2),抛物线y=x,BAC=90°A(1,0),B(0如图,在坐标系xOy 中,△ABC是等腰直角三角形,∠C点.的图象过1)求抛物线的解析式;(的面积分为相等的两部分?.当ll移动到何处时,恰好将△ABC(2)平移该抛物线的对称轴所在直线点坐标;若不存P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出(3)点P 在,说明理由.二次函数综合题.如解答图所示:的坐标求出抛物线的解析,求出点C的坐标;然后利用点C△(1)首先构造全等三角形AOB≌△CDA 式;的表达式;根F,则可求出EF与BC、AC交于点E、AC(2)首先求出直线BC与的解析式,设直线l的解析式;=据SS,列出方程求出直线l ABC△△CEF P)首先作出?PACB,然后证明点在抛物线上即可.(3 .ACD=90°DC作CD⊥x轴于点,则∠CAD+∠1解:(1)如答图所示,过点,CAD=90∠OAB=90°,∠OAB+∠°∵∠OBA+ ,∠ACDOBA=∠CAD.∴∠OAB=∠中,△CDAAOB∵在△与≌△CDA(.ASA)AOB∴△,,∴CD=OA=1AD=OB=2 ,∴OD=OA+AD=34).(3,1∴C2﹣2上,3(,1)在抛物线y=x+bx∵点C.×9+3b﹣2,解得:b=﹣∴1=2.x﹣2∴抛物线的解析式为:y=x﹣,由勾股定理得:AB=.(2)在Rt△AOB中,OA=1,OB=22 =.=∴SAB ABC△)(3,1,2BC设直线的解析式为y=kx+b,∵B(0,),C,∴k=﹣,b=2,解得.﹣x+2∴y=的解析式为:同理求得直线ACy=x﹣.如答图1所示,.)=﹣x)﹣(,则分别交于点与设直线lBC、ACE、FEF=(﹣x+2x﹣.x=3CE△CEF中,边上的高h=OD﹣﹣x=SS,由题意得:ABC△△CEF S,h=EF即:?ABC△()﹣∴(x?3×)﹣x=,2)x=3,﹣3(整理得:x=3+﹣x=3解得或(不合题意,舍去),5 的面积分为相等的两部分.时,恰好将x=3﹣△ABC∴当直线l解析式为)存在.(3 如答图2所示,﹣OG=1.G,则CG=OD=3,OG=1,BG=OB⊥过点C作CGy轴于点PACB为平行四边形.BC,且AP=BC,连接BP,则四边形作过点AAP∥,,则易证△PAH≌△BCG⊥过点P作PHx轴于点H ,∴PH=BG=1,AH=CG=3 OH=AH﹣OA=2,∴1).P∴(﹣2,2 P在抛物线上.y=1x=x 抛物线解析式为:y=x﹣﹣2,当﹣2时,,即点P,点的坐标为(﹣2,).1P∴存在符合条件的点点评:是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.6。

《二次函数复习》教案

《二次函数复习》教案

《二次函数复习》教案教学目的:经过温习,使先生能熟习二次函数的几种基本表达式,会选用适宜的表达式解题;学会数形结合的数学思想;学会知识的迁移才干,会实际联络实践,处置实践效果。

六、教学进程:二次函数是初中代数的重要内容之一,也是历年中考的重点。

这局部知识命题方式比拟灵敏,既有填空题、选择题,又有解答题,而且常与方程、几何、三角等综合在一同,出如今压轴题之中。

因此,熟练掌握二次函数的相关知识,会灵敏运用普通式、顶点式、交点式求二次函数的解析式是处置综合运用题的基础和关键。

一、二次函数常用的几种解析式确实定普通式:顶点式:交点式:平移式:二、求二次函数解析式的思想方法1、求二次函数解析式的常用方法:待定系数法、配方法、数形结合等。

2、求二次函数解析式的常用思想:转化思想 : 解方程或方程组3、二次函数解析式的最终方式:无论采用哪一种解析式求解,最后结果最好化为普通式。

三、运用举例例1、二次函数的图像如下图,求其解析式。

针对练习:1、二次函数的图像过原点,当x=1时,y有最小值为-1,求其解析式。

2、二次函数与x 轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。

例2、将抛物线向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。

针对练习:3、将二次函数的图像向右平移1个单位,再向上平移4个单位,求其解析式。

例3、:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是12米,当水位是2米时,测得水面宽度AC是8米。

(1)求拱桥所在抛物线的解析式;(2)当水位是2.5米时,高1.4米的船能否经过拱桥?请说明理由(不思索船的宽度。

船的高度指船在水面上的高度)。

针对练习:4、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米,它能否经过隧道?5. 刘炜在距离篮下4米处跳起投篮,篮球运转的路途是抛物线,当球运转的水平距离为2.5米时,到达最高度3.5米,然后准确落入蓝筐.蓝筐中心到空中距离为3.05米.假设刘炜的身高为1.9米,在这次跳投中,球在头顶上方0.15米处出手,问求出手时,他跳离空中的高度是多少?七、课堂小结1、二次函数常用解析式2、求二次函数解析式的普通方法:图象上三点坐标,通常选择普通式。

二次函数复习教案

二次函数复习教案

二次函数复习教案教案标题:二次函数复习教案教学目标:1. 复习二次函数的概念、性质和基本图像;2. 掌握二次函数的基本公式,包括顶点坐标、对称轴和焦点坐标的求解;3. 理解二次函数与实际问题的关联,并能够应用二次函数解决相关问题。

教学准备:1. 教学工具:投影仪、计算器、白板、彩色粉笔;2. 教学资料:二次函数相关的教材、习题和实例。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,回顾已学过的内容,唤起学生对二次函数的基本了解;2. 提问并互动:请学生举出二次函数在现实生活中的例子,帮助学生理解二次函数与实际问题的联系。

二、复习与讲解(25分钟)1. 回顾二次函数的标准形式 y = ax^2 + bx + c,并解释各个参数的含义;2. 讲解二次函数的图像特点,包括开口方向、顶点坐标和对称轴;3. 回顾二次函数的平移、伸缩和翻转操作,解释对函数图像的影响;4. 讲解二次函数的焦点和直线准线的概念,并介绍其求解方法。

三、示范与练习(30分钟)1. 通过投影仪展示几个二次函数图像的例子,包括开口方向、顶点坐标、对称轴、焦点和准线;2. 引导学生根据图像特点确定函数的参数,然后写出二次函数的方程;3. 给学生分发练习题,让他们自主练习,并及时给予指导和解答。

四、应用与拓展(15分钟)1. 引导学生思考二次函数在实际问题中的应用,如抛物线的轨迹、距离与时间的关系等;2. 给学生提供一些实际问题,并引导他们建立数学模型,然后用二次函数解决问题;3. 鼓励学生拓展思维,讨论二次函数的拓展应用,如最值问题、最优化问题等。

五、总结与反思(5分钟)1. 总结二次函数的基本概念、性质和图像特点;2. 检查学生对课堂内容的理解,解答疑惑,并鼓励学生提问;3. 引导学生反思学习方法和策略,为下一次学习做准备。

教学延伸:1. 鼓励学生自主研究二次函数的其他特性,如顶点、焦点和准线的求解方法;2. 提供更多复杂的应用问题,让学生综合运用二次函数的知识解决问题;3. 引导学生进行数学文章或项目研究,探索二次函数在不同领域的应用。

二次函数复习教学设计

二次函数复习教学设计

二次函数复习教学设计
一、课程内容
1.二次函数的定义及表达式形式
2.二次函数的性质
3.二次函数的图像及极值,包括函数图像的反比例性质
4.二次函数的导数,包括驻点求导法
5.实际求解问题,如平面上两圆的条件
二、授课目标
1、能够正确理解二次函数的概念,掌握相关定义;
2、掌握二次函数的性质及图像;
3、掌握二次函数的导数概念,能够求解实际问题中涉及的二次函数
的导数;
4、掌握平面上两圆的条件,并能够求解实际问题中涉及的复合的平
面两圆问题。

三、教学策略
1、理论讲授法:通过理论讲授,让学生了解二次函数的概念、表达式,了解二次函数的性质、图像及极值、导数概念及复合的平面两圆问题;
2、素材分析法:通过实际素材,让学生理解二次函数的性质、极值点、驻点求导法及实际求解问题;
3、课堂练习法:让学生在讲授完二次函数的相关知识后,布置课堂练习,帮助学生加深对二次函数的理解。

四、实施步骤
1、讲授二次函数的定义及表达式形式:
(1)首先介绍什么是二次函数,二次函数的定义;
(2)接着介绍二次函数的表达式形式,介绍二次函数的a、b、c系数,及其系数含义;。

公开课《二次函数复习课》教案

公开课《二次函数复习课》教案

《二次函数复习》教学设计教学目标1、掌握二次函数的图象及其性质,能灵活运用数形结合知识解一些实际问题2、通过学生亲自经历巩固二次函数相关知识点的过程,体会数形结合思想、化归思想.3、经历探索二次函数相关题目的过程,培养学生的逻辑推理和直观形象和建模等核心素养。

教学重点和难点重点:二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.难点:二次函数性质的灵活运用,能把相关应用问题转化为数学问题.教学过程一、观察图形,梳理基础知识(一)、二次函数的图象及其性质设计意图:通过一个具体二次函数,请学生说出尽可能多的结论,主要让学生回忆二次函数有关基础知识.同学们之间可以相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.对应练习1. 抛物线y= 4(x+2)2+5的对称轴是______2. y= x2-4的图象与y轴的交点坐标是()A(2,0) B(-2,0) C(0,4) D(0,-4)3.已知抛物线 y=0.3(x-4)2-3的部分图象,图象再次与x轴相交时的坐标是()A(5,0) B(6,0)C(7,0) D(8,0)4. 二次函数图象如图,若点A(-3,y1 ),B(-4,y2 )是它的图象上两点,则 y1与 y2的大小关系是 ( ) A. y1 < y2 B. y1 = y2 C. y1 > y2 D.不能确定(二)由函数表达式到函数图象1、如何画出函数y=x2-2x-3的图象?2、如何做到快速、准确?3、五点定位法,怎样求出这五个点的坐标?4、粗略感知图象的位置——二次函数的系数a、b、c及b2-4ac对抛物线位置的影响5、二次函数的系数对它的图象有什么影响?设计意图: 由数到形,见“数”想到“形”,用数表达---------用形释义 对应练习1.已知二次函数 的图象如图,则abc 0.2.二次函数的图象如图所示,则下列关于a 、b 、c 的关系判断正确的是( )A .ab <0 B. bc <0 C .a+b +c >0 D .a -b 十c <0(三)由函数图象到函数表达式的确定c bx ax y ++=2设计意图:由形到数,见“形”不忘“数”,由浅入深,循序渐进。

《二次函数复习》公开课教学设计

《二次函数复习》公开课教学设计

《二次函数复习》教学设计【教学目标】1、理解二次函数的概念,掌握二次函数y=ax 的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax 经过适当平移得到y=a(x-h) +k的图象。

2、会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质。

3、使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。

【教学过程】一、结合例题精析,强化练习,剖析知识点1、二次函数的概念,二次函数y=ax2+bx+c(a≠0)的图象性质。

例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?强化练习:已知函数是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。

2、用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律。

例:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。

强化练习:(1)抛物线y=x2+bx+c的图象向左平移2个单位。

再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。

(2)通过配方,求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标,再画出图象。

3、用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=- x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x-h)2+k的形式。

二次函数复习课教案精选全文完整版

二次函数复习课教案精选全文完整版

可编辑修改精选全文完整版《二次函数》复习课教案一、课标要求二、命题分析三、复习目标:知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、掌握二次函数的图像和性质以及抛物线的平移规律技能目标:培养学生运用函数知识解决数学综合题和实际问题的能力。

情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。

复习重、难点:函数综合题型复习方法:自主探究、合作交流四、复习过程:(一)、二次函数的定义•定义: y=ax²+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 )•定义要点:①a ≠ 0 ②最高次数为2•③代数式一定是整式•练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,•y=3 x²-2x³+5,其中是二次函数的有____个。

2.当m_______时,函数y=(m+1)χm^2-m - 2χ+1是二次函数?(二)、二次函数的图像及性质1、填表:2、二次函数y=ax+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而 , 在对称轴左侧,y随x的增大而3、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值4、巩固练习:已知二次函数y=x2+2x-3 的图象是一条,它的开口方向,顶点坐标是,对称轴是,它与x 轴有个交点,交点坐标是;在对称轴的左侧,y 随着x 的增大而;在对称轴的右侧,y随着x的增大而;当x= 时,函数y 有最值,是.(三)、二次函数解析式的三种表示方法:1、(1)顶点式:(2)交点式:(3)一般式:2、求抛物线解析式的三种方法:(1)、一般式:已知抛物线上的三点,通常设解析式为________________(2)、顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________ 求出表达式后化为一般形式.(3)、交点式:已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________求出表达式后化为一般形式.3、例1、已知二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。

二次函数的复习课教案

二次函数的复习课教案

二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。

复习重点:1、二次函数的图像与性质。

2、二次函数解析式的确定。

复习难点:如何正确利用图像信息解决二次函数的相关问题。

复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。

通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。

1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。

二次函数复习课教案

二次函数复习课教案

《二次函数复习课》教案教学目标:知识技能:1、复习二次函数的基本图像性质2、能够在基本知识的复习上更进一步地体会数形结合思想 数学思考:体会一道压轴题是由基本数学知识和数学模型的融合生成的 解决问题:1、能通过抛物线图像得出二次函数的基本信息2、熟练求出二次函数解析式3、能在解决一般的对称性问题基础上解决更加复杂的数形结合问题 情感态度:1、体会数学是一门具有很强融合性的自然科学2、让学生在总结中提升对数学的思维水平教学重点:二次函数知识点复习教学难点:二次函数与数形结合思想的知识融合应用教学过程一、引言师:前面我们学习了二次函数的图像性质以及利用二次函数的模型解决实际问题,本节课将对前面的知识做一个梳理,希望通过本节课的梳理可以让同学们对二次函数有一个更深刻的理解;二、启发问答,激活思维出示一个二次函数 的图像,由学生观察图像说出从图像中获得的信息并将学生得出的信息板书;1、开口向上2、与x 轴有两个交点,3、与y 轴交点在x 轴上方,4、对称轴在y 轴右侧5、与x 轴两个交点的位置都在x 轴的右侧;6、抛物线的顶点在第四象限那么从图像中观察到的这些信息与这个二次函数2y ax bx c =++的系数之间有什么关系呢?图像是否就隐含了这些关系呢?生答,师板书1、开口向上⇔a>02、与x 轴有两个交点 ⇔240b ac ->3、与y 轴交点在x 轴上方⇔c>04、对称轴在y 轴右侧⇔02b x a =->,则0020b b a a ⎫->⎪⇒<⎬⎪>⎭5、与x 轴两个交点的位置都在x 轴的右侧⇔121200x x x x +>⎧⎨>⎩⇔00b a c a⎧->⎪⎪⎨⎪>⎪⎩ 6、顶点在第四象限⇔顶点坐标240,024b ac b a a ⎛⎫-->< ⎪⎝⎭2y ax bxc =++总结:二次函数的图像完全由二次函数的系数决定,这一点每位同学一定要清楚三、深入拓展,切入主旨师:为了更精确的探究这个二次函数的性质,我们需要求出这个二次函数的解析式,请在不改变这个图形的基础上,设计出正确的条件,何为正确条件,由学生作出解释生:正确的条件就是指由所设计出的条件求出的解析式要满足图像师:一般情况下,求抛物线解析式会需要用到几个条件?三个条件学生可能设计出的条件:一、已知二次函数经过的三个点的坐标,二、已知抛物线的顶点以及另一个点的坐标,设计这种条件的需说出为什么只需要两个条件即可,三、已知抛物线的三个系数a,b,c ;补充,通过一个已知函数进行向右,向下平移后得到的;已知抛物线对称轴以及不对称的两个点坐标四、解决问题例:如图,已知抛物线2y ax bx c =++的对称轴为直线x =2,与x 轴两个交点A 、C 之间的距离为2,且过点B (0,4),求这条抛物线的解析式,并写出这条抛物线的顶点坐标.启发学生利用抛物线的对称性解决问题,然后给出时间,让学生完成后一位学生板书:教师点评并写出正确的解析式与顶点坐标:2416433y x x =-+与42,3⎛⎫- ⎪⎝⎭; 五、步步拓展,渗透思想师:得到了解析式,我们就可以更加准确讨论抛物线图像与方程,不等式之间的关系,逐步展示每个问题,以期在教学中渗透数形结合思想;1、求出一元二次方程24164033x x -+=的解 启发学生:这个问题的本质就是二次函数函数值为0时求出自变量的值,由图像观察可知:121,3x x ==2、求出一元二次不等式24164033x x -+<的解集 问题的本质就是二次函数函数值小于0时的自变量取值范围3、求出一元二次不等式241644333x x -+≥-的解集 问题的本质就是二次函数的函数值大于或等于43-时的自变量取值范围,由于该二次函数的最小值就是43-,所以x 取任意实数时,函数值都是大于或等于43- 4、若一元二次方程2416433x x k -+=有两个实数解,求k 的取值范围 问题的本质就是二次函数与直线y k =的交点个数的讨论5、当4x ≥时,求证代数式2416433x x -+恒大于0 问题的本质是利用二次函数的增减性,当开口向上时,当x>h 时,y 随x 的增大而增大六、小结作业师总结:数形结合思想是解决函数问题的重要方法并布置作业《顶尖课课练:归纳整合》七、教学反思本节课的教学计划是利用一道2012年5月份的福州质检的压轴题的改编逐步有梯度的复习二次函数的基本图像性质,求解析式以及渗透数形结合思想,在教学过程中,预留给学生的时间较为充分,绝大多数学生通过训练和问答巩固了对二次函数知识的应用,但是本节课在教学过程中,还是过分按照自己的预设进行,限制了学生的思维,另外尽管在之前教学中介绍过诸如“一元二次不等式”的概念,但是这种超出课标的概念还是应该在之后的教学中尽可能的规避;八、板书设计1、开口向上⇔a>02、与x 轴有两个交点 ⇔240b ac ->3、与y 轴交点在x 轴上方⇔c>04、对称轴在y 轴右侧⇔02b x a =->,则0020b b a a ⎫->⎪⇒<⎬⎪>⎭5、与x 轴两个交点的位置都在x 轴的右侧⇔121200x x x x +>⎧⎨>⎩⇔00b a c a⎧->⎪⎪⎨⎪>⎪⎩ 6、顶点在第四象限⇔顶点坐标240,024b ac b a a ⎛⎫-->< ⎪⎝⎭ 二次函数2y ax bx c =++的对称轴为直线x=2,AC =2∴2y axbx c =++过A(3,0),C(1,0),B(0,4) ∴40930c a b c a b c =⎧⎪++=⎨⎪++=⎩ ∴431634a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线解析式为2416433y x x =-+,配方得,()244233y x =--,顶点坐标为42,3⎛⎫- ⎪⎝⎭ x=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数复习》课教案
主备人:马春茂时间:2018年12月15日课题二次函数课型复习课
教学目标知识技能
掌握二次函数的图象及其性质,能灵活运用数形结合知识解
一些实际问题.
数学思考
通过观察、猜想、验证、推理、交流等数学活动进一步发展
学生的演绎推理能力和发散思维能力.
解决问题
学生亲自经历巩固二次函数相关知识点的过程,体会利用数
形结合线索解决问题策略的多样性.
情感态度
经历探索二次函数相关题目的过程,体会数形结合思想、化
归思想在数学中的广泛应用,同时感受数学知识来源于实际
生活,反之,又服务于实际生活.
教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.
课前准备PPT
教学过程
教学步骤师生活动设计意图
基础知识

自我构建如图是抛物线
()0
2≠
+
+
=a c
bx
ax
y
的图
像,请尽可能多的说出一些结论。

通过一个具体二次函
数,请学生说出尽可能多的
结论,主要让学生回忆二次
函数有关基础知识.同学们
之间可以相互补充,体现团
结协作精神.同时发展了学
生的探究意识,培养了学生
思维的广阔性.
基础知识

基础演练
二次函数是生活中最常见的一类函数,它有着自己固有的性质,反映的是轴对称性和增减性;
我们要突出反映二次函数的轴对称性、顶点坐标,我们就可以把一般式改写成顶点式;
如果想知道抛物线与x轴两个交点的情况,我们可以把一般式写出交点式;
刚刚我们回顾了二次函数的性质,我们发现二次函数的图像能够直观地反映函数的特性,而数又能细致刻画函数图像的大小和位置,下面就让我们遵循着数形结合的线索,继续对二次函数进行深入的研究。

难点突破

思维激活1、如果把抛物线绕
()4
12+
+
-
=x
y顶点旋
转180°,则该抛物线对应的解析式
是 .
若把新抛物线再向右平移2个单位,向
下平移3个单位,则得到的抛物线对应的
解析式是 .
抛物线的平移——点的平

难点突破

聚焦中考2、问题①,结合图像思考:
方程
()1
4
12=
+
+
-x
有几个实数解?
问题②,结合图像思考:
当m为何值时,方程
()m
x=
+
+
-4
12
1)有两个不相等的实数根;
2)有两个相等的实数根;
3)没有实数根?
问题③
若直线
m
kx
y+
=
1与抛物线
其实方程、不等式本身就有
一个代数的解法,我们现在
也用图像解法
c bx ax y ++=22交于A (1,0)
、B (-1,4)两点,结合图像填空:
1)方程
m kx c bx ax +=++2的解为 ; 2)不等式
m kx c bx ax +>++2的解为 ;
3)不等式
m kx c bx ax +<++2的解为 ;
我们通过三个题目把这个
知识的层次性展示出来,方程、不等式都可以转化成函
数的图像来解
反思与 提高
1、本节课你印象最深的是什么?
2、通过本节课的函数学习,你认为自己 还有哪些地方是需要提高的?
3、在下面的函数学习中,我们还需要注意
哪些问
教者归纳本章知识网络图示
让学生自己总结一节课的
得失,教者进行适当的点
评.真正体现出学生是学习
的主体.为今后自主学习奠
定基础,由此达到数学教学
的新境界——提升思维品
质,形成数学素养
二次函数复习课思维导图:。

相关文档
最新文档