结构力学课件:第八章《位移法》解析

合集下载

结构力学第8章位移法(f).

结构力学第8章位移法(f).
将系数和自由项代入典型方程并求解,可得
9 Fl 22 Fl 2 Z1 , Z2 552 i 552 i
结构的最后弯矩图可由叠加法绘制: M
M1Z1 M 2 Z 2 M P
内力图校核同力法,略。
§8-4 位移法的典型方程及计算步骤
位移法计算步骤
(1)确定基本未知量:独立的结点角位移和线位移,加入附加
一个附加联系上的附加反力矩和附加反力都应等于零。
原结构的静力平衡条件
§8-4 位移法的典型方程及计算步骤
为求系数和自由项,绘弯矩图如图a、b、c。
r11 7i
6i r12 l
Fl R1P 8
6i r21 l
15i r22 2 l
F R2 P 2
§8-4 位移法的典型方程及计算步骤
§8-3 位移法的基本未知量和基本结构
确定独立的结点线位移另种一方法
把原结构的所有刚结点和固定支座均改为铰结点→铰结体系,如图b。 此铰结体系为几何不变,原结构无结点线位移。 此铰结体系为几何可变或瞬变,添加最少的支座链杆保证其几何不变, 添加的链杆数目既是原结构独立的结点线位移数目。如图b,加一个水 平支座链杆,体系成为几何不变的。
自由项 作
位移法基本方程
Z1 1 及荷载作用下的弯矩图,如图a、b。
由a图,取结点B为隔离体,由∑MB=0,可得r11=3i+3i=6i 由b图,取结点B为隔离体,由∑MB=0,可得R1P=-24kN· m
i
EI 8m
§8-4 位移法的典型方程及计算步骤
将 r11和R1P代入方程求出
R1P 4kN m Z1 r11 i
r11Z1 r1i Z i r1n Z n R1P 0 ri1Z1 rii Z i rin Z n RiP 0 rn1Z1 rni Z i rnn Z n RnP 0

结构力学位移法课件

结构力学位移法课件

r11
3i
R1P
r11=6i
3i R1Pql2/8
ql 2 Z1ql2/48i
8 MM 1Z1M P
ql2 /16
Z1
M
位移法基本未知数 ----结点位移.
位移法的基本结构 ----单跨梁系.
=
=
Z1
q
EI
EI
Z1
R1
q
EI
EI
ql 2 / 8
R1P
q
位移法的基本方程 ----平衡方程.
+
MP
Z1=1
三.位移法基本结构与基本未知量 无侧移结构(刚架与梁不计轴向变形)
位移法计算, 1个基本未知量
R1=r11 Z1+ R1P =0
基本未知量:独立的 结点位移.包括角位移和线位移 如果把所有的刚结点(包括固定支座)都改为铰结点,则此铰结体系的自由度数就是原结构的独立结点线位移的数目.
有侧移结构(刚架与梁不计轴向变形) 杆端单位位移引起的杆端内力称为形常数.
杆端剪力:使所研究的分离体 有顺时针转动趋势为正,有逆 时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之 为负 。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对 线位移,正负号则以使整个杆件顺时针方向转动规定为 正,反之为负。
第八章 位移法
一.单跨超静定梁的形常数与载常数
3. 等截面梁的形常数 杆端单位位移引起的杆端内力称为形常数.
i=EI/l----线刚度
4. 等截面梁的载常数 荷载引起的杆端内力称为载常数.
第八章 位移法
一.单跨超静定梁的形常数与载常数
二.位移法基本概念

结构力学第八章位移法

结构力学第八章位移法

二、等截面直杆的刚度方程
D
EI 1. 两端固定梁 i l
MAB 4iA M BA 2i A
由上图可得: i
A
M AB 4i A 2i B
M BA
B( ) 3.杆件两端相对侧移 杆件两端相对侧移
C ( )
A A
EI
B

A
B 可写成:
6i l 6i 2i A 4i B l
F M BA 0 F M BC
B
EI
C
上图示连续梁,取结点B的转角θB作为基本未 知量,这保证了AB杆与BC杆在B截面的位移协 这保 与 在 截 位移协 调。
2
2)令 )令B结点产生转角 结点产生转角 B ( ) 。此时 。此时AB、BC杆 杆 类似于B端为固端且产生转角 B 时的单跨梁。
l
MAB
B
MBA
MAB 2iB M BA 4i B
杆件两端相对侧移△,其与弦转角β 的正负 号一致。而β以顺时针方向为正,逆时针方向 为负。 为负 l B A A B
l
13
A
i
MAB
B
B
A
A
EI
B
l
B

A
i
MBA
M AB 4i 2i 6i A l B M 2i 4i 6i BA l
F M AB
A
i EI l
A
B
A
i EI l
A
B
1.结点转角未知量θ 结构有几个刚结点就有几个结点转角未知量。 A B C D
MBA 4iA
MBA 2iA

结构力学 第8章 位移法

结构力学 第8章 位移法

6
杆端内力、位移的符号规定: 杆端内力、位移的符号规定:

杆端弯矩: 表示AB杆 端的弯矩 绕杆端顺时针 端的弯矩。 顺时针为正 杆端弯矩: MAB表示 杆A端的弯矩。绕杆端顺时针为正 杆端剪力:绕隔离体顺时针转为正(同前) 杆端剪力:绕隔离体顺时针转为正(同前)。 顺时针转为正 结点转角: 顺时针转为正。 结点转角:以顺时针转为正。 转为正 杆端的相对线位移:使杆件弦转角顺时针转动为正。 杆端的相对线位移:使杆件弦转角顺时针转动为正。 弦转角顺时针转动为正
1 2 3
杆14, 36: 两端固定
4 5 6
基本未知量3个。 基本未知量 个
杆12, 23, 25: 一端固定 一端铰结
23
又例:
m m
原结构
次超静定) (4次超静定) 次超静定
基本结构
次超静定) (5次超静定) 次超静定
24
§8—4 位移法的典型方程及计算步骤 4
基本未知量为: 基本未知量为:Z1、Z2 。 基本结构如图。 基本结构如图。 R1—附加刚臂上的反力矩 附加刚臂上的反力矩 F R2—附加链杆上的反力 附加链杆上的反力 l 据叠加原理, 则有 据叠加原理, 2 R1=R11+R12+R1P=0 R2=R21+R22+R2P=0
EI
可见, 不独立, 代入第一式: 可见,B=f (A、△AB), 不独立 代入第一式 MAB=3iA 式中 (转角位移方程) 转角位移方程) (固端弯矩) 固端弯矩)
l
t2
16
§8—3 位移法的基本未知量和基本结构 3
1.位移法的基本未知量 1.位移法的基本未知量
位移法的基本未知量是各结点的角位移和线位移, 位移法的基本未知量是各结点的角位移和线位移, 计算时应 各结点的角位移 独立的角位移和 数目。 首先确定独立的角位移 线位移数目 首先确定独立的角位移和线位移数目。 (1) 独立角位移数目 同一刚结点,各杆端转角相等一个独立的角位移未知量。 一个独立的角位移未知量 同一刚结点,各杆端转角相等一个独立的角位移未知量。 固定支座处,转角=0,已知量; =0,已知量 固定支座处,转角=0,已知量; 铰结点或铰支座各杆端的转角不独立,不必作为基本未知量。 铰结点或铰支座各杆端的转角不独立,不必作为基本未知量。 独立角位移数目= 独立角位移数目=结构刚结点的数目

结构力学位移法PPT_图文

结构力学位移法PPT_图文
6.校核。
用位移法分析超静定结构时,把只有角位移没有线位移结构,称无侧移 结构,如连续梁; 又把有线位移的结构,称为有侧移结构。如铰接排架 和有侧移刚架等。
位移法应用举例
例题1 试计算图示连续梁,绘弯矩图。各杆EI相同。
22.5
5、依M=M1X1+ M2X2+ MP绘弯矩图
例题2 试计算图示刚架,绘弯矩图。各杆EI相同。 Z1 Z2
(a)
(b )
(c)
1)求qA1,qA1见上图(b) (d
(e)
(f)
(g )
2)求qA2,qA2见图(c) 3)叠加得到
由平衡条件得杆端剪力:见图(g)
等截面直杆的转角位移方程,或典型单元刚度 方程。
4)当考虑典型单元上同时也作用荷载时的单元 刚度方程
MfAB
MfBA
式中,MfAB、MfBA——为两端固定梁在荷载单独作 用下的杆端弯矩(固端弯矩或载常数)
四、一端固定、另一端铰支梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B ΔAB
B'
QBA
五、一端固定、另一端定向支承梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B
B' MBA
× ×
表9-1 等截面单跨超静定梁的杆端弯矩和剪力
28
29
30
31
32
9.3 基本未知量数目的确定
64
65
66
67
68
69
70
71
72
73
§9-5 用位移法分析具有剪力静定杆的刚架

结构力学课件矩阵位移法整体分析-先处理法

结构力学课件矩阵位移法整体分析-先处理法
第八章 矩阵位移法 8.4 整体分析
Global analysis
第八章 矩阵位移法 8.5 先处理法
后处理法的计算步骤
1. 结点、单元标码,并选择整体坐标系和局部坐标系; 2. 结点位移分量编码,建立整体坐标系下的结点位移列阵和结
点力列阵; 3. 建立局部坐标系下单元刚度矩阵,坐标变换,建立整体坐标
4(0,0,7) x
O
(2)建立结点位移列阵和结点力列阵
y
FP1 2(1,2,3) FP2 3(4,5,6)



1(0,0,0) O
4(0,0,7)
FP1
0
1
2
F
0 0
,
3 4
FP
2
5
0
6
0
7
x
(3)建立整体坐标系下单元刚度矩阵
k e
ke TT k eT
k (3) 46
k (2) 56
k (3) 56
k (2) 66
k (3) 66
0 1
0
2
0 k (3)
47
3 4
k
(3) 57
5
k
(3) 67
6
k
(3) 77
7
先处理法的计算步骤
1. 结点、单元标码,并选择整体坐标系和局部坐标系; 2. 结点位移分量编码,建立整体坐标系下的结点位移列阵和结
l 6EI
l2
4 0
0
0
4EI
0
l
②单元
y 3(1,0,3)
2(1,0,2)

4(1,0,4)


1(0,0,0)
5(0,0,0) x

结构力学位移法ppt课件

结构力学位移法ppt课件

为了消除基本结构与原
Z1
结构的差别,在结点1的附
R11
加约束上人为地加上一个外
Z1
力矩R11,迫使结点1正好转
动了一个转角Z1,于是变形
复原到原先给定的结构。
.
R1P
P
基本结构
=
+
Z1
R11
Z1
.
结点1正好转动一个转角Z1时,所加的附加约束不再 起作用,其数学表达式为:
R1=0 即外荷载和应有的转角Z1共同作用于基本结构时,附 加约束反力矩等于零。
.
R1P
P
在基本结构上加上原来的 力P,由于附加刚臂不允许结 点1转动,此时只有梁lB发生 变形,梁1A则不变形。
基本结构
此时附加刚臂中产生了反力矩R1P,反力矩规定以顺时 针为正。于是,基本结构与原结构就发生了差别,表现为:
1.由于加了约束,使结点1不能转动,而原来是能转动 的。
.
2.由于加了约束,产生了约束反力矩,而原来是没有 这个约束反力矩的。
结构 力学Ⅱ
STRUCTURE MECHANICS
南华大学建资学院道桥教研室
.
结构力学Ⅱ
讲 授: 课件制作:
刘华良 刘华良
南华大学建资学院道桥教研室 衡阳 2005年
.
第八章 位移法
(Displacement Method)
.
内容
位移法的基本概念
等截面直杆的物理方程
位移法基本未知量数目的确定
位移法的两种思路:位移法典型方程和直接平衡方程
+
2i A
B
2iB
4iB
y 由线性小变形,由叠加原理可得
+
6iAB/l

结构力学课件:第八章《位移法》解析

结构力学课件:第八章《位移法》解析

r11Z1+ ···+ r1iZi+ ···+ r1nZn+R1P=0 ····················································
ri 1Z1+ ···+ ri iZi+ ···+ ri nZn+Ri P=0
(8—6)
····················································
FP=20kN MBA
EI 3m 3m
M BA
M BC
(c)
q=2kN/m
EI
6m
(d)
(e)
M
BA
4i B
Pl 8
M BC
3i B
ql 2 8
M BA M BC 0 得:
B
6 7i
17
3)由结点B的平衡条件建立 位移法方程见图(e)
4)计算杆端总弯矩
M
AB
2i(
6) 7i
15
16.72(k N
这样,结构独立角位移数目就等于结构刚结点的数目。
1
2
例如图示刚架
独立的结点角位移
数目为2。
4
5
3
6
返10回
(2)独立线位移数目的确定
在一般情况下,每个结点均可能有水平和竖向两个线位移。
但通常对受弯杆件略去其轴向变形,其弯曲变形也是微小的,于
是可以认为受弯直杆的长度变形后保持不变,故每一受弯直杆就
相当于一个约束,从而减少了结点的线位移数目,故结点只有一
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第八章 位 移 法
§8—1 概述 §8—2 等截面直杆的转角位移方程 §8—3 位移法的基本未知量和基本结构 §8—4 位移法的典型方程及计算步骤 §8—5 直接由平衡条件建立位移法基本方程 §8—6 对称性的利用
2
§8—1 概 述
力法和位移法是分析超静定结构的两种 基本方法。力法于十九世纪末开始应用,位 移法建立于上世纪初。
(2)确定以结构上的哪些位移作为基本未 知量。 (3)如何求出这些位移。
下面依次讨论这些问题。
返5回
§8—2 等截面直杆的转角位移方程
本节解决第一个问题。
用位移法计算超静定刚架时,每根杆件均视为单跨超静定梁。
计算时,要用到各种单跨超静定梁在杆端产生位移(线位移、角位
移)时,以及在荷载等因素作用下的杆端内力(弯矩、剪力)。为了应
1.位移法的基本未知量 在位移法中,基本未知量是各结点的角位移和线位移。计 算时,应首先确定独立的角位移和线位移数目。
(1) 独立角位移数目的确定 由于在同一结点处,各杆端的转角都是相等的,因此每一个 刚结点只有一个独立的角位移未知量。在固定支座处,其转角等 于零为已知量。至于铰结点或铰支座处各杆端的转角,由上节可 知,它们不是独立的,可不作为基本未知量。
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
2
3
地加上一个附加刚臂(仅阻止刚结
点转动),同时在有线位移的结点上
加上附加支座链杆(阻止结点移动)。
例如 (见图a) 基本未知量三个。4
5
6
3
4
(a)
1 2
又例如(见图b)
共有四个刚结点,结点线位移 数目为二,基本未知量为六个。 基本结构如图所示。
可由式(8—1)导出,设B端为铰支,则因
MBA= 4i B +2i A__
=0
A
P t1 B

EI
t2
l
可见,B可表示为A、△AB的函数。将 此式代入式(8—1)第一式,得
MAB=3iA
(8—3)(转角位移方程)
式中
(8—4)(固端弯矩)
杆端弯矩求出后,杆端剪力便不难由平衡条件求出。 返9回
§8—3 位移法的基本未知量和基本结构
个独立线位移(侧移)。例如(见图a)

4、5、6 三个固定 端 都是不动的 1
2△
3△
点,结点1、2、3均无竖向位移。
又因两根横梁其长度不变,故三个 P
结点均有相同的水平位移△ 。
4
5
6
(a)
事实将上结,图构(a的)所刚示结结点构(的包独括立固线定位 支 座移数)都目变,成与图铰(结b)所点示(成铰为结体铰系结的体线系),
力法——以多余未知力为基本未知量, 由位移条件建立力法方程,求出内力后再 计算位移。
位移法—以—某些结点位移为基本未 知量,由平衡条件建立位移法方程,求出 位移后再计算内力。
返3回
位移法的基本概念
以图示刚架为例予以说明
刚架在荷载P作用下将发生如虚 线所示的变形。在刚结点1处发生转
Z1
P
1
Z1
2
角Z1,结点没有线位移。则12杆可 以视为一根两端固定的梁(见图)。 1 其受荷载P作用和支座1发生转角Z1 这两种情况下的内力均可以由力法
A′
X1
1

由图知
XA
这里,AB称为弦转角,顺时针为 正。 △1t、△2t 由第七章公式计算。
P
t1 B
L
t2
AB
B
P
t1
B′
t2 X2
X3
XB AB
M1图
1
M

2
MP图
返回
7
将以上系数和自由项代入典型方程,可解得 X1=
X2=

称为杆件的线刚度。此外,用MAB代替X1,用
MBA代替X2,上式可写成来自P12
Z1
求得。同理,13杆可以视为一根一 Z1 端固定另一端铰支的梁(见图)。
Z1 EI=常数
而在固定端1处发生了转角Z1,其 内力同样由力法求出。
可见,在计算刚架时,如果以
3
3
ll
22
Z1为基本未知量,设法首先求出Z1,
则各杆的内力即可求出。这就是位移法的基本思路。 返4回
由以上讨论可知,在位移法中须解决以下 问题: (1)用力法算出单跨超静定梁在杆端发生 各种位移以及荷载等因素作用下的内力。
则位移使数其目成是为相几同的何。不因变此添,加实用的上最少
(b)
链移为 位了 移杆数能 数数目简 目,(见捷 ,即地 可图为确 以b)定原。出结结构构的的独独立立线返线11回位
2.位移法的基本结构
用位移法计算超静定结构时,每一根杆件都视为一根单跨超静
定梁。因此,位移法的基本结构就是把每一根杆件都暂时变为一根
用方便,首先推导杆端弯矩公式。 如图所示,两端固定的等截
面梁除,受荷载及温度变化外,两
支座还发生位移:转角 A、 B 及侧移△AB转。角A、B顺时针为 正,△AB则以整个杆件顺时针方 向转动为正。
A EI
A A′
P L AB
t1 B t2
B
在位移法中,为了计算方便,弯
矩的符号规定如下:弯矩是以对杆 端顺时针为正(对结点或对支座以逆
这样,结构独立角位移数目就等于结构刚结点的数目。
1
2
例如图示刚架
独立的结点角位移
数目为2。
4
5
3
6
返10回
(2)独立线位移数目的确定
在一般情况下,每个结点均可能有水平和竖向两个线位移。
但通常对受弯杆件略去其轴向变形,其弯曲变形也是微小的,于
是可以认为受弯直杆的长度变形后保持不变,故每一受弯直杆就
相当于一个约束,从而减少了结点的线位移数目,故结点只有一
MAB= 4iA+2i B- MBA= 4i B +2i A-
(8—1)
式中
(8—2)
是此两端固定的梁在荷载、温度变化等外因作用下的杆端
弯矩,称为固端弯矩。
返8回
MAB= 4iA+2iB __ MBA= 4iB +2iA__
(8—1)
式(8—1)是两端固定的等截面梁的杆端弯矩的一般公式,通常称
为转角位移方程。 对于一端固定另一端简支的等截面梁(见图),其转角位移方程
5
6
7
(b)
返12回
位移基本未知量的确定举例
例8-1:试用位移法计算图(a)所 示连续梁,并作梁的弯矩图。
FP=20kN
q=2kN/m
EI
EI
3m 3m
6m
(a)
15
解 1)确定位移法基本未知量(图(b))
A
MAB
时针为正图)。中所示均为正值。
B′ MBA
返6回B
用力法解此问题,选取基本 结构如图多。余未知力为X1、X2。
力法典型方程为
11X1+12X2+ △1P+ △1t+ △1△=A
21X1+22X2+ △2P+ △2t +△2△=B
为计算系数和自由项,作 、 、MP图。由图乘法算出:

A EI A
相关文档
最新文档