用空间向量解决立体几何中的平行问题26页PPT
空间向量在立体几何中的应用sxz
一.平行问题
Db
(一)证明两直线平行
A ,B a;C ,D b,A BC D a∥
C
A
b
a
B
方法思路:在两分 直别 线取 上不同的
得到两向量,转明 化两 为向 证量平行
知 A ( x 1 B ,y 1 )C , ( x 2 D ,y 2 )则 ,x 1 y 2 x 有 2 y 1 a ∥ b
方 底法 线思 性路 表: 示证 (明 即方 内直 在向 存线 平向 在的 面量 一可 向用 量平 与组 相面 方基 等 的 向)一 向 e 1 e 2
则可得面内一直外线的与线面平 ,从行而证线面. 平行
(三)面面平行
1.不重合的两 与平 的面法向量 n
分别m是 和n, mn∥
方法思路:平 求面 出的 其法 中向 一法 量向 ,量 再与 证
的不共线的量 两积 向 ( 0 为 量 即的 都数 垂直两 )面 ,平 则
二.垂直问题
(一)证明两直线垂直
b
不 分重 别a合 为 和b的 , a和 直 则a直 线 有 bb线 的 0 方 a向 b 向b 量 a a
方法思路:找两直线 方的 向向量 (分别
| m|
方法思路:求出任 平一 面法 的向m(量 方程
组可求 ),在面内任取Q一与点点P得一向量
转化为 P Q在法向量的投影,的 套长 公度 式。
D
(二)求两异面直线的距离d
b
知a,b是两异面直线A,,Ba,C, Db,
B
aA
C
找一向量与两异面都 直垂 线直的向m量,
则两异面直线的距 d=离ACm
(二)证明线面垂直 l
用空间向量证(解)立体几何题之——证明线面平行ppt 人教课标版
( 1 , 1 , 1 ) 同理可得平面 CB1D 1的法向量为m
例4.在正方体ABCDA1B1C1D1中,E、F、 G、H分别是A1B1、 B1C1、C1D1、D1A1的 中点. 求证: 平面AEH∥平面BDGF
例3.在正方体ABCDA1B1C1D1中,求证: A 1 平面A1BD∥平面CB1D1
平行四边形A1BCD1 A1B∥D1C 平行四边形DBB1D1 B1D1∥BD
D1
B1
C1
D A B
C
于是平面A1BD∥平面CB1D1
证明:建立如图所示的 空间直角坐标系o-xyz 设正方形边长为1, A1 ( 1 ,0 , 1 ) 则向量 DA 1
C N B
再见
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
空间向量与立体几何PPT课件
(4)对于不共线的三点 A、B 、C 和平面 ABC 外的一点 O , 空间一点 P 满足关系式 OP xOA yOB zOC ,则点 P 在平 面 ABC 内的充要条件是 x y z 1 .
则 D(0,0,0),B
⑴ CD 0, 2,0
2,0,0
,PB
,C 2 2
0, 2,0 ,0, 2
2
,P ,
2 2
,0,
2 2
CD PB 0,CD PB,CD PB
⑵取平面 BDx,y,z)
PB
2021
6
4、两个向量的数量积
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
空间两个向量的数量积的性质
注:空间向量的数量积具有和平面202向1 量的数量积完全相同的性质7 .
(三)空间向量的理论
1.共线向量定理:对空间任意两个向量
a,b(b0),a//b的充要条件是存在实数 使
17
例 1.一副三角板 ABC 和 ABD 如图摆成直二面角, 若 BC=a,求 AB 和 CD 的夹角的余弦值.
分析:用几何法求两异面直 线所成的角关键在于巧妙地利 用平行线构造角,且能通过解三 角形的知识求出该角的大小.
若在异面直线上选取两个非零向量 a 和 b ,借助向量的夹角 公式计算出这两个向量的夹角的大小就可得出两异面直线所
VD PBC
1 3
1 2
PB
PD
DC
1 3
1 2
高中数学3.2立体几何中的向量方法课件-(共43张PPT)
,即14x+ 43y+12z=0
,
令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵ PD =0,23 3,-1,显然 PD =
3 3 n.
26
∵ PD ∥n,∴ PD ⊥平面 ABE,即 PD⊥平面 ABE.
探究提高 证明线面平行和垂直问题,可以用 几何法,也可以用向量法,用向量法的关键在 于构造向量,再用共线向量定理或共面向量定 理及两向量垂直的判定定理。若能建立空间直 角坐标系,其证法较为灵活方便.
7
r 平面的法向量:如果表示向量 n的有向线段所在
直线垂直于r平面 ,则称r这个向量垂直于平r
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
r
l
给定一点Ar 和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
r 完全确定的.
n
几点注意:
1.法向量一定是非零向量;
17
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1
中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
18
证明 方法一 如图所示,以 D 为原点,DA、DC、DD1 所在
直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的
1,得
x
1 2
y 1
r n
(
1
,
1,1),
2
10
思考2:
因为方向向量与法向量可以确定直线和平面的 位置,所以我们应该可以利用直线的方向向量与平 面的法向量表示空间直线、平面间的平行、垂直、 夹角等位置关系.你能用直线的方向向量表示空间两 直线平行、垂直的位置关系以及它们之间的夹角吗? 你能用平面的法向量表示空间两平面平行、垂直的 位置关系以及它们二面角的大小吗?
( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)
解析:(1)∵a=(1,-3,-1),b=(8,2,2) ∴a·b=8-6-2=0,∴a⊥b,∴l1⊥l2. (2)∵u=(1,3,0),v=(-3,-9,0), ∴v=-3u,∴u∥v,∴α∥β. (3)∵a=(1,-4,-3),u=(2,0,3), ∴a与u既不共线,也不垂直, ∴l与平面α斜交.
[证明] 如图所示建立空间直角坐标系D-xyz,则有D(0,0,0), A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1), B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1).
(1)设n1=(x1,y1,z1)是平面ADE的法向量, 则n1⊥D→A,n1⊥A→E, 即nn11··DA→→EA==22yx11+=z01,=0,
设平面SCD的法向量为n=(1,y,z), 则n·D→C=(1,y,z)·(1,2,0)=1+2y=0, ∴y=-12. 又n·D→S=(1,y,z)·(-1,0,2)=-1+2z=0, ∴z=12. ∴n=1,-12,12即为平面SCD的一个法向量.
探究三 利用空间向量证明平行关系 [典例3] 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中 点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
G→En=(x,y,z)是平面EFG的法向量,
n·G→E=0, 则n·G→F=0.
∴--2xx-+y+y+2zz==00,.
∴xy==zz., ∴n=(z,z,z),令z=1,此时n=(1,1,1), 所以平面EFG的一个法向量为(1,1,1).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道将来要得到 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门,成长的地方; 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己,才能战胜困难! 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔,然后放下。“雁 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得起打击;丢得起面 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则,坚持守底气;淡 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心想要事事求顺意, 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。我们的梦想在哪里? 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的宽道上!珍惜每一分 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要感叹你失去或未得到; 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境之人,不做苟且之事, 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态,得失了无忧,来去都 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才是永恒的美。意逐白云 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可;累时,闲是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限制我们的,不是周遭 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多少委屈,一笑而泯之。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴米之忧烦;世外桃源祥 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为虚名所累;做事要头 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求,多一点警醒。傲不可 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华洗礼,在自观中走向 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面上看是人脉的差距, 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定命运。知恩感恩,是 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致, 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩感恩,是很重要的一 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他这样一想、 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口, 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有�
高一数学ppt课件 空间向量与立体几何课件4
→ → 所以BD=(-3a,3b,0),EA=(0,-3b,-3c).
→ 1→ → 1→ 因为BM=3BD=(-a,b,0),NA=3EA=(0,-b,-c), → → → → 所以NM=NA+AB+BM
=(0,-b,-c)+(3a,0,0)+(-a,b,0)=(2a,0,-c).
→ 又平面 CDE 的一个法向量是AD=(0,3b,0), → → 由NM· AD=(2a,0,-c)· (0,3b,0)=0, → → 得到NM⊥AD.
AB=5,
∴AC、BC、C1C两两垂直.
如图,以C为坐标原点,CA、CB、CC1所在直线 分别为x轴、y轴、z轴建立空间直角坐标系. 则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),
→ → ∵AC=(-3,0,0),BC1=(0,-4,4),
→ → → → ∴AC· BC1=0.∴AC⊥BC1,即 AC⊥BC1.
1 3 1 → → ∴MN=(-4, 4 ,4),AB1=(1,0,1),
1 1 → → ∴MN· AB1=-4+0+4=0.
→ → ∴MN⊥AB1,∴AB1⊥MN.
要点二 利用空间向量证明平行关系
例 2 如图所示,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 M,N 分别在对角线 BD, 1 1 AE 上,且 BM=3BD,AN=3AE.求证:MN∥平面 CDE.
c2),则l∥m⇔a∥b⇔
.
⇔ a=kb
a1=ka2,b1=kb2,c1=kc2,
k∈R
(2)线面平行 设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u= (a2,b2,c2),则l∥α⇔a⊥u⇔ ⇔ . a· u=0 a1a2+b1b2+c1c2=0 (3)面面平行 设平面 α , β 的法向量分别为 u = (a1 , b1 , c1) , v = (a2 , b2 , c2),则α∥β⇔u∥v⇔ ⇔ u=kv a1=ka2,b1=kb2,c1=kc2,
1.2 空间向量基本定理(共26张PPT)
解:(1) BC
1
BB1 B1C1 BB1 A1C1 A1 B1 a c b
a b a b cos BAA1 11 cos60
a c b
BC1
2
1
1
a cb c ,
,同理可得
―
→
→
―
→
―
跟踪训练 1.如图所示,在平行六面体 ABCD-A′B′C′D′中,AB=a,AD=b,AA′
=c,P 是 CA′的中点,M 是 CD′的中点,N 是 C′D′的中点,点 Q 在 CA′上,
且 CQ∶QA′=4∶1,用基底{a,b,c}表示以下向量.
―
→
→
―
→
―
→
―
(1)AP;(2)AM;(3)AN;(4)AQ.
AB1 BC1
AB1 BC1
2
2
a c a b b a c b b 1,
1
2 3
6
6
.
异面直线 AB1 与 BC1 所成角的余弦值为 6 .
6
课堂小结
1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基
础.
2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利
5.若{a,b,c}是空间的一个基底,试判断{a+b,b+c,c+a}能否作为空间的一个基底.
解:假设a+b,b+c,c+a共面,则存在实数λ,μ,使得a+b=λ(b+c)+μ(c+a),
即a+b=μa+λb+(λ+μ)c.
空间向量在立体几何中的应用PPT优秀课件
返回目录
*对应演练*
如图,四棱锥P—ABCD中, 底面ABCD为矩形,PD⊥ 底面ABCD,AD=PD, E,F分别为CD,PB的中点. (1)求证:EF⊥平面PAB;
【分析】可用空间向量的坐标运算来证明. 【证明】以A为原点,AB,AD,AP分别为x轴,y轴,z 轴建立空间直角坐标系,如图所示. 设AB=a,PA=AD=1,
a 则P(0,0,1),C(a,1,0),E( ,0,0), 2 1 1 D(0,1,0),F(0, 2 , 2 ). 1 1 a (1)AF=(0, , ),EP=(- ,0,1), 2 2 2 a 1 1 EC=( ,1,0),∴AF= EP+ EC, 2 2 2 又AF⊂ 平面PEC,∴AF∥平面PEC.
空间向量在立体几何
考点一
考点二 考点三 考点四
考点五
1.平面的法向量
直线l⊥α,取直线l的 做平面α的法向量.
方向向量a,则 向量a 叫
2.直线l的方向向量是u=(a1,b1,c1),平面α的法向
a1a2+b1b2+c1c2=0 u· v=0 量v=(a2,b2,c2),则l∥α ⇔ . ⇔
返回目录
(2)PD=(0,1,-1),CD=(-a,0,0), 1 1 ∴AF· PD=(0, , )· (0,1,-1)=0, 2 2 1 1 AF· CD=(0, , )· (-a,0,0)=0, 2 2 ∴AF⊥PD,AF⊥CD,又PD∩CD=D, ∴AF⊥平面PCD.
【评析】用向量证明线面平行时,最后应说明向量 所在的基线不在平面内.
返回目录
*对应演练*
如图,在正方体ABCD— A1B1C1D1中,E,F,M分别 为棱BB1,CD,AA1的中点. 证明:
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件
研一研· 问题探究、课堂更高效
3.2 第1课时
解
(1)∵ a= (2,3,-1),b=(- 6,- 9,3) 1 ∴a=-3b,∴a∥b,∴l1∥l2.
(2)∵a=(-2,1,4),b=(6,3,3),∴a· b≠0 且 a≠kb(k∈R), ∴a,b 既不共线也不垂直,即 l1 与 l2 相交或异面. 1 (3)∵u=(1,-1,2),v=3,2,-2, ∴u· v=3-2-1=0,∴u⊥v,即 α⊥β. (4)∵u=(2, -3,4), v=(4, -2,1), ∴u· v≠0 且 u≠kv(k∈R), ∴u 与 v 既不共线也不垂直,即 α 和 β 相交但不垂直. (5)∵a=(0,-8,12),u=(0,2,-3), 1 ∴u=-4a,∴u∥a,即 l⊥α.
研一研· 问题探究、课堂更高效
3.2 第1课时
跟踪训练 2 用向量方法证明: 平面外一条直线与此平面内 的一条直线平行,则该直线与此平面平行. 已知:直线 l,m 和平面 α,其中 l⊄α,m⊂α,且 l∥m, 求证:l∥α.
证明 设直线 l,m 的方向向量分别为 a,b,平面 α 的 法向量分别为 u. 因为 l∥m,所以 a=kb,k∈R. 又因为 u⊥α,m⊂α,所以 u⊥b, 因此 u· b = 0, u· a= u· kb=0.所以 l∥α.
3.2 第1课时
探究点一 利用方向向量和法向量判定线面的位置关系 问题 1 对于一条确定的直线和一个确定的平面, 它的方向 向量及法向量有几个?
答案 一条直线的方向向量有无数多个,它们都是共线 向量;一个平面的法向量也有无数多个,它们也都是共 线向量.平面的法向量可看作平面的垂线的方向向量。
研一研· 问题探究、课堂更高效
人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系
探究 1:求平面的法向量 【例 1】
如图,已知四边形 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,SA=AB=BC=1,AD= ,试建立适当的坐标系,求: (1)平面 ABCD 与平面 SAB 的一个法向量; (2)平面 SCD 的一个法向量.
1 2
【方法指导】一般情况下,使用待定系数法求平面的法向量 的步骤:①设出平面的法向量为 n=(x,y,z);②找出(求出)平面内 的两个不共线的向量 a=(a1,b1,c1),b=(a2,b2,c2);③根据法向量的 定义建立关于 x,y,z 的方程组 一个解,即得法向量. n·a = 0, n·b = 0; ④解方程组,取其中的
【解析】不妨设正方体的边长为 a,建立空间直角坐标系 Dxyz(如图),则 E(a,2,0),F(2,a,0),G(a,0,2). 设平面 EFG 的法向量为 n=(x,y,z), GE=(0,2,-2),
a a FE=( ,- ,0), 2 2 1 1 a a a a a
n ⊥ GE,⇒ 1 1 n ⊥ FE n·FE = x- y = 0,
2
2
2
2
(法二)以CD,CB,CE为正交基底,建立空间直角坐标系,则 E(0,0,1),D( 2,0,0),B(0, 2,0),A( 2, 2,0),M( , ,1),DE= (- 2,0,1),BE=(0,- 2,1),AM=(- 2 ,- 2 ,1). 设平面 BDE 的法向量为 n=(a,b,c),∴n⊥DE,n⊥BE, n·DE = 0, - 2a + c = 0, ∴ ∴ n·BE = 0, - 2b + c = 0, 令 c=1,则 a= 2 ,b= 2 ,n=( 2 , 2 ,1),∴n·AM=0.
空间向量解决立体几何问题
❖ ∴ 30.
❖ (3)二面角
❖ 设n1 、n2分别是二面角两个半平面α、β的 法向量,由几何知识可知,二面角α-L-β的大 小与法向量n1 、n2夹角相等(选取法向量竖 坐标z同号时相等)或互补(选取法向量竖坐 标z异号时互补),于是求二面角的大小可转 化为求两个平面法向量的夹角,这样可避免 了二面角的平面角的作图麻烦.
rr
rr
l a // u a u
r r rr
u v u gv 0
rr
1、设 a , b 分别是直线 l 1 , l 2 的方向向量,根据下列条 件判断直线 l 1 , l 2 的位置关系。
r
r
( 1 ) a ( 2 , 1 , 2 ) ,b ( 6 , 3 , 6 )
❖
解之得 2 x z 0
2y 0
x 1 z
2
y 0
❖ 取z=2得n1=(-1,0,2)
❖ 同理可得平面A1FD的法向量为n2=(2,0,1)
❖ ∵n1 ·n2 = -2+0+2=0
❖ ∴面AED⊥面A1FD
2.求空间中的角
❖ (1)两异面直线的夹角 ❖ 利用向量法求两异面直线所成的夹角,不用再
y
0
取z =1
B1 1
AA
xB
C1 1
y
OD C
得平面OA1D1的法向量的坐标n=(2,0,1).
解:以A为原点建立空间直角坐标系O-xyz(如图),设 平面OA1D1的法向量的法向量为n=(x,y,z), 则
O由(OuuA1ur1 ,=(1,-1,0)-1,,A21)(,0,OuuDu0ur1 ,=(2)-1,,D1,1(20),2,2)
b
a、b的距离. B
高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21
(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,则 n1⊥D→A,n1⊥A→E, 即nn11· ·AD→→EA==22yx11+=z01,=0,得xz11==-0,2y1, 令 z1=2,则 y1=-1,所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
(2)D→B=(2,2,0),D→E=(1,0,2). 设平面 BDEF 的一个法向量为 n=(x,y,z). ∴nn··DD→→BE==00,, ∴2x+x+22z=y=0,0,∴yz==--12x, x. 令 x=2,得 y=-2,z=-1. ∴n=(2,-2,-1)即为平面 BDEF 的一个法向量.
【自主解答】 以点 A 为原点,AD、AB、AS 所在的直线分别为 x 轴、 y 轴、z 轴,建立如图所示的坐标系,则 A(0,0,0),B(0,1,0),C(1,1, 0),D12,0,0,S(0,0,1).
(1)∵SA⊥平面 ABCD, ∴A→S=(0,0,1)是平面 ABCD 的一个法向量.
第九页,共47页。
图322
【解】 设正方体 ABCD-A1B1C1D1 的棱长为 2,则 D(0,0,0),B(2, 2,0),A(2,0,0),C(0,2,0),E(1,0,2).
(1)连接 AC,因为 AC⊥平面 BDD1B1,所以A→C=(-2,2,0)为平面 BDD1B1 的一个法向量.
第十五页,共47页。
-x1+4z1=0, 即32y1+4z1=0. 令 x1=1,得 z1=14,y1=-23.
第二十八页,共47页。
nn22· ·DD→→EF==00,,即32x2y+2+34y2z+2=40z2,=0, 令 y2=-1,得 z2=38,x2=32. ∴n1=1,-23,14,n2=32,-1,38, ∴n1=23n2,即 n1∥n2, ∴平面 AMN∥平面 EFBD.
高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件
【例1】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD
的中点.AB=AP=1,AD= √3 ,试建立恰当的空间直角坐标系,求平面ACE的
一个法向量.
解因为PA⊥平面ABCD,底面ABCD为矩形,所以AB,AD,AP两两垂直.
如图,以 A 为坐标原点, , , 的方向为 x 轴,y 轴,z 轴的正方向,建立空间
· = 0,
则
即
- = 0,
· = 0,
= 3,
解得
令 z=1,则 x=y=3,
= .
故平面 ABC 的一个法向量为 n=(3,3,1).
探究点二 有关空间向量的证明问题
角度1利用空间向量证明平行问题
【例2】 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,
第一章
1.2.2 空间中的平面与空间向量
课标要求
1.理解平面的法向量的定义并能在空间直角坐标系中正确地求出某一平
面的法向量;
2.能用向量语言表达线面、面面的垂直、平行关系;
3.理解三垂线定理及其逆定理.
内
容
索
引
01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
共线向量表示且直线不在平面内;③证明直线的方向向量与平面的法向量
垂直且直线不在平面内,如例2(1)中,FC1⊄平面ADE一定不能漏掉.
(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.当然要
注意当法向量坐标中有0时,要使用n1=λn2这一形式.
变式训练2
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面
8.7空间向量在立体几何中的应用——证明平行与垂直
1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。
3.4.2用向量方法研究立体几何中的位置关系(课件)高二数学(北师大版2019选择性必修第一册)
四面体ABCD的六条棱长相等, AB、CD
的中点分别是M、N,求证MN⊥AB, MN⊥CD.
A
证1
立体几何法
M
B
D
N
C
MN就是异面直线AB与CD的公垂线,
故异面直线AB与CD的距离就是MN.
例4 四面体ABCD的六条棱长相等, AB、CD
的中点分别是M、N,求证MN⊥AB, MN⊥CD.
证2
A
向量法
2
2
所以 PA 2 EG,即 PA // EG
而EG 平面EDB,
E
C
D
且PA 平面EDB
A
所以,PA// 平面EDB
X
G
B
Y
解3:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1
1 1
(1)证明:依题意得A(1, 0, 0), P (0, 0,1), E (0, , ), B(1,1,0)
MN=MA AD DN
1
1
AB AD DC
2
2
B
1
1
AB AD ( AC AD)
2
2
1
1
1
AB AC AD
2
2
2
A
B
α
图2
垂直又可以得到
线线垂直。
16
三垂线定理:
三垂线定理
在平面内的一条直线,如果
和这个平面的一条斜线的射影垂
直,那么它也和这条斜线垂直
P
m
α
①
②
B
A
③
线线垂直
线线垂直
线面垂直
线面垂直
性质定理