人教版七年级数学下册直方图检测题2

合集下载

10-2 直方图 基础练习 七年级数学下册人教版

10-2 直方图 基础练习 七年级数学下册人教版

10.2直方图一、单选题1.小明随机写了一串数字“1,2,3,3,2,1,1,1,2,2,3,3,”,则数字3出现的频A.21人B.20人C.9人D.6人4.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.85.杨老师将某次数学测试的成绩整理后绘制成如图所示的频数分布直方图,下列说法正确的是()从样本来看,生产的零件直径更接近标准要求且更稳定的机床是()则通话时间不超过15 min的频率为()A.0.1B.0.4C.0.5D.0.9二、填空题11.将六年级某班分为五个组,各组人数在频数直方图中的小长方形高的比依次为1:2:4:1:1,人数最多的一组为20人,则该班共有_______人.12.在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其它8个小长方形的高的和的17,且这组数据的总个数为120,则中间一组的频数为_______.13.从某厂生产的同种规格的电阻中,抽取100只进行测量,得到一组数据.其中最大值为11.58欧,最小值为10.72欧,对这组数据进行整理时,确定它的组距为0.10欧,则应分成________组.14.在一个样本中,50个数据分别落在5个小组内,第1、2、3、5小组数据的个数分别是2、8、15、15,则第4小组的频率是______.15.在数据13,√2,√33,π,−2中,出现无理数的频率是______.三、解答题16.“品中华诗词,寻文化自信”.某校组织全校1000名学生举办了第二届“中华诗词大赛”的初赛,从中抽取部分学生的成绩统计后,绘制了如下不完整的频数分布统计表与频数分布频数分布直方图请观察图表,解答下列问题:(1)表中a=__________,m=__________;(2)补全频数分布直方图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人?17.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动.现随机抽取部分同学的成绩(单位:分)进行统计,下面给出了部分信息.a.被抽取的部分同学成绩的频数分布直方图和扇形统计图如图:(数据分组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)b.成绩在80≤x<90这一组的分数如下:808082828384848484858787888889根据以上信息,完成下列问题:(1)扇形图中,a=,并把频数分布直方图补充完整;(2)求扇形B的圆心角度数;(3)如果全校有2000名学生参加这次活动,85分以上(含85分)为优秀,那么估计获得优秀奖的学生有多少人?(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格)根据上述表格绘制甲、乙两部门员工成绩的频数分布图.请根据图表提供的信息,解答下列问题:(1)共抽取了______名学生的成绩,m=______,n=_______.(2)补全频数直方图;(3)如果成绩80分及以上为“优秀”,请你估计全校1500名参赛学生中获得“优秀”的有多少人?。

七年级数学下册《直方图》练习题及答案(人教版)

七年级数学下册《直方图》练习题及答案(人教版)

七年级数学下册《直方图》练习题及答案(人教版)4.已知数据其中无理数出现的频率是()A.20%B.40%C.60%D.80%4050次的人数最多不足30次的人数有次的人数占7.如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55%B.100,80%C.75,55%D.75,80%8.一次数学测试,将全班45名学生的成绩(得分为整数)进行整理后分成5组,绘制了频数分布直方图(如图,每组含最小值不含最大值),通过此图读出的信息,不正确的是()A.小明同学考了70分,他的成绩划在了60﹣70组B.70﹣80分数段中共有10名同学C.如果80分及以上为优秀,本次考试的优秀率为60%D.本次考试没有50分以下的同学9.在英文词组was a sunny in park中,字母n出现的频率是()A.0.2B.0.3C.0.13D.0.2210.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是()A.共抽取了50人B.90分以上的有12人C.80分以上的所占的百分比是60%D.60.5~70.5分这一分数段的频数是12三、解答题16.市环保部门为了解城区某一天18:00时噪声污染情况,随机抽取了城区部分噪声测量点这一时刻的测量数据进行统计,把所抽取的测量数据分成A、B、C、D、E五组,并将统计结果绘制了两幅不完整的统计图表.根据以上信息解决下列问题:(1)在统计表中,m=__________,n=__________,并补全直方图;(2)扇形统计图中“E组”所对应的圆心角的度数是__________度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.18.为贯彻落实习总书记关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛,本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛,下面是某县初赛时选手成绩的统计图表(部分信息未给出).1.A2.C3.D4.B5.D6.D7.B8.A9.A11.1512.0.313.8014.50人15. 20 0.3125.16.(1)12、6;(2)72;(3)260个17.(1)30 20% (2)72;(3)48218. 【详解】(1)解:由表可知:105120x ≤<的频数和频率分别为15、0.3 ∴本次调查的人数为:150.350÷=10500.2m ∴=÷=500.420n =⨯=故答案为0.2,20(2)解:由(1)知,20n =补全完整的频数分布直方图如右图所示;(3)解:成绩不低于120分为优秀,则本次测试的优秀率():0.40.1100+⨯%50=% 答:本次测试的优秀率是50%.。

专题10.2直方图-2021-2022学年七年级数学下册尖子生同步培优题典(原卷版)【人教版】

专题10.2直方图-2021-2022学年七年级数学下册尖子生同步培优题典(原卷版)【人教版】

2021-2022学年七年级数学下册尖子生同步培优题典【人教版】专题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•泗阳县期中)一组数据共40个,分为6组,第1到第4组的频数之和为28,第5组的频率为0.1,则第6组的频数为( )A.4B.6C.8D.102.(2021秋•井研县期末)某校对1200名女生的身高进行了测量,身高在1.58~1.60(单位:m)这一小组的频率为0.25,则该组的人数为( )A.250B.300C.600D.9003.(2022春•宜兴市校级月考)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~12小时之间的学生数大约是( )A.280B.100C.380D.2604.(2022春•江阴市校级月考)一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、5、15、8,则第5组的频率是( )A.0.1B.0.2C.0.3D.0.45.(2021秋•南关区校级期末)小明将一枚质地均匀的硬币连续抛掷10次,落地后正面向上7次,反面向上3次,下列说法正确的是( )A.正面向上的频率是7B.正面向上的频率是0.7C.正面向上的频率是3D.正面向上的频率是0.36.(2022•温州模拟)某校950名七年级学生参加跳绳测试,随机抽取部分学生成绩并绘制频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,若校方规定次数达到130次(包括130次)的成绩为“优良”,侧该校成绩“优良”的学生人数约为( )A.35B.65C.350D.6507.(2022•亳州一模)为了解某校八年级400名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是( )A.跳绳次数不少于100次的占80%B.大多数学生跳绳次数在140~160范围内C.跳绳次数最多的是160次D.由样本可以估计全年级400人中跳绳次数在60~80次的大约有48人8.(2022•丘北县一模)某公司今年1~4月的电子产品销售总额如图1所示,其中平板电脑的销售额占当月电子产品销售总额的百分比如图2,据图中信息,得到的结论不合理的是( )A.这4个月,电子产品销售总额为290万元B.平板电脑销售额占当月电子产品销售总额的百分比,1月最高C.这4个月,平板电脑销售额最低的是3月D.平板电脑4月份的销售额比3月份有所下降9.(2022•温州模拟)如图是九(1)班45名同学每周课外阅读时间的频数分布直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间在6小时及以上的人数有( )A.36人B.14人C.8人D.6人10.(2022•沈河区校级模拟)商店准备进货重量不同的大米,经重量需求的市场调查以后,做出如下统计图,则商店应多进的大米重量规格是( )A.2kg/包B.3kg/包C.4kg/包D.5kg/包二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•仪征市期中)为了解一组数据的分布情况,我们可以将一个样本的50个数据分成5组,若第1、2、3、4组的频数分别为2、8、15、15,则第5组的频率为 .12.(2022春•洪泽区期中)王老师为了解本班学生对新冠病毒防疫知识的掌握情况,对本班45名学生的新冠病毒防疫知识进行了测试,并把测试成绩分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是 .13.(2022春•大丰区期中)一个样本有100个数据,拟绘制频数分布直方图.现已知最大数为96,最小数为53,如果设置组距为5,则可分成 组.14.(2022春•广陵区期中)为了解新冠肺炎疫情解封后刚复学时学生的心理健康,扬州市某区在全区7600名初中同学中随机抽查了500名同学进行问卷调查,对500个数据进行整理,在频数的统计表中各组的频数之和等于 .15.(2022•辽宁模拟)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是 .类型健康亚健康不健康数据(人)327116.(2022春•江都区校级月考)为了了解某地初二年级男生的身高情况,某班40名学生的身高如下表,则m的值为 .分组147.5~155.5155.5~163.5163.5~171.5171.5~179.5频数611m频率0.4517.(2022•鹿城区一模)某项目小组对新能源汽车充电成本进行抽测,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中充电成本在300元/月及以上的车有 辆.18.(2021秋•舟山期末)十一国庆期间,小明爸爸从金塘收费站出发到舟山市人民政府办事,导航显示有两条路径可以选择,L1:经过东西快速路;L2:经过海天大道.据统计,通过两条路径所用的时间互不影响所用时间,所用时间落在各时间段内的频率如表:(由公路部门根据当天统计)小明爸爸只有55分钟时间用于赶往目的地,请问他会选择 路径.(填L1或L2)时间(分)35~4040~4545~5050~5555~60L1的频率0.10.20.20.30.2L2的频率00.10.50.30.1三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•石家庄期中)某校为创建书香校园,倡导读书风尚,开展了师生“大阅读”活动,并制订“大阅读”星级评选方案,每月评选一次.为了了解活动开展情况,某星期学校组织对全校八年级“大阅读”五星级评选工作进行抽样调查,随机抽取20名学生阅读的积分情况进行分析,过程如下:收集数据:20名学生的“大阅读”积分如下(单位:分):32 43 34 35 15 46 48 24 45 1025 40 56 42 55 30 47 28 37 42整理数据:请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.积分/分10≤x<2020≤x<3030≤x<4040≤x<5050≤x<60星级红橙黄绿青频数234m n 根据以上数据可制成不完整的频数分布直方图.(1)填空;这组数据的组距是 ,m= ;(2)补全频数分布直方图;(3)估计该校八年级400名学生中获得绿星级及其以上的人数.20.(2022春•大丰区期中)某校为创建书香校园,倡导读书风尚,开展了师生“大阅读”活动,并制订“大阅读”星级评选方案(以整数评分),每月评选一次.为了了解活动开展情况,某星期学校组织对全校八年级“大阅读”五星级评选工作进行抽样调查,随机抽取20名学生阅读的积分情况进行分析:【收集数据】20名学生的“大阅读”积分如下(单位:分):32 43 34 35 15 46 48 24 45 10 25 40 60 42 55 30 47 28 37 42【整理数据】请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.积分/分10≤x≤1920≤x≤2930≤x≤3940≤x≤4950≤x≤60星级红橙黄绿青频数235m n 根据以上数据可制成不完整的频数分布直方图.(1)填空:m= ,n= ;(2)补全频数分布直方图;【得出结论】(3)估计该校八年级600名学生中获得绿星级以上的人数.(4)已知该校八年级学生小艺的积分为a分,是绿星级;小贤的积分为b分,是青星级.如果俩人的积 .分均未出现在样本中,那么b﹣a的最大值是 21.(2022•砚山县一模)某校为了提高学生学习安全知识的积极性,举办了“安全第一”知识大赛,该校所有学生均参加初赛.初赛中,将安全知识设置为100分试卷,学生的分数均在50分以上,为了解学生对安全知识的掌握情况,学校随机抽取一部分学生的成绩进行统计分析,绘制了如下统计图表:频数(人)频率成绩x(分)20.0450<x<60100.260≤x<7014b70≤x<8080≤x <90a 0.3290≤x <10080.16请根据统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量是 ;(2)a = ;b = ;(3)补全频数分布直方图;(4)若该校有2800名学生,初赛成绩不低于80分为优秀,则本次初赛达到优秀的学生大约有多少人?22.(2022春•海陵区校级月考)某市举行“传承好家风征文比赛,已知每篇参赛征文成绩记m 分(60≤m ≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m <70380.3870≤m <80a 0.3280≤m <90b c 90≤m ≤100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中a +b 的值是 ;c 的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(2022•西华县一模)某中学为检验思想政治课的学习效果,对八年级学生进行“社会主义核心价值观”知识测试(满分100分),随机抽取部分学生的测试成绩进行统计,并将统计结果绘制成如下尚不完整的统计图表:测试成绩频数分布表组别成绩分组频数频率A50≤x<6040.1B60≤x<70100.25C70≤x<80m nD80≤x<9080.2E90≤x≤10060.15根据以上信息解答下列问题:(1)填空:m= ,n= .(2)补全频数分布直方图.(3)若要画出该组数据的扇形统计图,请计算C组所在扇形的圆心角度数为 .(4)学校计划对测试成绩达到80分及以上的同学进行表彰,若该校共有400人参加此次知识测试,请估计受到表彰的学生人数.24.(2022春•西湖区校级月考)为庆祝“五四”青年节,某中学举行了一场书法比赛,比赛结束后,书法老师随机抽取了部分参赛学生的成绩x(x取整数,满分100分)作为样本,整理并绘制成如图不完整的统计图表.分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)表格中m= ,n= ;(2)把频数分布直方图补充完整;(3)全校共有600名学生参加比赛,请你估计成绩不低于80分的学生人数.。

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (60)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (60)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图复习试题(含答案)一、单选题1.一组数据的最大值是97,最小值76,若组距为4,则可分为几组()A.4 B.5 C.6 D.7【答案】B【解析】根据题意,一组数据的最大值是97,最小值76,最大值与最小值的差为=5.25;则可分为6组.21;若组距为4,有214故选C.点睛:本题考查组数的确定方法,注意极差的计算与最后组数的确定,组数不要太少,也不能太多.2.小明在选举班委时得了28票,下列说法错误的是()A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于1【答案】A【解析】【分析】根据频率=频数,即可解答.数据总和【详解】解:频率=频数数据总和,当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1;可得B,C,D,都正确,A错误.故选A.【点睛】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=频数数据总和.3.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是().A.110、110B.110、12C.12、110D.12、12【答案】A【解析】试题分析:设第一个长方形的高为x,则第二、三、四个小长方形高分别为3x,5x,x,由题意得x+3x+5x+x=50,解得x=5,即最低分为5人,最高分为5人,根据概率公式从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是550=110、550=110.故选A.点睛:本题考查频率分布直方图的知识和概率公式,难度不大,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.在全班45人中进行了你最喜爱的电视节目的调查活动,喜爱的电视剧有人数为18人,喜爱动画片有人数为15人,喜爱体育节目有人数为10人,则下列说法正确的是()A.喜爱的电视剧的人数的频率是1818+15+10B.喜爱的电视剧的人数的频率是1845C.喜爱的动画片的人数的频率是1818+10D.喜爱的体育节目的人数的频率是181514545--【答案】B【解析】试题分析:频率应为频数除以总数,所以喜欢看电视剧、动画片和体育节目的频率分别是1845、1545、1045,故选B.5.在-(-3),(-3)2,(-3)3,︱-3︱中,负数出现的频率为()A.25%B.50%C.75%D.100%【答案】A【解析】试题分析:-(-3)=3,(-3)2=9,(-3)3=-27,︱-3︱=3,所以负数出现的频率为25%,故选A.6.小文同学统计了他所在小区居民每天微信阅读的时间,并绘制了直方图.有以下说法:①小文同学一共统计了60人;②每天微信阅读不足20分钟的人数有8人;③每天微信阅读30~40分钟的人数最多;④每天微信阅读0-10分钟的人数最少.根据图中信息,上述说法中正确的是( )A.①②③④B.①②③C.②③④D.③④【答案】D【解析】①小文同学一共统计了4+8+14+20+16+12=74(人),则命题错误;②每天微信阅读不足20分钟的人数有4+8=12(人),故命题错误;③每天微信阅读30−40分钟的人数最多,正确;④每天微信阅读0−10分钟的人数最少,正确.故选D.点睛: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【答案】B【解析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:由统计图的特点,知要反映一个家庭在教育方面支出占总收入的比,宜采用扇形统计图.故选B.8.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70~80分的人数最多D.80分以上的学生有14名【答案】D【解析】A.8÷(1-4 %-12 %-40 %-28 %)=50(人),故正确;B. 1-4 %-12 %-40 %-28 %=16%,故正确;C.由图可知,成绩在70~80分的人数最多,故正确;D.50×(28 %+16 %)=22(人),故不正确;9.单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的( )A .40%B .70%C .76%D .96%【答案】C【解析】 由图可得,植树7棵及以上的人数占总人数的5029650-=% ,故选D. 10.下列关于统计图的说法中,错误的是( )A .条形图能够显示每组中的具体数据B .折线图能够显示数据的变化趋势C .扇形图能够显示数据的分布情况D .直方图能够显示数据的分布情况【答案】C【解析】A. ∵条形图能够显示每组中的具体数据,故正确;B. ∵折线图能够显示数据的变化趋势,故正确;C. ∵扇形图能够显示部分与总体的关系,故不正确;D. ∵直方图能够显示数据的分布情况,故正确;。

直方图(练习)-七年级数学下册同步精品课堂(人教版)(解析版)

直方图(练习)-七年级数学下册同步精品课堂(人教版)(解析版)

第十章数据的收集、整理与描述10.2直方图精选练习答案一.选择题(共10小题)1.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为()A.49B.51C.0.49D.0.51【解答】解:“正面朝上”的频率==0.51.故选:D.2.一次跳远比赛中,成绩在4.00米以上的有9人,频率为0.3,则参加比赛的共有()A.10人B.20人C.30人D.40人【解答】解:9÷0.3=30(人),故选:C.3.从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,则此抽样调查的样本中,样本容量和不合格的频率分别是()A.8,0.08B.8,0.92C.100,0.08D.100,0.92【解答】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:=0.08.故选:C.4.某校九年级随机抽查一部分学生进行了1分钟仰卧起坐次数的测试,并将其绘制成如图所示的频数分布直方图.那么仰卧起坐次数在25~30次的人数占抽查总人数的百分比是()A.40%B.30%C.20%D.10%【解答】解:仰卧起坐次数在25~30次的人数占抽查总人数的百分比是×100%=40%,故选:A.5.某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是()A.出现正面的频率是6B.出现正面的频率是4C.出现正面的频率是0.4D.出现正面的频率是0.6【解答】解:∵某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,∴出现正面的频率是:=0.6.故选:D.6.“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是()A.B.C.D.【解答】解:“早”字出现的频率是:=,故选:D.7.在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为()A.9B.8C.7D.6【解答】解:根据题意,第四组的频数为40﹣(2+7+11+12)=8,故选:B.8.新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是()A.2B.11.1%C.18D.【解答】解:CoronaVriusDisease中共有18个字母,其中r出现2次,∴频数是2,故选:A.9.某校在开展“节约每滴水”的活动中,从八年级的100名同学中任选20名同学汇报各自家庭一个月的节水情况,将有关数据整理如下表:节水量x/t0.5≤x<1.5 1.5≤x<2.5 2.5≤x<3.5 3.5≤x<4.5人数8462则这100名同学的家庭一个月节约用水的总量大约是()A.160t B.210t C.250t D.260t【解答】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量==2.1,则这100名同学的家庭一个月节约用水的总量大约是2.1×100=210t.故选:B.10.已知一组数据:6,7,8,8,8,9,9,9,10,10,10,10,10,11,11,11,12,12,12,13,若以2为组距,则可以分成()A.6组B.5组C.4组D.3组【解答】解:这组数据的极差为13﹣6=7,∵7÷2=3.5,∴这组数据可分成4组,故选:C.二.填空题(共5小题)11.某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有18人.【解答】解:45×0.4=18(人),所以该班级在这个分数段内的学生有18人.故答案为:18.12.某校对600名男生的身高进行了测量,身高在1.68米~1.73米,这一小组的频率为0.2,则该组共有120人.【解答】解:根据题意知该组的人数为:600×0.2=120(人),故答案为:120.13.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38、52、47、46、50、53、61、72、45、58,则10名女生仰卧起坐个数不少于50个的频率为0.6.【解答】解:仰卧起坐个数不少于50个的有52、50、53、61、72、58共6个,所以,频率==0.6.故答案为:0.6.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别为8、7、7,6.第五组的频率为0.2,则第六组的频率是0.1.【解答】解:因为共有40个数据,且第五组的频率为0.20,所以第五组的频数为0.2×40=8;则第六组的频数为40﹣(8+7+7+6+8)=4,所以第六组的频率为=0.1.故答案为:0.1.15.某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率等于0.1.【解答】解:由直方图可得,仰卧起坐次数不小于15次且小于20次的频数为3,频数总和为3+10+12+5=30,∴仰卧起坐次数不小于15次且小于20次的频率为:=0.1,故答案为:0.1.三.解答题(共2小题)16.学校为了提高学生的实践能力,开展了手工制作比赛.已知参赛作品分数记为x分(60≤x≤100),校方在参赛作品中随机抽取了部分作品进行质量评估,将成绩绘制成了下面不完整的统计表和频数分布直方图:分数段频数百分比60≤x<70a30%70≤x<8022c80≤x<90b20%90≤x≤10036%根据以上信息解答下列问题:(1)计算a,b,c的值;(2)补全频数分布直方图.【解答】解:(1)总件数为:3÷6%=50(件),a=50×30%=15(件),b=20%×50=10(件),c=22÷50×100%=44%.(2)补全频数分布直方图为:17.某校数学活动小组对下午6点下班期间,经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.(4)当代社会步入“集约型发展”“可持续发展与环境保护”“拼车出行”等又好又快发展阶段,请你结合以上数据分析,提出一条相关的倡议.【解答】解:(1)本次调查的小型汽车数量为32÷0.2=160(辆),m=48÷160=0.30,n=1﹣(0.3+0.35+0.20+0.05)=0.10;(2)B类小汽车的数量为160×0.35=56(辆),D类小汽车的数量为0.1×160=16(辆),补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆);(4)保护环境,减少开车出行,乘坐公共交通工具,降低空气污染指数;节约交通成本,鼓励拼车出行,厉行资源优化分配;等等,言之有理,合乎问题背景和社会发展即可.。

初中七年级数学下册第10章数据的收集整理与描述10.2直方图同步练习2版新

初中七年级数学下册第10章数据的收集整理与描述10.2直方图同步练习2版新

直方图一、选择题1.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( ).A.10组B.9组C.8组D.7组2.某校对1200名学生的视力进行了检查,其值在5.0~5.1这一小组的百分比为25%,则该组的人数为( ).A.150人B.300人C.600人D.900人3.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成如图所示的统计图,根据图示信息,下列描述不正确的是( )A.共抽取了50名同学的成绩B.这次测试的及格率(60分及60分以上为及格)在90%左右C.80分以上的人数在60%左右D.60~70分这一分数段的频数是12二、填空题4.分析数据的频数分布,首先计算出这组数据中__________的差,参照这个差值对数据进行__________,然后利用___________给出数据的分布情况,进而用___________来描述数据的分布情况.5.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值),根据图形直接回答下列问题:(1)该单位共有职工_________人;(2)______年龄段的职工人数最多,该年龄段职工人数占职工总人数的______%;年龄不小于38岁,但小于44岁的职工人数占职工总人数的______%;(结果均精确到0.1%)(3)如果42岁的职工有4人,则年龄在42岁以上的职工有_______人.6.在一块试验田里抽取1000个小麦穗考察它们的长度(单位:厘米),从频数分布表中看到数据落在5.75~6.05之间的频数为360,于是可以估计这块试验田里长度在5. 75~6. 05厘米之间的麦穗占____.7.某学校为七年级学生订制校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:型号身高(x/cm) 人数(频数)小号145≤x<15522中号155≤x<16545大号165≤x<17528特大号175≤x<185 5已知该校七年级学生有800名,那么中号校服应订制____套.8.一个样本含有下面10个数据:42,51,49,50,49,48,51,47,则最大值是____,最小值是____,如果组距为2,则应分成____组.三、解答题9.七年级(5)班20名女生的身高如下(单位:cm):153 156 152 158 156 160 163 145 152153 162 153 165 150 157 153 158 157158 158(1)请你在下表中填出身高在以下各个范围的频数、百分比(每个范围包含最小值,但不包含最大值):身高(cm) 140~150 150~160 160~170频数百分比(2)上表把身高分成____组,组距是____;(3)身高在____范围的人数最多.10.(济南山大附中月考)某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表.未完成的频数分布直方图如图1028所示(分数均为整数,满分为100分):分数段(分)61~70 71~80 81~90 91~100人数(人) 2 8 6 4请根据表中提供的信息解答下列各题:(1)参加这次演讲比赛的同学有____人.(2)已知成绩在91~100分的同学为优胜者,那么优胜率为____.(3)所有参赛同学的平均得分M(分)在什么范围内?答:____.(4)将成绩的频数分布直方图补充完整.11.(黑龙江齐齐哈尔中考)4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整的统计图(如图,每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年级(1)班有____名学生.(2)补全直方图.(3)除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1小时的学生有多少人?参考答案1.A . 2.B . 3.D 解析4+10+6+18+12=50(人),故A选项正确;及格率为50446100%=100%=92%5050-⨯⨯,故B选项正确;80分以上的人数占1812100%=60%50+⨯,故C 选项正确;60~70分这分数段的频数是10,故D 选项不正确. 4.最大值与最小值,分组,频数分布表,频数分布直方图. 5.(1)52;(2)40~42(不含42岁),23.1;61.5; (3)16.6. 36% 解析360÷1000×100 % = 36%.7.360解析100名学生中有45名学生穿中号校服,所以估计800名学生中有45800=360100⨯(名)学生穿中号校服.8.51 42 5 解析最大值是51,最小值是42,所以(5142)÷2=4.5. 9.(1)填表如下: 身高(cm) 140~150 150~160 160~170 频数 1 15 4 百分比5%75%20%(2)3 10 (3)150~160解析 (1)共有20个数据,要求填写各个身高范围的频数,就是指每个身高范围内包含的数据个数,一般采取“划记”法进行整理.身高在140~150的频数为1,百分比为5%;身高在150~160的频数为15,百分比为75%;身高在160~170的频数为4,百分比为20%.(2)分成了3组,组距为10.(3)身高在150~160范围的人数最多.点拨:利用频数分布表可以清楚地反映出一组数据中的每个数据出现的频数,从而反映出这些数据的整体分布情况.10.解:(1)参赛总人数=2+8+6+4=20(人);(2)优胜率=4100%=20% 20⨯;(3)最低平均分为(61×2+71×8+81×6+91×4)÷20=77,最高平均分为(70×2+80×8+90×6+100×4)÷20=86,所以参赛同学的平均得分M(分)在77≤M≤86范围内;(4)如图所示(阴影部分).点拨:参加比赛的人数等于各分数段人数的总和;优胜率=优胜人数÷参加比赛总人数×100%;要求平均得分范围,可先求出最低平均分和最高平均分,再确定其范围.11.分析:(1)根据直方图中每天阅读时间在0.5小时以内的学生数为4和已知这一小组的学生所占比例为8%,可求九年级(1)班的学生数为4÷8%=50;(2)求出每天阅读时间在0.5~1小时的学生数为50(4+18+8)=20,然后补全直方图;(3)先求出除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生在扇形图中所占的百分比为165100%=30%60050⨯-,然后求出九年级其他班级每天阅读时间在0.5~1小时的学生在扇形图中所占的百分比为1(10%+12%+30%)=48%,最后补全扇形统计图;(4)利用“该年级每天阅读时间不少于1小时的学生数一其他班级每天阅读时间不少于1小时的学生数十九年级(1)班每天阅读时间不少于1小时的学生数”进行求解.解:(1)50(2)补全直方图略(0.5~1小时为20人).(3)补全扇形统计图略(0.5~1小时:48%;1~1.5小时:30%).(4)(60050)×(30%+10%)+18+8=246(人).答:该年级每天阅读时间不少于1小时的学生有246人.。

人教版数学七年级下册 10 2 直方图同步练习(含解析)

人教版数学七年级下册 10 2 直方图同步练习(含解析)

第十章数据的收集、整理与描述10.2直方图基础过关全练知识点频数分布直方图1.(2022浙江金华中考)观察如图所示的频数分布直方图,其中99.5~124.5这一组的频数为( )20名学生每分钟跳绳次数的频数分布直方图A.5B.6C.7D.82.【新独家原创】“安全重于泰山,生命高于一切!”某校为强化师生安全意识,组织了安全知识竞赛活动.七年级(1)班将安全知识竞赛的成绩整理后绘制成直方图(每一组含前一个边界值,不含后一个边界值),图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A.80分及以上的学生有14名B.该班有50名同学参赛C.成绩在70~80分的人数最多D.第五组的百分比为16%3.【教材变式·P150T1变式】小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值).根据图中信息,下列说法错误的是( )A.这栋居民楼共有居民125人B.每周使用手机支付在28~35次的人数最多的人每周使用手机支付在35~42次C.有15D.每周使用手机支付少于21次的有15人4.(2021重庆长寿期末)在一个样本中有50个数据,它们分别落在5个组内,已知第一、二、三、四、五组数据的个数分别为3,9,17,x,6,则第四组的频数为.5.【主题教育·中华优秀传统文化】【新独家原创】汉字是世界上使用时间最久、范围最广、人数最多的文字之一,汉字的创制和应用不仅推进了中华文化的发展,还对世界文化的发展产生了深远的影响.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.6.(2022福建厦门九中期末)新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成不完整的频数分布表和频数分布直方图.a.线上垃圾分类知识测试成绩频数分布表如下:b.线上垃圾分类知识测试成绩频数分布直方图如下:c.成绩在80≤x<90这一组的成绩分别为80,81,82,83,83,85,86,86,87,88,88,89.根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2 000人,若测试成绩为80分及以上为良好,那么估计小明所在的社区成绩良好的人数为; (4)若给测试成绩的前十五名颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?能力提升全练7.(2021上海中考,4,★★☆)商店准备确定一种包装袋来包装大米,经市场调查后,作出如图所示的统计图,请问选择什么样的包装最合适( )A.2 kg/包B.3 kg/包C.4 kg/包D.5 kg/包8.(2020浙江温州中考,14,★☆☆)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5 kg及以上的生猪有头.9.【主题教育·生命安全与健康】(2022内蒙古包头中考,20,★★☆)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100),并绘制成如下的频数直方图.测试成绩频数直方图请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)若测试成绩为80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.素养探究全练10.【数据观念】(2022浙江温州中考)为了解某校400名学生在校午餐所需的时间,抽查了20名学生在校午餐所花的时间,由图示分组信息得:A ,C ,B ,B ,C ,C ,C ,A ,B ,C ,C ,C ,D ,B ,C ,C ,C ,E ,C ,C.某校被抽查的20名学生在校午餐所花时间的频数表(1)请填写频数表,并估计这400名学生午餐所花时间在C 组的人数; (2)在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在15分钟,20分钟,25分钟,30分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.分组信息A 组:5<x ≤10B 组:10<x ≤15C 组:15<x ≤20D 组:20<x ≤25E 组:25<x ≤30注:x (分钟)为午餐时间!答案全解全析基础过关全练1.D由直方图可得,99.5~124.5这一组的频数是20-3-5-4=8,故选D.2.A该班参赛的学生有8÷(1-4%-12%-40%-28%)=50(名),故选项B 正确;80分及以上的学生有50×28%+8=22(名),故选项A错误;成绩在70~80分的人数最多,故选项C正确;第五组的百分比为8÷50×100%=16%,故选项D正确.故选A.3.D3+10+15+22+30+25+20=125(人),所以这栋居民楼共有居民125人,选项A正确;从题中频数分布直方图上可以看出,每周使用手机支付在28~35次的人数最多,选项B正确;每周使用手机支付在35~42次的人数所占的比例为25125=15,选项C正确;每周使用手机支付少于21次的有3+10+15=28(人),选项D错误.故选D.4.答案15解析由各组频数之和等于样本容量可得3+9+17+x+6=50,解得x=15,故答案为15.5.答案90解析由直方图可得,成绩为“优良”(80分及以上)的学生有60+30=90(人),故答案为90.6.解析(1)由题意可得,本次抽样调查的样本容量为50,表中m的值为50-3-9-12-8=18.(2)补全的频数分布直方图如图所示.=800(人).(3)2 000×12+850故估计小明所在的社区成绩良好的人数为800.(4)由题意可得,居民A是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.能力提升全练7.A由题图知1.5~2.5这组的人数最多,因此取1.5~2.5范围内的数据2(kg/包),故选A.8.答案140解析由频数直方图可得,质量在77.5 kg及以上的生猪有90+30+20=140(头).9.解析(1)4+6+10+12+8=40(名).故答案为40.(2)960×12+8=480(人),40故优秀的学生人数约为480.(3)通过多种形式,提高安全意识,结合校内、校外具体活动,提高避险能力(答案不唯一).素养探究全练10.解析(1)频数表填写如表所示.某校被抽查的20名学生在校午餐所花时间的频数表正正12×400=240(名).20∴估计这400名学生午餐所花时间在C组的有240名.(2)答案不唯一,如:选择20分钟,有18人能按时完成用餐,占比90%,可以鼓励最后两位同学适当加快用餐速度.。

2020—2021年人教版初中数学七年级下册直方图课时练习及答案解析(精品提分试题).docx

2020—2021年人教版初中数学七年级下册直方图课时练习及答案解析(精品提分试题).docx

新人教版数学七年级下册第十章第二节直方图练习一、选择题1.为了绘出一批数据的频率分布直方图,首先计算出这批数据的变动范围是指数据的( )A.最大值B.最小值C.最大值与最小值的差D.个数答案:C知识点:频数(率)分布直方图解析:解答:根据频率直方图的是将数据将参量的数值范围等分为若干区间,统计该参量在各个区间上出现的频率,并用矩形条的长度表示频率的大小.即是按照数据的大小按序排列,故选C.分析:频率直方图是按照数据从小到大的顺序排列,包括所有的数据,即数据的变化范围是指数据的最大值和最小值的差.2.在统计中频率分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值答案:A知识点:频数与频率解析:解答:频率是指每个对象出现的次数与总次数的比值(或者百分比),频率反映了各组频数的大小在总数中所占的分量.即可以反映总体的平均水平.故选A.分析:根据频率的定义,即可作出判断3.在频数分布直方图中,各小矩形的面积等于( ).A.相应各组的频数B.组数C.相应各组的频率D.组距答案:C知识点:频数(率)分布直方图解析:解答:根据频率分布直方图的意义,因为小矩形的面积之和等于1,频率之和也为1,所以有各小长方形的面积等于相应各组的频率;故选C.分析:根据频率分布直方图的意义,易得答案.4.已知一组数据有80个,其中最大值为143,最小值为50,取组距为10,则可分成( ).A.10组B.9组C.8组D.7组答案:A知识点:频数(率)分布直方图解析:解答:在样本数据中最大值为143,最小值为50,它们的差是143-50=93,已知组距为10,那么由于93÷10=9.3,故可以分成10组.故选A.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数5. 已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是( )A .5B .6C .7D .8 答案:A知识点:频数(率)分布直方图解析:解答:∵频数分布直方图中各个长方形的高之比依次为2:3:4:1,样本容量为50,∴第四小组的频数为50×14321+++=5. 故选A .分析:频数分布直方图中,各个长方形的高之比依次为2:3:4:1,则指各组频数之比为2:3:4:1,据此即可求出第四小组的频数. 6 .将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A .0.3 B .30 C .15D .35答案:C知识点:频数与频率解析:解答:根据频率的性质,得 第二小组的频率等于1-0.7=0.3,则第二小组的频数是50×0.3=15.故选C分析:根据频率的性质,即各组的频率之和为1,求得第二组的频率;再根据频率=频数÷总数,进行计算.7. 对一组数据进行适当整理,下列结论正确的是( )A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,小长方形的高与频数成正比D.各组的频数之和等于1答案:C知识点:频数(率)分布直方图,众数,极差解析:解答:A、众数是该组数据出现次数最多的数值,而频数最大的一组表示该范围内的数据最多,所以,众数不一定在频数最大的一组,故本选项错误;B、若极差等于24,取组距为4时,∵24÷4=6,∴数据应分为7组,故本选项错误;C、∵绘制的是频数直方图,∴小长方形的高表示频数,∴小长方形的高与频数成正比,故本选项正确;D、各组的频数之和等于数据的总数,频率之和等于1,故本选项错误.故选C.分析:根据频数分布直方图的特点,众数,极差的定义对各选项分析判断后利用排除法求解.8.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内.其中正确的判断有()A.4个B.3个C.2个D.1个答案:A知识点:频数(率)分布直方图解析:解答:(1)从频率分布直方图上看成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等,故选项正确;(2)从频率分布直方图上看出:成绩在79.5~89.5分段的人数30%,故选项正确;(3)成绩在79.5分以上的学生有50×(30%+10%)=20人,故选项正确;(4)将该组数据按从小到大(或按从大到小)的顺序排列,本次考试成绩的中位数落在69.5~79.5分段内,故选项正确.故选A.分析:根据频数分布直方图的特点,以及中位数的定义进行解答.9.在样本频数分布直方图中,有11个小长方形.若中间的小长1,且样本容量为方形的面积等于其他10个小长方形面积之和的4160个,则中间的一组的频数为( ).A.0.2 B.32 C.0.25 D.40答案:B知识点:频数(率)分布直方图解析:解答:设中间的长方形面积为x,则其他的10个小长方形的面积为4x,所以可得x+4x=1,得x=0.2;又因为样本容量为160,所以中间一组的频数为160×0.2=32,故选B.分析:根据频率分布直方图的意义,因为小矩形的面积之和等于1,所以中间的小长方形的面积与其他10个小长方形面积之和等于1.从而求出中间一个小长方形的面积.又每个小长方形的面积也就是这组的频率,进而求出该组的频数.10.某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为( )A .6.5~9.5B .9.5~12.5C .8~11D .5~8答案:A知识点:频数(率)分布直方图解析:解答:各组的频数是5,4,6,5则第一组的频率是:56455+++=0.25,则第四组的频率也是0.25,第二组的频率是:56454+++=0.2,则频率为0.2的一组为第二组;组距是8-5=3,第二组的组中值是8,则第二组的范围是:6.5-9.5. 故选A .分析:首先根据各组的频数即可确定频率是0.2的是哪一组,然后根据组中值的大小即可确定组距,则频率为0.2的一组的范围即可确定.11.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min 仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是( ).A .0.1B .0.2C .0.3D .0.4答案:D知识点:频数(率)分布直方图.解析:解答:12÷30=0.4. 故选:D .分析:根据频数分布直方图的特点,求出这组的频数,再根据频率=频数÷总数,代入数计算即可12.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A .5B .7C .16D .33答案:B知识点:频数(率)分布直方图. 0 1 2 3 4 5 6 7 8 等待时间/min 4 81216人数2 3 6 8 19 52解析:解答:由频数直方图可以看出: 顾客等待时间不少于6分钟的人数即最后两组的人数为:5+2=7人. 故答案为:B分析:分析频数直方图,找等待时间不少于6分钟的小组,读出人数再相加可得答案13.2000辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,时速大于等于50且小于60的汽车大约有( )A .30辆B .60辆C .300辆D .600辆答案:D知识点:频数(率)分布直方图.解析:解答:由频数直方图可以看出:该组的03.0 组距频率,又组距=10所以该组的频率=0.3,因此该组的频数=0.3×2000=600 故选D分析:根据频数分布直方图的特点,求出这组的频率,再根据频率=频数÷总数,代入数计算即可14.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A.90B.75C. 60D.45答案:A知识点:频数(率)分布直方图.解析:解答:∵由频率分布直方图的性质得各矩形面积和等于1, ∴样本中产品净重大于96克小于100克的频率为2×(0.050+0.100)=0.3, ∴样本容量=1203.036 又∵样本中净重大于或等于98克并且小于104克的产品的频率为2×(0.125+0.150+0.100)=0.75, 96 98 100 102 104 106 0.1500.1250.1000.075克 频率/组距∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90,故选A分析:根据频率分布直方图,先求出样本容量,再计算出样本中净重大于或等于98克并且小于104克的产品的频率,从而求出频数.15.某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁答案:B知识点:条形统计图,中位数的意义及求解方法解析:解答:根据条形统计图可得所有队员的人数为1+2+3+2+2=10(人)因为10人中按照年龄从小到大排列,第5,6两人的岁数都是21岁,所以中位数是21岁故选B分析:根据中位数的定义进行解答.二、填空题16.已知样本容量是40,在样本的频数分布直方图中各小矩形的高之比依次为3:2:4:1,则第二小组的频数为________,第四小组的频率为________.答案:8,10%知识点:频数(率)分布直方图解析:解答:∵频数分布直方图中各个长方形的高之比依次为3:2:4:1,样本的数据个数是40,∴第二小组的频数为40×81024014232=⨯=+++; 第四小组的频率为14231+++=0.1=10%. 故答案为8,10%.分析:频数分布直方图中,各个长方形的高之比依次为3:2:4:1,则指各组频数之比为3:2:4:1,据此即可求出第二小组的频数第四小组的频率.17.为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示: 组别 次数x 频数(人数)第1组 80≤x <100 6第2组 100≤x <120 8第3组 120≤x <140a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)表中的a=______;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第______组;(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为______.答案:(1)12;(3)3;(4)96.知识点:频数(率)分布直方图解析:解答:(1)由题意得:a=50-(6+8+18+6)=12;(2)由(1)得一分钟跳绳次数在120≤x<140范围中的人数为12,而一分钟跳绳次数在140≤x<160范围中的人数为18人,补全频率直方统计图即可.(3)∵a=12,∴6+8+12=26,则这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x <180范围中的人数为6人,即优秀的人数为6人, 则样本中优秀人数所占的百分比为506=12%, 则800名学生中优秀的人数为800×12%=96人.分析:(1)由样本的容量为50,根据表格中各组的数据,即可求出a 的值;(2)由一分钟跳绳次数在120≤x <140范围中的人数为(1)求出的a ,一分钟跳绳次数在140≤x <160范围中的人数为18人,补全频率直方统计图即可;(3)由样本容量为50,得到第25名学生一分钟跳绳次数落在范围120≤x <140中,即可得到这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x <180范围中的人数为6人,即优秀的人数为6人,求出优秀人数所占的百分比,即为总体中优秀人数所占的百分比,即可求出800名学生中优秀的人数.18.某单位职工的年龄(取正整数)的频数分布直方图如图所示,根据图中提供的信息,进行填空:(1)该单位职工共有________人;(2)不小于38岁但小于44岁的职工人数占职工总人数的百分率是________.答案:(1)50;(2)60﹪知识点:频数(率)分布直方图解析:解答:(1)由直方图可知:该单位职工共有4+7+9+11+10+6+3=50(人)故答案为50人(2)因为不小于38岁但小于44岁的职工人数=9+11+10=30(人) 所以占职工总人数的百分率=30÷50=60﹪故答案为60﹪分析:(1)根据各组的频数之和即该单位的所有职工的人数可得;(2)根据不小于38岁但小于44岁的职工人数÷职工总人数=占职工总人数的百分率进行计算.19.某市内有一条主干路段,为了使行车安全同时也能增加车流量,规定通过该路段的汽车时速不得低于40km/h,也不得超过70km/h,否则视为违规扣分.某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车行驶时速的频率分布直方图如图所示,则违规扣分的汽车大约为辆.答案:160知识点:频数(率)分布直方图解析:解答:如图,低于40km/h的频率为0.05,超过70km/h 的车辆的频率为0.11又某天,有1000辆汽车经过了该路段,故违规扣分的车辆大约为1000×(0.05+0.11)=160辆故答案为:160.分析:由频率分布直方图看出,时速低于40km/h,或超过70km/h 车辆的频率,从而可按此比例求出违规扣分的车辆数.20.某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:分组] 50~59分60~69分70~79分80~89分90~99分频率0.04 0.04 0.16 0.34 0.42(1)本次测试90分以上的人数有________人;(包括90分)(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上________.A.好B.一般C.不好答案:(1)21;(2) 96% ;(3)A知识点:频数(率)分布表解析:解答:(1)依题意得测试90分以上的人数(包括90分)有50×0.42=21(人);故选A(2)依题意得本次测试这50名学生成绩的及格率为0.04+0.16+0.34+0.42=96%;(3)由于及格率比较高,优秀人数比较多,所有应该选择好.分析:(1)根据总人数和测试90分以上的人数(包括90分)的频率即可求出这次测试90分以上的人数;(2)根据表格可以得到及格人数,然后除以总人数即可得到及格率;(3)由于及格率比较高,优秀人数比较多,所有应该选择好.21.江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出频数分布直方图.(1)他家这个月一共打了次长途电话;(2)通话时间不足10分钟的次;(3)通话时间在分钟范围最多,通话时间在分钟范围最少.答案:(1)77;(2)43;(3)0~5,10~15知识点:频率(数)分布直方图解析:解答:(1)他家这月份的长途电话次数约为:25+18+8+10+16=77(次);(2)通话时间不足10分钟的次数为:25+18=43(次);(3)通话时间在 0~5 分钟范围最多,通话时间在10~15分钟范围最少.分析:(1)根据频率(数)分布直方图提供的数据,将各组的频数相加即可求解;(2)将第一组和第二组的频数相加,便可求出通话时间不足10分钟的的次数;(3)由频率(数)分布直方图可知通话时间在 0~5 分钟范围最多,通话时间在10~15分钟范围最少.22.某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)130,120, [)140,130, []150,140三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .051015510252025302015()频数通话次数/时间分()每组中只含最小分钟值,但不含最大分钟值258181016答案:10知识点:频数(率)分布直方图解析:解答:由已知中频率分布直方图的组距为10,身高在[120,130),[130,140),[140,150]的矩形高为(0.1﹣0.005+0.035+0.020+0.010)=0.030,0.020,0.010故身高在[120,130),[130,140),[140,150]的频率为0.30,0.20,0.10故分层抽样的方法选取30人参加一项活动,则从身高在[130,140)内的学生中选取的人数应为30×10.020.030.020.0++=10 故答案为:10分析:由已知中的频率分布直方图,根据各组矩形高之和×组距=1,结合已知中频率分布直方图的组距为10,我们易求出身高在[120,13),[130,140),[140,150]三组内学生的频率,根据分屋抽样中样本比例和总体比例一致的原则,我们易求出从身高在[130,140)内的学生中选取的人数.三、解答题23.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2-2.5小时”的部分对应的扇形圆心角为______度; ②课外阅读时间的中位数落在______(填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?答案:(1)120 (2)①72° ②1~1.5 (3)240 知识点:扇形统计图 频数(率)统计图 中位数的意义及求解方法解析:解答:(1)总人数=30÷25%=120人; (2)①a%=%1012012 ; ∴b%=1-10%-25%-45%=20%,∴对应的扇形圆心角为360°×20%=72°;②总共120名学生,中位数为60,61两数的平均数,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800×30%=240人.分析:(1)根据0.5~1小时的人数及所占的比例可得出抽查的总人数.(2)①根据2至2.5的人数及总人数可求出a%的值,进而根据圆周为1可得出答案.②分别求出各组的人数即可作出判断.(3)首先确定课外阅读时间不少于1.5小时所占的比例,然后根据频数=总数×频率即可得出答案.24.为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级5名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:分组划记频数频率0.55~1.05 正正…14 0.281.05~1.55 正正正15 0.301.55~2.05 正 (7)2.05~2.55 … 4 0.082.55~3.05 … 5 0.103.05~3.55 (3)3.55~4.05 T 0.04(1)填写频率分布表中末完成的部分.(2)由以上信息判断,•每周做家务的时间不超过1.55h•的学生所占的百分比是________.(3)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.答案:(1)2、0.14、0.06(2)58%(3) 让我们行动起来,在劳动中感恩父母吧!(答案不唯一)知识点:频率(数)分布直方图;频数分布表解析:解答:(1)7÷50=0.14,3÷50=0.06;故答案为:0.14,0.06(2)0.28+0.30=0.58=58%;故答案为:58%.(3)让我们行动起来,在劳动中感恩父母吧!分析:(1)因为总数是50,所以利用频率=频数÷总数即可求出答案;(2)由分布表可知该百分比应为0.28与0.30的和;(3)只要是倡导“孝敬父母,热爱劳动”的句子即可.25.在我市开展“阳光”活动中,为解中学生活动开展情况,随机抽查全市八年级部分同学1分钟,将抽查结果进行,并绘制两个不完整图.请根据图中提供信息,解答问题:(1)本次共抽查多少名学生?(2)请补全直方图空缺部分,直接写扇形图中范围135≤x<155所在扇形圆心角度数.(3)若本次抽查中,在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生成绩为优秀?(4)请你根据以上信息,对我市开展学生活动谈谈自己看法或建议答案:(1)200;(2)81°;(3)4200;(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.答案不唯一知识点:频率(频数)分布直方图扇形统计图解析:解答:(1)抽查的总人数:(8+16)÷12%=200(人);(2)范围是115≤x<145的人数是:200-8-16-71-60-16=29(人),则跳绳次数范围135≤x ≤155所在扇形的圆心角度数是:360×2001629+=81°.; (3)优秀的比例是:200162960++×100%=52.5%, 则估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8000×52.5%=4200(人);(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.分析:(1)利用95≤x <115的人数是8+16=24人,所占的比例是12%即可求解;(2)求得范围是115≤x <145的人数,扇形的圆心角度数是360度乘以对应的比例即可求解;(3)首先求得所占的比例,然后乘以总人数8000即可求解; (4)根据实际情况,提出自己的见解即可,答案不唯一. 26.某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:(1)这种统计图通常被称为什么统计图?(2)此次调查共询问了多少户人家?(3)超过半数的居民每周去多少次超市?(4)请将这幅图改为扇形统计图.答案:(1)频数分布直方图;(2)1000;(3)1~2知识点:频数(率)分布直方图,扇形统计图解析:解答:(1)这种统计图通常被称为频数分布直方图;(2)此次调查共询问了户数是:50+300+250+100+100+100+50+50=1000(户);(3)超过半数的居民每周去1~2次超市.(4)根据频数直方图中各组的数据,算出每部分对应的圆心角的度数;表示去超市次数所占百分比圆心角度数A 5% 18°B 1 30% 108°C 2 25% 90°D 3 10% 36°E 4 10% 36°F 5 10% 36°G 6 5% 18°H 7 5% 18°扇形统计图如下:分析:(1)根据频数分布直方图的定义即可解决;(2)各组户数的和就是询问的总户数;(3)首先确定这组数据的中位数,即可确定;(4)计算出每组对应的扇形的圆心角,即可作出.27.某年级组织学生参加夏令营,分为甲、乙、丙三组进行活动.•下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题:报名人数分布直方图报名人数扇形统计图(1)求该年级报名参加本次活动的总人数;(2)求该年级报名参加乙组的人数,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,那么,应从甲组抽调多少名学生到丙组?答案:(1)50;(2)10;(3)5知识点:扇形统计图频率(频数)分布直方图解析:解答:(1)15÷30%=50(人),(2)乙组的人数:50×20%=10(人);(3)设应从甲组调x名学生到丙组,可得方程:25+x=3(15-x),解得:x=5.答:应从甲组调5名学生到丙组分析:(1)根据甲组有15人,所占的比例是30%,即可求得总数,总数乘以所占的比例即可求得这一组的人数;(2)根据乙组的人数即可补全条形统计图中乙组的空缺部分;(3)设应从甲组调x名学生到丙组,根据丙组人数是甲组人数的3倍,即可列方程求解。

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (63)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (63)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图复习试题(含答案)某校未为了解学生每天参加体育锻炼的时间情况,随机选取该校的部分学生进行调查.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,每天参加体育锻炼的时间不少于90min的有_____人,这些学生数占被调查总人数的百分比为_____%,每天参加体育锻炼的时间不足60min的有_____人;(2)被调查的学生总数为_____人,统计表中m的值为_____,统计图中n 的值为_____,被调查学生每天参加体育锻炼时间的中位数落在_____组;(3)该校共有960名学生,根据调查结果,估计该校每天参加体育锻炼的时间不少于60min的学生数.【答案】(1)18,15,30(2)120,42,25,C(3)720【解析】【分析】(1)根据统计图表中的信息即可得到结论;(2)根据统计图表中的信息列式计算即可;(3)根据题意列式计算即可得到结论.【详解】解:(1)被调查的学生中,每天参加体育锻炼的时间不少于90min的有18人,这些学生数占被调查总人数的百分比为15%,每天参加体育锻炼的时间不足60min的有12+18=30人;故答案为18,15,30;(2)被调查的学生总数为18÷15%=120人,统计表中m的值为120﹣12﹣18﹣30﹣18=42,统计图中n的值为×100%×100=25,被调查学生每天参加体育锻炼时间的中位数落在C组;故答案为120,42,25,C;(3)960×=720,答:估计该校每天参加体育锻炼的时间不少于60min的学生数为720人.【点睛】本题考查了频(数)率分布直方图:频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.也考查了用样本估计总体.32.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【答案】(1)12;(2)补充频数分布直方图见解析; (3)本次测试的优秀率是0.44;(4)小宇与小强两名男同学分在同一组的概率是16.【解析】试题分析:(1)用总人数减去第1、2、3、5组的人数,即可求出a 的值; (2)根据(1)得出的a 的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率; (4)用A 表示小宇,B 表示小强,C 、D 表示其他两名同学,画出树状图,再根据概率公式列式计算即可.试题解析:(1)表中a 的值是:a=50-4-8-16-10=12; (2)根据题意画图如下:(3)本次测试的优秀率是12100.4450+=.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是41.123考点:1.频数(率)分布直方图;2.频数(率)分布表;3.列表法与树状图法.33.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次;这20天中,行人交通违章6次的有多少天;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章.【答案】(1)8,5;(2)图像见解析;(3)3次. 【解析】 【分析】(1)直接根据折线统计图可读出数据; (2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可. 【详解】解:(1)第7天,这一路口的行人交通违章次数是8次; 这20天中,行人交通违章6次的有5天; (2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:536574859320⨯+⨯+⨯+⨯+⨯=7(次)∵7-4=3(次)∵通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 【点睛】本题考查折线统计图,频数分布直方图.34.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出的值并补全频数分布直方图;(2)本市约有名教师,用调查的样本数据估计日行走步数超过步(包含步)的教师有多少名?(3)若在名被调查的教师中,选取日行走步数超过步(包含步的两名教师与大家分享心得,求被选取的两名教师恰好都在步(包含步)以上的概率.【答案】(1)0.16,0.24,10,2;补图见解析;(2)11340;(3)【解析】试题分析:(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为.考点:列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.35.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】试题分析:(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.试题解析:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.36.随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.【答案】(1)50人;(2)0.2;10;20.补图见解析;(3)400人.【解析】【分析】【详解】(1)从C可以看出:5÷0.1=50(人)答:这次被调查的学生有50人;=0.2,n=0.2×50=10,p=0.4×50=20(2)m=1050补全图形如图所示:(3)800×(0.1+0.4)=800×0.5=400(人)答:全校学生中利用手机购物或玩游戏的共有400人建议:中学生使用手机要多用于学习.考点:频数、频率、统计图实际应用37.为了解某个某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温(单位:)进行调查,并将所得的数据按照,,,,分成五组,得到如图频率分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【答案】(1)这30天最高气温的平均数为20.4℃;中位数为22℃;(2)该地这个季度中最高气温超过(1)中平均数的天数为48天;(3)这两天都在气温最高一组内的概率为.【解析】试题分析:(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.试题解析:(1)这30天最高气温的平均数为:=20.4℃;℃中位数落在第三组内,℃中位数为22℃;(2)℃30天中,最高气温超过(1)中平均数的天数为16天,℃该地这个季度中最高气温超过(1)中平均数的天数为×90=48(天);(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为=.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.加权平均数;5.中位数.38.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【答案】(1)25;0.10;(2)补图见解析;(3)200人.【解析】【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点睛】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.39.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?【答案】(1)30;(2)作图见解析;(3)660.【解析】试题分析:(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.试题解析:(1)进行该试验的车辆数为:9÷30%=30(辆);(2)B:20%×30=6(辆),D:30﹣2﹣6﹣9﹣4=9(辆),补全频数分布直方图如下:(3)900×=660(辆).答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.40.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m 0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【答案】(1) 14,0.26.补图见解析;(2) 161≤x<164.(3).【解析】试题分析:(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;试题解析:(1)设总人数为x人,则有=0.06,解得x=50,℃m=50×0.28=14,n==0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)=.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.。

七年级数学下册数据的收集、整理与描述(直方图)练习题

七年级数学下册数据的收集、整理与描述(直方图)练习题

七年级数学下册数据的收集、整理与描述(直方图)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.将容量为50的样本分成6组,其中,第1、2、3、4、5组的频率之和是0.96,那么第6组的频数是_________.2.某校对学生晚上完成作业的时间进行调查后,将所得的数据分成6组,第一组的频数是8,第二、三、四、五、六组的频率分别为0.15,0.25,0.2,0.15,0.05,则第三组的频数是________.3.某项目小组对新能源汽车充电成本进行抽测, 得到频数分布直方图(每一组含前一个边界值, 不含后一个边界值)如图所示, 其中充电成本在300元/月及以上的车有_________辆.4.老师在黑板上随手写下一串数字“002 200 220”,则数字“0”出现的频率是_______.5.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是_____.6.频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了____,画在横轴上,纵轴表示各组数据的_____.二、单选题7.九年级体育测试某班跳绳成绩的频数分布表如下,跳绳次数x在160 ≤ x< 180的范围的学生占全班人数的()A.6%B.12%C.26%D.52%8.一组数据最大值与最小值的差为80,若确定组距为9,则分布的组数为()A.7B.8C.9D.129.某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A.6,12,0.30B.6,10,0.25C.8,12,0.30 D.6,12,0.2410.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;11.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包12.在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是()A.2个B.4个C.18个D.16个三、解答题13.为了调查本班学生对哪国动画片最喜欢,对班里20名学生进行调查,结果如下所示:(1)请完成表格:(2)根据上表画一张反映频数的条形统计图.14.在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.泰州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.月消费额分组统计表(1)A组的频数是,本次调查样本的容量是;(2)补全直方图(需标明各组频数);(3)若该社区有3000户住户,请估计月信息消费额不少于200元的户数是多少?15.为了了解学生在2022年3月的学习情况,某校九年级1班组织了一次网上全班数学测试,任科老师从本班中抽取了n个学生的成绩(满分100分,且抽取的学生成绩均在[40,100]内)进行统计分析.按照成绩分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频数分布表和频率分布直方图.(1)求n,x的值,并补充完整频率分布直方图:(2)老师对小明说,估计你在这次的测试中成绩中等,请写出小明这次测试成绩在哪个分数段内的可能性最大?(3)在选取的样本中,从低于60分的学生中随机抽取两名学生,请用列表法或树状图求这两名学生在同一成绩分数段的概率?参考答案:1.2【详解】试题分析:频数分布表中,频率之和等于1.则第6组的频率为:1-0.96=0.04;频数=样本容量×频率=50×0.04=2.点睛:本题主要考查的就是频率、频数与样本容量之间的关系,属于中等难度的题目.所有的频数之和等于样本容量,所有的频率之和等于1.很多题目会已知前面几组的频率,然后根据频率之和得出最后一组的频率,从而根据样本容量=频数÷频率可以求出样本容量.2.10【分析】根据各组的频率之和等于1,再根据第二、三、四、五、六组的频率,即可求出第一小组的频率,根据总人数=第一组的频数÷第一组的频率,最后根据第三组的频数=总人数×第三组的频率进行计算即可.【详解】解:∵第二、三、四、五、六组的频率分别为015.,025.,02.,015.,005., ∵第一组的频率为10150250201500502-----=......,∵第三组的频数为80202510÷⨯=...故答案为:10.【点睛】本题考查频率及频数的计算,用到的知识点是频率=频数÷总数,灵活运用有关公式是解决本题的关键.3.14【分析】根据频数直方图中大于300的各组频数进行计算即可.【详解】解:9+3+2=14(辆)故答案为:14【点睛】本题考查了频数分布直方图,根据直方图得出各组频数是解题的关键.4.59【分析】结合题意,根据频率的性质计算,即可得到答案.【详解】根据题意,总共有9个数字,其中数字“0”出现5次∵数字“0”出现的频率是:59故答案为:59. 【点睛】本题考查了频率的知识;解题的关键是熟练掌握频率的定义,从而完成求解.5.80%.【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生,从而得出答案.【详解】∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,∵成绩高于60分的学生占全班参赛人数的百分率是36100%80%45,故答案为80%. 【点睛】本题主要考查频数分布直方图,根据频数分布直方图明确各分组人数是解题的关键.6. 分组 频数【解析】略7.C【分析】根据频数与频率的计算公式,即可得解.【详解】根据题意,得跳绳次数x 在160 ≤x < 180的范围的学生占全班人数的百分比为13100%26%2326136⨯=++++ 故选:C.【点睛】此题主要考查了读频数分布表获取信息的能力.必须认真观察、分析、研究,才能作出正确的判断和解决问题.8.C【详解】分析:根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.详解:在样本数据中最大值与最小值的差为80,已知组距为9,那么由于809=889,故可以分成9组. 故选C .点睛:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.9.A【详解】根据题意,由频数分布表中各组的频率求出c,再由频数=总人数×频率可求出a 、b 的值. 解:由频数分布表中,各组的频数之和为样本容量,则c=1-0.05-0.15-0.35-0.15=0.3,根据题意,用150~155之间频率是0.15,而总人数为40人,a=40×0.15=6,b=40×0.3=12.“点睛”本题考查频率分别直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.10.D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B 选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.11.A【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【详解】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.【点睛】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.12.D【分析】根据频率=频数÷总数,可以求得白色乒乓球的个数,从而得到黄色乒乓球个数.【详解】解:∵白色乒乓球的频率稳定在0.2左右∵白色乒乓球的个数=20×0.2=4个∵黄色乒乓球的个数=20-4=16个故选D.【点睛】本题主要考查了频率与频数的计算,解题的关键在于能够熟练掌握频率=频数÷总数.13.(1)填表见解析(2)画图见解析【分析】(1)通过调查,再把调查数据填入表格即可;(2)根据表格中的频数,画好条形图即可.(1)解:通过调查,填表如下:(2)解:画条形图如下:【点睛】本题考查的是频数分布表,频数直方图,掌握“频率=频数÷总数的计算方法;条形统计图的画法”是解本题的关键.14.(1)2;50(2)见解析(3)2280户【分析】(1)根据A、B两组户数直方图的高度比为1:5,即两组的频数的比是1:5,据此即可求得A组的频数;利用A和B两组的频数的和除以两组所占的百分比即可求得总数,即样本容量;(2)利用总数乘以百分比即可求得C组的频数,从而补全统计图;(3)利用总数3000乘以对应的百分比即可.(1)A组的频数是:10÷5=2调查样本的容量是:(2+10)÷(1-40%-28%-8%)=50故答案为:2;50.(2)A组的频数是:2C组的频数是:50×40%=20,D组的频数是:50×28%=14,E组的频数是:50×8%=4,补全直方图如图.(3)∵3000×(40%+28%+8%)=2280,答:估计月信息消费额不少于200元的户数是2280户.【点睛】本题考查频数分布直方图、频率分布表,解答本题的关键是明确题意,利用数形结合的思想解答.15.(1)206n x==,(2)[70,80)(3)1 3【分析】(1)用第一组的频数除以它的频率等到n的值,再用n的值分别减去其他组的频数即可得到x值,然后补全直方图即可.(2)根据中位数的意义即可求解.第 11 页 共 11 页 (3)在分数段[40,50)中的学生用A 表示,在分数段[50,60)内的学生用B 表示,画树状图展示所有可能的结果数,找出这两名学生在同一成绩分数段的结果数,然后根据概率公式求解.(1)n =1÷0.05=20,x =20﹣1﹣2﹣5﹣4﹣2=6;[70,80)这组的频率为620=0.3; 频率分布直方图为:(2)样本的中位数在[70,80)中,所以小明这次测试成绩在[70,80)这个分数段内的可能性最大;(3)低于60分的有3个,在分数段[40,50)中的学生用A 表示,在分数段[50,60)内的学生用B 表示, 画树状图为:共有6种等可能的结果数,其中这两名学生在同一成绩分数段的结果数为2, 所以这两名学生在同一成绩分数段的概率为21=63.【点睛】本题考查了列表法与树状图法及概率公式、掌握统计图并理解,再结合题意是解答本题的关键.。

人教七年级数学下册-直方图(附习题)

人教七年级数学下册-直方图(附习题)

频数
组距
组距
等距分组时,各小长方 形的面积与高的比是常数.
频数的大小 身高
画等距分组的频数分布直方图时,为了画 图与看图的方便、通常直接用小长方形的高表 示频数.
频数 思 考
通过频数分布直方图,你能发 现数据的分布有什么规律吗?
思考
对“问题”中的数据,如果取组距为 2 cm,那么数据应分成几组?如何选出需 要的 40 名同学?如果取组距为 4 cm 呢? 结合 5 种不同分组选出需要的 40 名同学 的情况,说明哪种分组最合适.
(4)
(5)这个班每分钟跳 绳次数在100-120的学 生最多(还有很多结 论,同学自己观察).
4. 一个面粉批发商统计了前 48 个星期的销售量 (单位:t):
24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4
4
180≤ x< 200
1
次数
60≤ x<
80
80≤x <100
100≤ x<Hale Waihona Puke 120120≤ x<
140
140≤ x<
160
160≤ x<
180
180≤ x<
200
频数 2 4 21 13 8
4
1

初中数学 人教版七年级下册10.2直方图

初中数学 人教版七年级下册10.2直方图

10.2直方图【本节的学习目标】1.会绘制频数分布直方图;2.能根据图表识别信息.【绘制频数分布直方图的步骤及要点】1.计算最大值与最小值的差在给出的一组数据中,找出数值最大的数据和数值最小的数据,并计算它们的差(简称极差).2.决定组距与组数组距就是每个小组的两个端点之间的距离.组距和组数没有固定的标准,一般数据越多,分的组数也就越多.在实际分组时往往要有个尝试的过程,最后选择一个比较合适的组数.根据极差与组距的商确定组数,当商是小数时,组数取大于此商的最小整数;当商是整数时,组数取比商大1的整数.3.列频数分布表首先要确定分点:可采取每小组包括最小值不包括最大值;也可把分点取多一位小数,并把第一组的起点稍减小一点;还可把最小值减小一点作为最左端的分点,把最大值加大一点作为最右端的分点。

再利用划记得到各小组数据的个数,也就是频数.4.画频数分布直方图当各组的组距相等时,频数分布直方图的横轴表示数据,纵轴表示频数,各个小长方形之间是连续的,且宽度也应该是相同的.(横轴的起点不是从零开始的,可以用波浪线表示省略一段数.)【典型习题】1.已知一组数据都是整数,其中最大值是200,最小值是119,若取9为组距,则这组数据被分成()小组.2.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数x在15≤x<20范围内的人数占所抽查人数的百分比为().A.10%B.17%C. 33%D.40%第2题图3.某初中测量了七年一班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法不正确的是().A.该班人数最多的身高段的学生共为20人B.该班身高不高于160cm的学生共为20人C.该班身高最高段的学生共为20人D.该班身高最高段的学生共为7人4.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,回答下列问题:(1)这个班共有名同学;(2)成绩高于60分为及格,这次竞赛该班同学成绩及格率为;(3)图中还提供了其它信息,请你再写出两条:第3题图第4题图5.某中学七年级50名女同学进行1分钟跳绳测试,将她们跳绳次数统计后分为A、B、C、D、E五等,绘制成下面的频数分布表(每组数据取值含左端点,不含右端点).(1)m= ,n= .(2)在50名学生中,等级的学生人数最多.(3)绘制频数分布直方图.等级跳绳(x次/1分钟)频数所占百分比A 140≤x<160 7B 120≤x<140 m50%C 100≤x<120 nD 80≤x<100 4E 60≤x<80 4典型习题参考答案1.10;2.A;3.C;4.(1)45;(2)80%;(3)如果90分以上为优秀,那么达到优秀的有6人;不及格的有9人.……(不唯一);5.(1)25,10;(2)B;(3)解:如图,即为所求.第5(3)题图。

七年级数学下册直方图练习题

七年级数学下册直方图练习题

七年级数学下册直方图练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.小明统计本班同学的年龄后,绘制成如图所示的频数分布直方图,这个班学生的平均年龄约是()A.14岁B.14.3岁C.14.5岁D.15岁2.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是()A.共抽取了50人B.90分以上的有12人C.80分以上的所占的百分比是60%D.60.5~70.5分这一分数段的频数是123.为了了解本校七年级700名学生上学期参加社会实践活动的时间,随机对该年级50名学生进行了调查.根据收集的数据绘制了频数分布直方图,则以下说法正确的是()A.学生参加社会实践活动时间最多的是16 hB.学生参加社会实践活动的时间大多数是12~14 hC.学生参加社会实践活动时间不少于10 h的为84%D.由样本可以估计全年级700人中参加社会实践活动时间为6~8 h的大约有26人4.体育委员统计了七(1)班全体同学60秒跳绳的次数,并列出下面的频数分布表.给出以下结论:①全班有52名学生;①组距是20;①组数是7;①跳绳次数在100≤x<140范围的学生约占全班学生的67%.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()A.14B.12C.9D.86.为检测初三女学生的身高,抽出30名女生检测后,画出如下频率直方图(长方形内数据为该长方形的面积),从图中可知身高在1.625m-1.675m的女生有()名.A.12B.10C.9D.87.某班对学生的一次数学测试成绩(得分取整数)进行整理后分成五组,并绘制出如图所示的频数直方图,则下列说法中错误的是()A.有6人的成绩为100分B.这次共有48人参加测试C.测试成绩高于70分且不高于80分的人数最多D.若成绩在80分以上为优秀,则成绩优秀的有15人8.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成()组.A.10B.9C.8D.79.下列有关频数分布表和频数直方图的理解,正确的是()A.频数分布表能清楚地反映事物的变化情况B.频数直方图能清楚地反映事物的变化情况C.频数直方图能清楚地表示出各部分在总体中所占的百分比D.二者均不能清楚地反映变化情况和在总体中所占的百分比,但能反映出每个项目的具体数目10.从如图所示的两个统计图中,可看出女生人数较多的是()A.七年级(1)班B.七年级(2)班C.两班一样多D.不能确定二、填空题11.一组数据的最大值与最小值之差为80,若取组距为9,则分成____________组.12.如图,直方图从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,作品总件数为____件.三、解答题13.孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打并创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表根据以上信息,解答下列问题:(1)补全频数直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第__________组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为__________,对应的扇形圆心角的度数为__________ ;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2h,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?14.某学校环保志者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)统计表中m=______,n=______.扇形统计图中,空气质量等级为“良”的天数占_____%;(2)补全直方图,并通过计算估计该市城区的空气质量等级为“中度污染”和“重度污染”的天数共多少天?(结果保留整数)15.今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x=________,y=________,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.参考答案:1.B【分析】首先由频数分布直方图求出该班同学的年龄和,然后根据总人数求平均年龄.【详解】该班同学的年龄和为:13814221515165717⨯+⨯+⨯+⨯=(岁),平均年龄是:717(822155)14.3414.3÷+++=≈(岁).故选:B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.D【分析】根据表中提供的数据分别进行计算,即可找出描述不正确的选项.【详解】A、抽样的学生共有:4+10+18+12+6=50人,故本选项正确,不符合题意;B. 90分以上的有12人,故本选项正确,不符合题意;C. 80分以上的所占的百分比是121850+=60%;故本选项正确,不符合题意;D. 60.5~70.5分这一分数段的频数是10,故本选项错误,符合题意;故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.C【分析】阅读频数分布直方图,根据直方图中获取的信息进行判断即可.【详解】A、最后一个小组的时间范围为14~16h,但不代表一定有活动时间为16h的同学,故A错误;B、18÷50=36%<50,故B错误;C、(14+18+10)÷50=84%,故C正确;D、700×250=28,故D错误.故选C.【点睛】本题主要考查的是频数分布直方图的认识,能够从直方图中获取有效信息是解题的关键.4.D【分析】①将各组频数相加即可得;①①由频率分布表即可知组数和组距;①将100≤x<140范围的两分组频数相加可得,再将其人数除以总人数即可得百分比.【详解】①全班学生数为2+4+21+14+7+3+1=52(人),此结论正确;由频数分布表可知,组距为80-60=20,组数为7组,故①①均正确;①跳绳次数在100≤x<140范围的学生占全班学生的211452+×100%≈67%,故此结论正确;故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5.B【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案.【详解】根据题意,第二组的频数是:430=12 2431⨯+++故选:B.【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解.6.A【分析】根据直方图中各组的频率之和等于1,结合题意可得身高在1.625m到1.675m的女生的频率,再由频率的计算公式可得其频数,即答案.【详解】解:由直方图可知:身高在1.625m到1.675m的女生的频率为1-0.133-0.133-0.200-0.100-0.034=0.4,则身高在1.625m到1.675m的女生的频数为30×0.4=12;故选:A.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时还考查了频数及频率的计算.7.A【分析】由各组频数之和等于总数和表格数据逐一判断即可.【详解】解:A、由图可知90.5~100.5组的有6人,不一定都是100分,此选项错误,符合题意;++++=人测试,此选项正确,不符合题意;B、这次活动共抽调了312189648C、测试成绩在7080-分的人数为18人,最多,此选项正确,不符合题意;D、测试成绩在80分以上的人数为15人,此选项正确,不符合题意;故选:A.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是识别频数分布直方图直接读出相应的数据.8.A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,95÷10=9.5,所以应该分成10组.故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.9.D【分析】根据折线图,扇形图,直方图的特点,把每一个选项进行分析,即可得到答案.【详解】A、频数分布表能清楚的反映落在每个小组内的数据情况,不能清楚的反映事物的变化情况,故此选项错误;B、频数分布图能清楚的反映落在每个小组内的数据多少,折线图能反映事物的变化情况,故此选项错误;C、扇形图能清楚地表示出各部分在总体中所占的百分比,直方图不能,故此选项错误;D、二者均不能清楚地反映变化情况和在总体中所占的百分比,但能反映出每个项目的具体数目,故此选项正确.故选D.【点睛】此题主要考查了直方图的特点,同学们一定要牢记折线图,扇形图,直方图的特点,才能正确作出分析.10.D【分析】人数=百分比⨯总人数,由于总人数不确定,所以女生人数不能确定.【详解】解:人数=百分比⨯总人数,由于总人数不确定,所以女生人数不能确定,故选D.【点睛】本题考查了扇形统计图的应用,掌握公式:人数=百分比⨯总人数是解题的关键.11.9【分析】根据频数的定义(一般我们称落在不同小组中的数据个数为该组的频数),频率的定义(频数与数据总数的比值为频率,频率反映了各组频数的大小在总数中所占的分量)和组数=极差÷组距即可求解.【详解】解:根据组数=极差÷组距,①极差(最大值与最小值之差)为80,组距为9,①组数=(极差÷组距)=(80÷9)≈9,组数要取整数,故答案为9.【点睛】本题考查频数(率)分布表,解题的关键是知道组数=极差÷组距.12.48【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率,即可计算作品总数.【详解】①从左至右各长方形的高的比为2:3:4:6:1,①频率之比为2:3:4:6:1;①第二组的频率3 16,①第二组的频数为9,①作品有9316÷=48(件).故答案为:48.【点睛】本题考查了频数分布直方图,熟练掌握频数分布直方图的意义是解题的关键.13.(1)图见解析(2)三(3)30%,108(4)330人【分析】(1)根据频数分布表补全图形即可;(2)根据中位数的定义,中间的一个数或两个数的平均数求出中位数;(3)根据百分比=该组频数÷总数,圆心角=百分比360⨯︒,即可得出答案;(4)用2200乘以第一组所占百分比即可得出答案.(1)解:学生每周自主发展兴趣爱好时长频数直方图:(2)①总人数为200人,①中位数落在第100、101个学生每周自主发展兴趣爱好的时长的平均数,又①30+60=90<100,30+60+70=160>101,①中位数落在第三组,故答案为:三;(3)第二组的学生人数占调查总人数的百分比为:60100%30% 200⨯=第二组的学生人数对应的扇形圆心角的度数为:30%360108⨯︒=︒故答案为:30%,108;估计该校需要增加自主发展兴趣爱好时间的人数为:302200330200⨯=(人)答:估计该校有330人需要增加自主发展兴趣爱好时间.【点睛】本题考查频数及频率的应用,熟练掌握频数及频率的意义及应用、频数分布直方图的画法及一定的数据分析方法是解题关键.14.(1)20,8,55(2)补全直方图见解析,该市城区的空气质量等级为“中度污染”和“重度污染”的天数共27天【分析】(1)用总天数乘以优的百分比即可得到m,总天数减去其他的天使即可得到n,用空气“良”的天数除以总天数再乘以百分百可得;(2)根据m值补全图形,用365乘以空气质量等级为“中度污染”和“重度污染”的天数与80的比即可.(1)8025%20m=⨯=,8020444228n=-----=,空气质量等级为“良”的天数占44100%55% 80⨯=;(2)估计该市城区全年空气质量等级丙“中度污染”和“严重污染”的天数共4236527.3752780+⨯=≈(天),补全统计图如图所示:【点睛】本题考查的是直方图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.15.(1)30%,16%,图见解析(2)95、94(4)12【分析】(1)先求出被调查的总人数,继而可求得y、x的值;(2)将数据重新排列,再根据中位数和众数的概念求解即可;(3)用总人数乘以样本中优秀人数所占百分比即可;(4)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.(1)解:被调查的总人数为4÷8%=50(人),①优秀对应的百分比8100%16%50y=⨯=,则一般对应的人数为50-(4+23+8)=15(人),①其对应的百分比15100%30%50x=⨯=,补全图形如下:故答案为:30%,16%.(2)解:将这组数据重新排列为91,93,94,94,96,98,99,100,所以其中位数为9496952+=,出现次数最多的是94,故众数为94,故答案为:95,94;(3)解:估计该校学生对团史掌握程度达到优秀的人数为1200×16%=192(人);答:估计该校学生对团史掌握程度达到优秀的人数为192人.(4)解:画树状图为:共有12种等可能情况,其中被抽取的2人恰好是女生的有6种结果,所以恰好抽中2名女生参加知识竞赛的概率为61 122.【点睛】此题考查了用列表法或树状图法求概率、频数分布直方图、扇形统计图、众数、中位数、用样本估计总体等知识,数形结合与用列表法或树状图法求概率是解题的关键.。

人教版数学七年级下册第十章《数据的收集、整理与描述》10.2直方图 寒假预习卷(含答案)

人教版数学七年级下册第十章《数据的收集、整理与描述》10.2直方图 寒假预习卷(含答案)

人教版数学七年级下册第十章《数据的收集、整理与描述》10.2直方图寒假预习卷学校:___________姓名:___________班级:___________得分:___________一、选择题(共36分)1.收集某班50名同学的身高,根据相应数据绘制的频数分布直方图中各小长方形的高比为2:3:4:1,那么第二组的频数是()A.10B.20C.15D.52.在对n个数据进行整理的频数分布表中,各组的频数之和等于()A.nB.1C.2 nD.3 n3.杨老师将某次数学测试的成绩整理后绘制成如图所示的频数分布直方图,下列说法正确的是()A.得分在分的人数最多B.人数最少的分数段的频数为4C.得分及格分有12人D.该图数据分组的组距为104.某班有48位同学,一次数学检测后,统计全班成绩分数只取整数,绘制出频数直方图横半轴表示分数,把分到分之间的分数分成5组,组距是10分,纵半轴表示频数如图所示,从左到右的小矩形的高度比是,则由图可知,其中分数在之间的人数是()A.9B.18C.12D.65.统计七年级部分学生的跳高测试成绩,得到如下频数直方图每组含前一个边界值,不含后一个边界值,其中规定成绩在及以上的为优秀,由此得到的信息中错误的是()A.参加测试的总人数为54人B.组距为C.该测试优秀率为D.组中值为的组的边界值分别为与6.如图是某校九年级部分男生做俯卧撑的成绩次数进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是,,,,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是()A.100,B.100,C.75,D.75,7.在一个样本中,50个数据分别落在5个小组内,第1,2,3,5小组的频数分别是2,8,15,5,则第4小组的频数是()A.15B.20C.25D.308.某校七班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A. B.18 C. D.279.频数分布直方图由五个小矩形组成,且从左到右五个小矩形的高的比为,若第一小组的频数为4,则数据总个数为()A.21B.26C.42D.5210.九年级班进行一次“你心目中最喜欢的一个体育明星”问卷调查,将数据整理后绘制成统计图如图所示.根据图中信息可得,最受同学们喜欢的体育明星的频数是()A.25B.15C.5D.11.为了了解某地七年级男生的身高情况,从当地某学校选取了一个容量为60的样本,60名男生的身高分组情况如表所示,则表中a,b的值分别是()分组频数1026a频率bA.18,B.,18C.18,D.,12.对某班60名同学的一次数学测验成绩进行统计,如果频数分布直方图中分这一组的频数是18,那么这个班的学生这次数学测验成绩在分之间的频率是()A.18B.C.D.二、填空题(共15分)13.如图是某校七年级63名同学身高频数分布直方图每组数据包括左端点,不包括右端点,则身高在这一组的同学有______人。

七年级数学(下)第十章《直方图》练习题含答案

七年级数学(下)第十章《直方图》练习题含答案

七年级数学(下)第十章《直方图》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.在频数分布直方图中A.横轴必须从0开始,纵轴不受这个限制B.纵轴必须从0开始,横轴不受这个限制C.横轴与纵轴都必须从0开始D.横轴与纵轴都不必从0开始【答案】B【解析】由于在频数分布直方图中,小长方形面积=组距×频数可知,纵轴必须从0开始,横轴不受这个限制,故选B.2.绘制频数分布直方图时,各小长方形面积占全体小长方形总面积的百分比刚好等于相应各组的A.组距B.平均值C.频数D.频率【答案】D3.为了绘制一批数据的频率分布直方图,首先要算出这批数据的变化范围,数据的变化范围是指数据的A.最大值B.最小值C.最大值与最小值的差D.个数【答案】C【解析】根据频率直方图的是将数据将参量的数值范围等分为若干区间,统计该参量在各个区间上出现的频率,并用矩形条的长度表示频率的大小.即是按照数据的大小按序排列,故选C.4.小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是A.全班总人数为45人B.体重在50千克~55千克的人数最多C.最大值与最小值的差为25 D.体重在60千克~65千克的人数占全班总人数的1 9【答案】C5.有40个数据,其中最大值为35,最小值为14,若取组距为4,则应该分的组数是A.4 B.5 C.6 D.7【答案】C【解析】∵最大值为35,最小值为14,∴在样本数据中最大值与最小值的差为35-14=21,又∵组距为4,∴应该分的组数=21÷4=5.25,∴应该分成6组,故选C.二、填空题:请将答案填在题中横线上.6.如图,一项统计数据的频数分布直方图中,如果直方图关于第三组的小长方形呈轴对称图形(坐标轴忽略不计),那么,落在110~130这一组中的频数是__________.【答案】300【解析】如果直方图关于第三组的小长方形呈轴对称图形,则110~130这一组与第二组频数应相等,故答案为:300.7.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有__________个.【答案】120【解析】1000×0.12=120,故答案为:120.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.为增强学生体质,各学校普遍开展了阳光体育活动.某校为了了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计,根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x <8的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于__________调查,样本容量是__________;(2)请补全频数分布直方图中空缺的部分;(3)估计全校学生每周课外体育活动时间不少于6小时的人数.【解析】(1)抽样;50.(2)50×24%=12,50-(5+22+12+3)=8,∴抽取的样本中,活动时间在2≤x <4的学生有8名,活动时间在6≤x <8的学生有12名.因此,可补全直方图如图:(3)1000×12350=300(人). 答:估计全校学生每周课外体育活动时间不少于6小时的人数约为300人.。

人教版七年级数学下册直方图 典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册直方图 典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】直方图知识讲解责编:康红梅【学习目标】1. 会制作频数分布表,理解频数分布表的意义和作用;2. 会画频数分布直方图,理解频数分布直方图的意义和作用.【要点梳理】要点一、组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释:(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;(2)频数之和等于样本容量.(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.要点二、频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.【:数据的描述 369923 直方图和条形图的联系与区别:】3.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.要点三、频数分布折线图频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数分布折线图.【典型例题】类型一、组距、频数与频数分布表的概念1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_____.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10 (2)10.【解析】解:(1)利用频数的定义进行分析;(2)利用组数的计算方法求解.【总结升华】组数的确定方法是,设数据总数目为n,一般地,当n≤50时,则分为5~8组;当50≤n<100.则分为8~12组较为合适,组数等于最大值与最小值的差除以组距所得商的整数部分加1.举一反三:【变式】(2015•大庆模拟)将100个数据分成①~⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数 4 8 12 24 18 7 3那么第④组的频率为()A.24 B.26 C.0.24 D.0.26【答案】C.解:根据表格中的数据,得第④组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.类型二、频数分布表或直方图2.(2015•黄石)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.【思路点拨】利用合格的人数即50﹣4=46人,除以总人数即可求得.【答案】92%.【解析】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.类型三、频数分布折线图3.抽样检查40个工件的长度,收集到如下一组数据(单位:cm):23.26 23.27 23.52 23.51 23.43 23.42 23.54 23.55 23.6623.67 23.31 23.30 23.27 23.28 23.41 23.40 23.55 23.5623.44 23.43 23.38 23.39 23.63 23.64 23.54 23.56 23.4623.44 23.48 23.46 23.50 23.53 23.55 23.46 23.44 23.4523.47 23.49 23.50 23.46试列出这组数据的频数分布表.画出频数分布直方图和频数折线圈.【思路点拨】利用频数分布直方图画频数折线图时,折线图的两个端点要与横轴相交,其方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到轴两端假想组的组中点,就形成了频数折线图.【答案与解析】解:列频数分布表如下:根据上表,画出频数分布直方图;连接各小长方形上面一条边的中点及横轴上距直方图左右相距半个组距的两个频数为0的点得到频数折线图(如图所示).【总结升华】本例分组采用了“每组端点比数据多一位小数”,即第一组的起点比数据的最小值再小一点的方法.体会这种分组方法的优势,对我们今后的学习很有帮助.类型四、综合应用4. 低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图(每组均含最小值,不含有最大值)和扇形统计图,下图中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动共调查了________个单位;(2)在图②中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为_________度;(3)小明把图①中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,依此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________吨.【思路点拨】(1)先算出碳排放值在5≤x<7范围内所对应的比例,再求一共调查了多少个单位;(2)由碳排放值在5≤x<7范围内所占的比例,可计算出圆心角度数;(3)先计算碳排放值4≤x<5的单位、碳排放值5≤x<6的单位,碳排放值6≤x<7的单位个数,再算出碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值.【答案与解析】解:(1)16÷430=120(个),故填120;(2)4÷30×360°=48°,故填48;(3)碳排放值x≥4(千克/平方米·月)的被检单位是第4,5,6组,分别有28个、12个、4个单位,10000×(28×4.5+12×5.5+4×6.5)÷1000=10×(126+66+26)=2180(吨).所以,碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为2180吨.【总结升华】解答本题的关键是将直方图提供的信息转化为频数分布表.这种“转化”过程对解题大有帮助,值得学习和借鉴.举一反三:【变式】 (山东德州)2011年5月9日至14日,德州市订共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=________,n=________,x=________,y=________;(2)在扇形图中,C等级所对应的圆心角是________度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?【答案】解:(1)20,8,0.4,0.16; (2)57.6;(3)由上表可知达到优秀和良好的共有19+20=39(人),500×3939050(人).初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

七年级数学下册10.2直方图课后作业新人教版(2021年整理)

七年级数学下册10.2直方图课后作业新人教版(2021年整理)

七年级数学下册10.2 直方图课后作业(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册10.2 直方图课后作业(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册10.2 直方图课后作业(新版)新人教版的全部内容。

10。

2直方图课后作业1.一个容量为80的样本,最大值为150,最小值为59,取组距为10,则可以分成( )A.10组 B.9组 C.8组 D.7组2.考察40名学生的年龄,列频数分布表时,这些学生的年龄落在了4个小组中,第一、二、三组的数据个数分别是5,8,15,则第四组的频数是______.3.一个样本有50个数据,其中最大值是208,最小值是169,最大值与最小值的差是____;如果取组距为5,那么这组数据应分成______组,第一组的起点为________,第二组与第一组的分点为________.4.为了增强环境保护意识,在6月5日“世界环境日"当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下(不完整):百分组别噪声声级分组/dB频数比1 44.5~59.5 4 10%2 59。

5~74。

53 74。

5~89.5 25%4 89.5~104.5 125 104。

5~119。

5 6合计40 100%如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有______个5.某中学对八年级女生仰卧起坐的测试成绩进行统计分析,将数据整理后,画出频数分布直方图(如图).已知图中从左到右的第一、第二、第三、第四、第六小组的百分比依次是10%,15%,20%,30%,5%,第五小组的频数是36,根据所给的图填空:(1)第五小组的百分比是________;(2)参加这次测试的女生人数是________;若次数在24次(含24次)以上为达标,则该校八年级女生的达标率为________.参考答案1.A2。

新人教版数学七年级下《10.2直方图》课时练习含答案解析

新人教版数学七年级下《10.2直方图》课时练习含答案解析

新人教版数学七年级下册第十章第二节直方图练习一、选择题1.为了绘出一批数据的频率分布直方图,首先计算出这批数据的变动范围是指数据的( ) A.最大值B.最小值C.最大值与最小值的差D.个数答案:C知识点:频数(率)分布直方图解析:解答:根据频率直方图的是将数据将参量的数值范围等分为若干区间,统计该参量在各个区间上出现的频率,并用矩形条的长度表示频率的大小.即是按照数据的大小按序排列,故选C.分析:频率直方图是按照数据从小到大的顺序排列,包括所有的数据,即数据的变化范围是指数据的最大值和最小值的差.2.在统计中频率分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值答案:A知识点:频数与频率解析:解答:频率是指每个对象出现的次数与总次数的比值(或者百分比),频率反映了各组频数的大小在总数中所占的分量.即可以反映总体的平均水平.故选A.分析:根据频率的定义,即可作出判断3.在频数分布直方图中,各小矩形的面积等于( ).A.相应各组的频数B.组数C.相应各组的频率D.组距答案:C知识点:频数(率)分布直方图解析:解答:根据频率分布直方图的意义,因为小矩形的面积之和等于1,频率之和也为1,所以有各小长方形的面积等于相应各组的频率;故选C.分析:根据频率分布直方图的意义,易得答案.4.已知一组数据有80个,其中最大值为143,最小值为50,取组距为10,则可分成( ). A.10组B.9组C.8组D.7组答案:A知识点:频数(率)分布直方图解析:解答:在样本数据中最大值为143,最小值为50,它们的差是143-50=93,已知组距为10,那么由于93÷10=9.3,故可以分成10组.故选A.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数5.已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是( )A.5 B.6 C.7 D.8答案:A知识点:频数(率)分布直方图解析:解答:∵频数分布直方图中各个长方形的高之比依次为2:3:4:1,样本容量为50,∴第四小组的频数为50×=5.故选A.分析:频数分布直方图中,各个长方形的高之比依次为2:3:4:1,则指各组频数之比为2:3:4:1,据此即可求出第四小组的频数.6 .将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二小组的频数是( ) A.0.3 B.30 C.15 D.35答案:C知识点:频数与频率解析:解答:根据频率的性质,得第二小组的频率等于1-0.7=0.3,则第二小组的频数是50×0.3=15.故选C分析:根据频率的性质,即各组的频率之和为1,求得第二组的频率;再根据频率=频数÷总数,进行计算.7.对一组数据进行适当整理,下列结论正确的是( )A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,小长方形的高与频数成正比D.各组的频数之和等于1答案:C知识点:频数(率)分布直方图,众数,极差解析:解答:A、众数是该组数据出现次数最多的数值,而频数最大的一组表示该范围内的数据最多,所以,众数不一定在频数最大的一组,故本选项错误;B、若极差等于24,取组距为4时,∵24÷4=6,∴数据应分为7组,故本选项错误;C、∵绘制的是频数直方图,∴小长方形的高表示频数,∴小长方形的高与频数成正比,故本选项正确;D、各组的频数之和等于数据的总数,频率之和等于1,故本选项错误.故选C.分析:根据频数分布直方图的特点,众数,极差的定义对各选项分析判断后利用排除法求解.8.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内.其中正确的判断有()A.4个B.3个C.2个D.1个答案:A知识点:频数(率)分布直方图解析:解答:(1)从频率分布直方图上看成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等,故选项正确;(2)从频率分布直方图上看出:成绩在79.5~89.5分段的人数30%,故选项正确;(3)成绩在79.5分以上的学生有50×(30%+10%)=20人,故选项正确;(4)将该组数据按从小到大(或按从大到小)的顺序排列,本次考试成绩的中位数落在69.5~79.5分段内,故选项正确.故选A.分析:根据频数分布直方图的特点,以及中位数的定义进行解答.9.在样本频数分布直方图中,有11个小长方形.若中间的小长方形的面积等于其他10个小长方形面积之和的,且样本容量为160个,则中间的一组的频数为( ).A.0.2 B.32 C.0.25 D.40答案:B知识点:频数(率)分布直方图解析:解答:设中间的长方形面积为x,则其他的10个小长方形的面积为4x,所以可得x +4x=1,得x=0.2;又因为样本容量为160,所以中间一组的频数为160×0.2=32,故选B.分析:根据频率分布直方图的意义,因为小矩形的面积之和等于1,所以中间的小长方形的面积与其他10个小长方形面积之和等于1.从而求出中间一个小长方形的面积.又每个小长方形的面积也就是这组的频率,进而求出该组的频数.10.某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5~9.5 B.9.5~12.5 C.8~11 D.5~8答案:A知识点:频数(率)分布直方图解析:解答:各组的频数是5,4,6,5则第一组的频率是:=0.25,则第四组的频率也是0.25,第二组的频率是:=0.2,则频率为0.2的一组为第二组;组距是8-5=3,第二组的组中值是8,则第二组的范围是:6.5-9.5.故选A.分析:首先根据各组的频数即可确定频率是0.2的是哪一组,然后根据组中值的大小即可确定组距,则频率为0.2的一组的范围即可确定.11.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min 仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是().A.0.1 B.0.2 C.0.3 D.0.4答案:D知识点:频数(率)分布直方图.解析:解答:12÷30=0.4.故选:D.分析:根据频数分布直方图的特点,求出这组的频数,再根据频率=频数÷总数,代入数计算即可12.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为()A.5 B.7 C.16 D.33答案:B等待时间/min481216人数2 3681952知识点:频数(率)分布直方图.解析:解答:由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为:5+2=7人.故答案为:B分析:分析频数直方图,找等待时间不少于6分钟的小组,读出人数再相加可得答案13.2000辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,时速大于等于50且小于60的汽车大约有()A.30辆B.60辆C.300辆D.600辆答案:D知识点:频数(率)分布直方图.解析:解答:由频数直方图可以看出:该组的,又组距=10所以该组的频率=0.3,因此该组的频数=0.3×2000=600故选D分析:根据频数分布直方图的特点,求出这组的频率,再根据频率=频数÷总数,代入数计算即可14.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106](即96≤净重≤106),样本数据分组为[96,98)(即96≤净重<98)以下类似,[98,100),[100,102),[102,104),[104,10 6],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A.90B.75C. 60D.45频率/组距0.1500.1250.1000.07596 98 100 102 104 106答案:A知识点:频数(率)分布直方图.解析:解答:∵由频率分布直方图的性质得各矩形面积和等于1,∴样本中产品净重大于96克小于100克的频率为2×(0.050+0.100)=0.3,∴样本容量=又∵样本中净重大于或等于98克并且小于104克的产品的频率为2×(0.125+0.150+0.100)=0 .75,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90,故选A分析:根据频率分布直方图,先求出样本容量,再计算出样本中净重大于或等于98克并且小于104克的产品的频率,从而求出频数.15.某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁答案:B知识点:条形统计图,中位数的意义及求解方法解析:解答:根据条形统计图可得所有队员的人数为1+2+3+2+2=10(人)因为10人中按照年龄从小到大排列,第5,6两人的岁数都是21岁,所以中位数是21岁故选B分析:根据中位数的定义进行解答.二、填空题16.已知样本容量是40,在样本的频数分布直方图中各小矩形的高之比依次为3:2:4:1,则第二小组的频数为________,第四小组的频率为________.答案:8,10%知识点:频数(率)分布直方图解析:解答:∵频数分布直方图中各个长方形的高之比依次为3:2:4:1,样本的数据个数是40,∴第二小组的频数为40×;第四小组的频率为=0.1=10%.故答案为8,10%.分析:频数分布直方图中,各个长方形的高之比依次为3:2:4:1,则指各组频数之比为3:2:4:1,据此即可求出第二小组的频数第四小组的频率.17.为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:组别次数x 频数(人数)第1组80≤x<100 6第2组100≤x<120 8第3组120≤x<140 a第4组140≤x<160 18第5组160≤x<180 6请结合图表完成下列问题:(1)表中的a=______;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第______组;(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为______.答案:(1)12;(3)3;(4)96.知识点:频数(率)分布直方图解析:解答:(1)由题意得:a=50-(6+8+18+6)=12;(2)由(1)得一分钟跳绳次数在120≤x<140范围中的人数为12,而一分钟跳绳次数在140≤x<160范围中的人数为18人,补全频率直方统计图即可.(3)∵a=12,∴6+8+12=26,则这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x<180范围中的人数为6人,即优秀的人数为6人,则样本中优秀人数所占的百分比为=12%,则800名学生中优秀的人数为800×12%=96人.分析:(1)由样本的容量为50,根据表格中各组的数据,即可求出a的值;(2)由一分钟跳绳次数在120≤x<140范围中的人数为(1)求出的a,一分钟跳绳次数在14 0≤x<160范围中的人数为18人,补全频率直方统计图即可;(3)由样本容量为50,得到第25名学生一分钟跳绳次数落在范围120≤x<140中,即可得到这个样本数据的中位数落在第3小组中;(4)由表格得:50人中一分钟跳绳次数在160≤x<180范围中的人数为6人,即优秀的人数为6人,求出优秀人数所占的百分比,即为总体中优秀人数所占的百分比,即可求出800名学生中优秀的人数.18.某单位职工的年龄(取正整数)的频数分布直方图如图所示,根据图中提供的信息,进行填空:(1)该单位职工共有________人;(2)不小于38岁但小于44岁的职工人数占职工总人数的百分率是________.答案:(1)50;(2)60﹪知识点:频数(率)分布直方图解析:解答:(1)由直方图可知:该单位职工共有4+7+9+11+10+6+3=50(人)故答案为50人(2)因为不小于38岁但小于44岁的职工人数=9+11+10=30(人)所以占职工总人数的百分率=30÷50=60﹪故答案为60﹪分析:(1)根据各组的频数之和即该单位的所有职工的人数可得;(2)根据不小于38岁但小于44岁的职工人数÷职工总人数=占职工总人数的百分率进行计算.19.某市内有一条主干路段,为了使行车安全同时也能增加车流量,规定通过该路段的汽车时速不得低于40km/h,也不得超过70km/h,否则视为违规扣分.某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车行驶时速的频率分布直方图如图所示,则违规扣分的汽车大约为辆.答案:160知识点:频数(率)分布直方图解析:解答:如图,低于40km/h的频率为0.05,超过70km/h的车辆的频率为0.11又某天,有1000辆汽车经过了该路段,故违规扣分的车辆大约为1000×(0.05+0.11)=160辆故答案为:160.分析:由频率分布直方图看出,时速低于40km/h,或超过70km/h车辆的频率,从而可按此比例求出违规扣分的车辆数.20.某校为了了解某个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,列出表格:分组]50~59分60~69分70~79分80~89分90~99分频率0.04 0.04 0.16 0.34 0.42(1)本次测试90分以上的人数有________人;(包括90分)(2)本次测试这50名学生成绩的及格率是________;(60分以上为及格,包括60分)(3)这个年级此学科的学习情况如何?请在下列三个选项中,选一个填在题后的横线上____ ____.A.好B.一般C.不好答案:(1)21;(2) 96% ;(3)A知识点:频数(率)分布表解析:解答:(1)依题意得测试90分以上的人数(包括90分)有50×0.42=21(人);故选A(2)依题意得本次测试这50名学生成绩的及格率为0.04+0.16+0.34+0.42=96%;(3)由于及格率比较高,优秀人数比较多,所有应该选择好.分析:(1)根据总人数和测试90分以上的人数(包括90分)的频率即可求出这次测试90分以上的人数;(2)根据表格可以得到及格人数,然后除以总人数即可得到及格率;(3)由于及格率比较高,优秀人数比较多,所有应该选择好.21.江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出频数分布直方图.(1)他家这个月一共打了次长途电话;(2)通话时间不足10分钟的次;(3)通话时间在分钟范围最多,通话时间在分钟范围最少.答案:(1)77;(2)43;(3)0~5,10~15知识点:频率(数)分布直方图解析:解答:(1)他家这月份的长途电话次数约为:25+18+8+10+16=77(次);(2)通话时间不足10分钟的次数为:25+18=43(次);(3)通话时间在 0~5 分钟范围最多,通话时间在10~15分钟范围最少.分析:(1)根据频率(数)分布直方图提供的数据,将各组的频数相加即可求解;(2)将第一组和第二组的频数相加,便可求出通话时间不足10分钟的的次数;(3)由频率(数)分布直方图可知通话时间在0~5 分钟范围最多,通话时间在10~15分钟范围最少.22.某初一年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若要从身高在,,三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在内的学生中选取的人数为.答案:10知识点:频数(率)分布直方图解析:解答:由已知中频率分布直方图的组距为10,身高在[120,130),[130,140),[140,150]的矩形高为(0.1﹣0.005+0.035+0.020+0.010)=0.030,0.020,0.010故身高在[120,130),[130,140),[140,150]的频率为0.30,0.20,0.10故分层抽样的方法选取30人参加一项活动,则从身高在[130,140)内的学生中选取的人数应为30×=10故答案为:10分析:由已知中的频率分布直方图,根据各组矩形高之和×组距=1,结合已知中频率分布直方图的组距为10,我们易求出身高在[120,13),[130,140),[140,150]三组内学生的频率,根据分屋抽样中样本比例和总体比例一致的原则,我们易求出从身高在[130,140)内的学生中选取的人数.三、解答题23.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2-2.5小时”的部分对应的扇形圆心角为______度;②课外阅读时间的中位数落在______(填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?答案:(1)120 (2)①72°②1~1.5 (3)240知识点:扇形统计图频数(率)统计图中位数的意义及求解方法解析:解答:(1)总人数=30÷25%=120人;(2)①a%=;∴b%=1-10%-25%-45%=20%,∴对应的扇形圆心角为360°×20%=72°;②总共120名学生,中位数为60,61两数的平均数,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800×30%=240人.分析:(1)根据0.5~1小时的人数及所占的比例可得出抽查的总人数.(2)①根据2至2.5的人数及总人数可求出a%的值,进而根据圆周为1可得出答案.②分别求出各组的人数即可作出判断.(3)首先确定课外阅读时间不少于1.5小时所占的比例,然后根据频数=总数×频率即可得出答案.24.为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级5名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:(1)填写频率分布表中末完成的部分.(2)由以上信息判断, 每周做家务的时间不超过1.55h•的学生所占的百分比是________.(3)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.答案:(1)2、0.14、0.06(2)58%(3) 让我们行动起来,在劳动中感恩父母吧!(答案不唯一)知识点:频率(数)分布直方图;频数分布表解析:解答:(1)7÷50=0.14,3÷50=0.06;故答案为:0.14,0.06(2)0.28+0.30=0.58=58%;故答案为:58%.(3)让我们行动起来,在劳动中感恩父母吧!分析:(1)因为总数是50,所以利用频率=频数÷总数即可求出答案;(2)由分布表可知该百分比应为0.28与0.30的和;(3)只要是倡导“孝敬父母,热爱劳动”的句子即可.25.在我市开展“阳光”活动中,为解中学生活动开展情况,随机抽查全市八年级部分同学1分钟,将抽查结果进行,并绘制两个不完整图.请根据图中提供信息,解答问题:(1)本次共抽查多少名学生?(2)请补全直方图空缺部分,直接写扇形图中范围135≤x<155所在扇形圆心角度数.(3)若本次抽查中,在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生成绩为优秀?(4)请你根据以上信息,对我市开展学生活动谈谈自己看法或建议答案:(1)200;(2)81°;(3)4200;(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.答案不唯一知识点:频率(频数)分布直方图扇形统计图解析:解答:(1)抽查的总人数:(8+16)÷12%=200(人);(2)范围是115≤x<145的人数是:200-8-16-71-60-16=29(人),则跳绳次数范围135≤x≤155所在扇形的圆心角度数是:360×=81°.;(3)优秀的比例是:×100%=52.5%,则估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8000×52.5%=4200(人);(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.分析:(1)利用95≤x<115的人数是8+16=24人,所占的比例是12%即可求解;(2)求得范围是115≤x<145的人数,扇形的圆心角度数是360度乘以对应的比例即可求解;(3)首先求得所占的比例,然后乘以总人数8000即可求解;(4)根据实际情况,提出自己的见解即可,答案不唯一.26.某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:(1)这种统计图通常被称为什么统计图?(2)此次调查共询问了多少户人家?(3)超过半数的居民每周去多少次超市?(4)请将这幅图改为扇形统计图.答案:(1)频数分布直方图;(2)1000;(3)1~2知识点:频数(率)分布直方图,扇形统计图解析:解答:(1)这种统计图通常被称为频数分布直方图;(2)此次调查共询问了户数是:50+300+250+100+100+100+50+50=1000(户);(3)超过半数的居民每周去1~2次超市.(4)根据频数直方图中各组的数据,算出每部分对应的圆心角的度数;表示去超市次数所占百分比圆心角度数A 5% 18°B 1 30% 108°C 2 25% 90°D 3 10% 36°E 4 10% 36°F 5 10% 36°G 6 5% 18°H 7 5% 18°扇形统计图如下:分析:(1)根据频数分布直方图的定义即可解决;(2)各组户数的和就是询问的总户数;(3)首先确定这组数据的中位数,即可确定;(4)计算出每组对应的扇形的圆心角,即可作出.27.某年级组织学生参加夏令营,分为甲、乙、丙三组进行活动. 下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题:报名人数分布直方图报名人数扇形统计图(1)求该年级报名参加本次活动的总人数;(2)求该年级报名参加乙组的人数,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,那么,应从甲组抽调多少名学生到丙组?答案:(1)50;(2)10;(3)5知识点:扇形统计图频率(频数)分布直方图解析:解答:(1)15÷30%=50(人),(2)乙组的人数:50×20%=10(人);(3)设应从甲组调x名学生到丙组,可得方程:25+x=3(15-x),解得:x=5.答:应从甲组调5名学生到丙组分析:(1)根据甲组有15人,所占的比例是30%,即可求得总数,总数乘以所占的比例即可求得这一组的人数;(2)根据乙组的人数即可补全条形统计图中乙组的空缺部分;(3)设应从甲组调x名学生到丙组,根据丙组人数是甲组人数的3倍,即可列方程求解。

人教版数学七年级下册 第10章 10.2 直方图同步测试试题(一)

人教版数学七年级下册 第10章  10.2 直方图同步测试试题(一)

直方图同步测试试题(一)一.选择题1.2018年11月贵阳市教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为()A.80人B.60人C.20人D.10人2.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A.B.C.D.3.一个班有40名学生,在期末体育考核中,达到优秀的有18人,合格(但没达到优秀)的有17人,则这次体育考核中,不合格人数的频率是()A.0.125B.0.45C.0.425D.1.254.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A.24人B.10人C.14人D.29人5.数学老师将数学期末模拟考试的成绩整理后,绘制成如图所示的频数分布直方图,下列说法错误的是()A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的分数段的频数为2D.得分及格(≥60分)约有12人6.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数不少于20的频率为()A.0.1B.0.17C.0.33D.0.97.某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是()A.0.1B.0.2C.0.3D.0.48.合肥市教育教学研究室为了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A等,130~150分;B等,110分~129分;C等,90分~109分;D等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表等次频数频率A0.2BC6D20.1合计1根据图表中的信息,下列说法中不正确的是()A.这次抽查了20名学生参加一模考试的数学成绩B.这次一模考试中,考生数学成绩为B等次的频率为0.4C.根据频数分布直方图制作的扇形统计图中等次C所占的圆心角为105°D.若全市有20000名学生参加中考一模考试,则估计数学成绩达到B等次及以上的人数有12000人9.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%10.体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16%B.24%C.30%D.40%二.填空题11.一个样本容量为50的样本最大值为127,最小值为60,组距为10,则可分成组.12.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其它10个小长方形高之和的,且样本容量是60,则中间一组的频数是.13.对一次抽样调查收集的数据进行分组,绘制了如表不完整的频数分布表(每一组包含左端点,不包含右端点):分组49.5~59.559.5~69.569.5~79.578.5~89.589.5~99.5频数9151612已知第三小组(69.5~79.5)出现的频数是最后一组(89.5~99.5)频数的2倍,则这次调查抽取的样本容量是.14.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是.15.小宇调查了初一年级三个班学生的身高,并进行了统计,列出如频数分布表:若要从每个班级中选取10名身高在160cm和170cm之间同学参加学校的广播操展示,不考虑其他因素的影响,则(填“1班”,“2班”或“3班”)的可供挑选的空间最大.身高/厘米频数班级150≤x<155155≤x<160160≤x<165165≤x<170170≤x<175合计1班1812145402班10151032403班510108740三.解答题16.受新冠病毒影响,2020年春浙江省中小学延期开学,复学后,某校为了解学生对防疫知识的掌握情况,学校组织全体学生进行防疫知识竞赛.从中抽取了8%的学生的竞赛成绩(满分100,成绩为整数)作为样本,整理后绘制成如图所示的频数直方图.请结合直方图解答下列问题:(1)求此次抽取的样本容量及全校学生人数.(2)求竞赛成绩在84.5~89.5这一组的频率.(3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计全校学生中约有多少人获得奖励.17.在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动.为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A.从某所普通中学校随机选取200名学生作为调查对象进行调查;B.从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C.从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在1~2小时之间的人数m =.(3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在1~2小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.18.某地区共有1800名九年级学生,为了解这些学生的体质健康状况,开学初随机选取部分学生进行体质健康测试,以下是根据测试成绩绘制的部分统计图表:等级测试成绩(分)频数优秀45≤x≤50140良好37.5≤x<4536及格30≤x<37.5不及格x<306根据以上信息,解答下列问题:(1)求参加本次测试的学生数,并将频数分布表补充完整;(2)求体质健康成绩属于“不及格”等级的频率;(3)试估计该地区九年级学生开学初体质健康状况达到“良好”及以上等级的学生数.19.2020年3月25日是全国中小学生安全教育日,常德芷兰实验学校为加强学生的安全意识,组织了全校8000名学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?参考答案与试题解析一.选择题1.【解答】解:根据题意知,第三组的频数为200×=80(人),故选:A.2.【解答】解:由题意得,出现“6”向上的频率是,故选:A.3.【解答】解:不合格人数为40﹣18﹣17=5,∴不合格人数的频率是=0.125,故选:A.4.【解答】解:成绩在69.5~89.5分范围内的学生共有:10+14=24(人),故选:A.5.【解答】解:A、得分在70~80分的人数最多,正确,本选项不符合题意.B、该班的总人数为40,正确,本选项不符合题意.C、人数最少的分数段的频数为2,正确,本选项不符合题意.D、得分及格(≥60分)约有12人,错误,应该有36人,本选项符合题意.故选:D.6.【解答】解:由图知,学生仰卧起坐次数不少于20的人数为10+12+5=27(人),所以学生仰卧起坐次数不少于20的频率为27÷30=0.9,故选:D.7.【解答】解:仰卧起坐次数不小于15次且小于20次的频率是:=0.1;故选:A.8.【解答】解:A.本次抽查的学生数学成绩数量为2÷0.1=20,此选项正确;B.A等次的数量为20×0.2=4,则B等次的数量为20﹣(4+6+2)=8,所以考生数学成绩为B等次的频率为8÷20=0.4,此选项正确;C.根据频数分布直方图制作的扇形统计图中等次C所占的圆心角为360°×=108°,此选项错误;D.估计数学成绩达到B等次及以上的人数有20000×(0.2+0.4)=12000人,此选项正确;故选:C.9.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.10.【解答】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选:D.二.填空题(共5小题)11.【解答】解:∵样本最大值为127,最小值为60,∴极差为127﹣60=67,∵组距为10,∴67÷10=6.7,∴此样本可分成7组,故答案为:7.12.【解答】解:设中间一组的频率是x,那么其它各组频率的和是1,根据题意得x+4x=1,解得x=0.2,60×0.2=12.故中间一组的频数是12.故答案为:12.13.【解答】解:∵第三小组(69.5~79.5)出现的频数是最后一组(89.5~99.5)频数的2倍,且最后一组的频数为12,∴第三组的频数为24,则这次调查抽取的样本容量是9+15+24+16+12=76,故答案为:76.14.【解答】解:3000×[10(0.002+0.006+0.012)]=600,答:这3000名学生在该次数学考试中成绩小于60分的学生数是600人.故答案为:600人.15.【解答】解:身高在160cm和170cm之间同学人数:一班26人,二班13人,三班18人,因此可挑选空间最大的是一班,故答案为:1班.三.解答题(共4小题)16.【解答】解:(1)样本容量:4+10+16+13+7=50,全校学生数:50÷8%=625(人),答:此次抽取的样本容量是50,全校学生人数为625人;(2)16÷50=0.32,答:竞赛成绩在84.5~89.5这一组的频率是0.32;(3)625×=250(人),答:全校学生中约有250人获得奖励.17.【解答】解:(1)由题意可得,从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;(2)m=200﹣92﹣36﹣18=54,故答案为:54;(3)100×=54(万),答:全市每天“停课不停学”的学习时间在1~2小时及以上的人数有54万人;(4)这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.18.【解答】解:(1)140÷0.7=200(人)答:参加本次测试的学生数为200人,200﹣140﹣36﹣6=18(人),故答案为:18;(2)6÷200=0.03,答:体质健康成绩属于“不及格”等级的频率为0.03;(3)1800×=1584(人),答:达到“良好”及以上等级的学生数为1584人.19.【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)8000×(0.08+0.2)=2240,所以该校安全意识不强的学生约有2240人.。

七年级数学下册直方图测试(含答案)

七年级数学下册直方图测试(含答案)

七年级数学下册直方图测试1.对某中学同年龄的70名女学生的身高进行测量,得到一组数据,其中最大值是170cm,最小值是147cm,对这组数据进行整理时,打算把它分成8组,则组距是_________.2.如图是某班学生的一次考试成绩的频数分布直方图(每组数据含最小值,不含最大值),由图可知:(1)该班有______名学生;(2)该班不及格的学生共有________名,占全班人数的________%;(3)该班成绩优秀(分数在85分或85分以上)的学生最多________人,最少______人.3.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁(不含35岁)的网瘾人群进行了抽样调查.下图表示在调查的样本中不同年龄段的网瘾人数,其中30~35岁(不含35岁)的网瘾人数占样本总人数的20%(每组数据含最小值,不含最大值).(1)被抽样调查的样本总人数为______人.(2)请把统计图中缺失的数据、图形补充完整.(3)据报道,目前我国12~35岁(不含35岁)网瘾人数约为200万人,那么其中12~18岁(不含18岁)的网瘾人数约有多少人?4.为了了解中学生的身高情况,对某中学同年龄的若干名女生的身高进行了测量,整理数据后画出频数分布直方图(如图).(每组数据含最小值,不含最大值,且身高均为整数)(1)参加这次测试的学生人数是__________;(2)身高在__________范围内的学生人数最多,这一范围的学生占______%;(3)如果身高在155cm以上(含155cm)者为良好,试估计该校女学生身高的良好率是________.5.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为11月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了直方图如下(从左至右依次为第一组至第六组).已知从左至右各长方形的高度之比为2∶3∶4∶6∶4∶1,第三组的频数为12,请回答下列问题:(1)本次活动共有多少件作品参加评比?(2)第几组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组的获奖率较高?6.某中学为了了解本校学生的身体发育情况,对同年龄的40名女学生的身高进行了测量,结果如下:(数据均近似为正整数,单位cm)167,154,159,166,169,159,156,162,158,159,160,164,160,157,161,158,153,158,164,158,163,158,x,157,162,159,165,157,151,146,151,160,165,158,163,162,154,149,168,164.统计人员将上述数据整理后,画出了频数分布直方图,并列出了频数分布表如下:根据以上信息回答下列问题:(1)频数分布表中的A=_________,B=_________;(2)原始数据中,x的值可能是__________________.7.某校为了解学生对三种国庆活动方案的意见,对该校学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图.请根据图中提供的信息解答下列问题(1)在这次调查中共调查了____名学生;(2)请把条形统计图补充完整;(3)已知该校有1 000名学生,试估计该校赞成方案1的学生约有多少人.8.如下是九年级某班学生适应性考试文综成绩(按A、B、C、D等级划分,且A等成绩最好)的条形统计图和扇形统计图,请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C等所对应的扇形统计图的百分比是多少;(3)如果文综成绩是B等及B等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中.9.为了解某班学生参加敬老活动的情况,对全班每一名学生参加活动的次数(单位:次)进行了统计,分别绘制了如下的统计表和频数分布直方图.请你根据统计表和频数分布直方图解答下列问题:(1)补全统计表.(2)补全频数分布直方图.(3)参加敬老活动的学生一共有多少名?10.某生物课外兴趣小组的同学举行植物标本制作比赛,结果统计如下:根据表中提供的信息,回答下列问题:(1)该兴趣小组共有多少人?(2)制作标本数在6个以上的人数在全组中所占的百分比是多少?(百分号前保留整数)(3)补全如图所示的条形统计图.参考答案1.3.2.(1)40;(2)4,10;(3)14,6. 3.(1)2400;(2)如图;(3)约62万.4.(1)30人;(2)157.5~160.5厘米(不含160.5厘米),40;(3)80%. 5.(1)60件;(2)第四组,18件;(3)第四组作品18件,获奖率55.6%;第六组作品3件,获奖率66.7%,因此第六组高. 6.A =6,B =12,x =150,151,152,153,154. 7.解:(1)调查的总人数是15÷25% =60(人).(2)赞成方案2的人数是60- 24-15-9=12(人),补全条形统计图如下:(3)该校赞成方案1的学生约有:24100040060⨯=(人). 8.解:(1)调查的总人数是15÷25%=60(人),则B 等的人数是60×40%=24(人).(2)C等所对应的百分比是:1-25%-40%-5%=30%.(3)400×(25%+40%)=260(名).答:有260名学生有资格报考示范性高中.9.解:(1)由直方图可知参加1~2次活动的有4人,由统计表可知参加1次活动的有1人,∴参加2次活动的人数为4 -1=3(人).补全统计表略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册直方图检测
题2
◆知能点分类训练
知能点1 用直方图描述数据
1.七年二班50名同学的一次考试成绩频数分布直方图如图所示,则71~90•分之间有_________人.
2.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min 仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是〖〗.
A.0.1 B.0.2 C.0.3 D.0.4
3.如图是某校七年一班全班同学1min心跳次数频数直方图,•那么,•心跳次数在_______之间的学生最多,占统计人数的_____%.〖精确到1%〗
4.如图是某单位职工的年龄〖取正整数〗的频率分布直方图,•根据图中提供的信息,回答下列问题:
〖1〗该单位共有职工多少人?
〖2〗不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?
〖3〗如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?
知能点2 绘制频数分布直方图
5.已知一个样本,27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,•24,•26,27,28,30,以2为组距画出频数分布直方图.
6.为了增强学生的身体素质,某校坚持常年的全员体育锻炼,并定期进行体能测试.下面将某班学生立定跳远成绩〖精确到0.1m〗进行整理后,分成5组〖含低值不含高值〗:
1.60~1.80,1.80~
2.00,2.00~2.20,2.20~2.40,2.40~2.60,已知前4个小组的
频率分别是0.05,0.15,0.30,0.35,第五个小组的频数是9.
〖1〗该班参加这项测试的人数是多少人?
〖2〗请画出频数分布直方图.
〖3〗成绩在2.00米以上〖含2.00米〗为合格,则该班成绩的合格率是多少?
◆综合应用提高
7.某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:
〖1〗这种统计图通常被称为什么统计图?〖2〗此次调查共询问了多少户人家?
〖3〗超过半数的居民每周去多少次超市?〖4〗请将这幅图改为扇形统计图.
8.为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级50名学生调查他们一周〖按7天计算〗做家务所用时间〖单位:小时,调查结果保留一位小数〗??????
分组划记频数频率
0.55~1.05 正正…14 0.28
1.05~1.55 正正正15 0.30
1.55~2.05 正 (7)
2.05~2.55 … 4 0.08
2.55~
3.05 … 5 0.10
3.05~3.55 (3)
3.55~
4.05 T 0.04
〖1〗填写频率分布表中末完成的部分.
〖2〗由以上信息判断,•每周做家务的时间不超过1.5h•的学生所占的百分比是________.〖3〗针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.
◆开放探索创新
9.某班学生参加公民道德知识竞赛,将竞赛所取得的成绩〖得分取整数〗•进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息,•回答下列问题.〖1〗该班共有多少名学生?
〖2〗60.5~70.5这一分数段的频数﹨频率分别是多少?
〖3〗根据统计图,提出一个问题,并回答你所提出的问题?
◆中考真题实战
10.〖福州〗为了进一步了解八年级学生的身体素质情况,体育老师对八年级〖1〗•班50名学生进行1min跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.
组别次数x 频数〖人数〗
第1组80≤x<100 6
第2组100≤x<120 8
第3组120≤x<140 a
第4组140≤<x<160 18
第5组160≤<x<180 6
请结合图表完成下列问题.
〖1〗表中的a=______.
〖2〗请把频数直方图补充完整.
〖3〗若八年级学生1min跳绳次数〖x〗达标要求是:x<120为不合格,120≤x<140•为合格,140≤x<160为良,x≥160为优,根据以上信息,请你给学校或八年级同学提一条合理化建议.
答案:
1.27 2.D 3.59.5~69.5 48
4.〖1〗4+7+9+11+10+6+3=50〖人〗
〖2〗〖9+10+11〗÷50=60%
〖3〗10+6+3-4=15〖人〗
5.解:〖1〗计算最大值与最小值的差:32-23=9.
〖2〗确定组数与组距:已知组距为2,则9
2
=4.5,因此定为5组.
〖3〗决定分点,所分的五个小组是:22.5~24.5,24.5~26.5,26.5~28.5,28.5~
30.5,30.5~32.5.
〖4〗列频数分布表:
分组划记频数
22.5~24.5 (2)
24.5~26.5 (3)
26.5~28.5 正 (8)
28.5~30.5 (4)
30.5~32.5 (3)
合计正正正正20
〖5〗画频数分布直方图:
6.解:〖1〗第五组的频率为1-0.05-0.15-0.30-0.35=0.15.
频数是9,所以总人数为9÷0.15=60〖人〗.
〖2〗前4个组的人数依次为60×0.05=3〖人〗.
60×0.15=9〖人〗,60×0.30=18〖人〗.
60×0.35=21〖人〗.
〖3〗因为3,4,5组的频率之和为0.30+0.35+0.15=0.80,所以该班的合格率是80%〗7.〖1〗这种统计图通常被称为频数分布直方图.
〖2〗此次调查共询问了1 000户人家.
〖3〗超过半数的人家每周去1~2次.
〖4〗此图改为扇形统计图为:
8.〖1〗表格中空缺部分自上而上依次为:0.14,0.06,2.
〖2〗58%
〖3〗如:“体验生活,锻炼自我,珍惜母爱,勤奋好学”等.
9.〖1〗3+6+9+12+18=48〖人〗,即该班共有48名学生.
〖2〗60.5~70.5这一分数段的频数12,频率为12÷48=0.25.
〖3〗优秀率为15
48
×100%=31.25%〖80分以上为优秀〗.
10.〖1〗a=12 〖2〗图略〖3〗只要合理即可.。

相关文档
最新文档