求轨迹方程知识点梳理
高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题
高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。
高考数学一轮备考:轨迹方程的求解知识点_知识点总结
高考数学一轮备考:轨迹方程的求解知识点_知识点总结
高考数学一轮备考:轨迹方程的求解知识点
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒈写出点M的集合;
⒈列出方程=0;
⒈化简方程为最简形式;
⒈检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒈定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒈相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒈参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒈交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤
①建系建立适当的坐标系;
②设点设轨迹上的任一点P(x,y);
③列式列出动点p所满足的关系式;
④代换依条件的特点,高中英语,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明证明所求方程即为符合条件的动点轨迹方程。
轨道方程知识点归纳总结
轨道方程知识点归纳总结一、轨道方程的定义轨道方程又称为轨迹方程,是描述运动体在空间运动的轨迹的方程。
在物理学和数学中,轨道方程是描述运动体在空间中运动的方程,通常是一组参数方程或者方程组。
通过轨道方程,我们可以了解运动体在空间中的具体运动轨迹,对于物理学、工程学、航空航天等领域都有着重要的应用价值。
二、轨道方程的表示形式轨道方程可以有不同的表示形式,其中常见的有参数方程和直角坐标方程。
1. 参数方程:轨迹方程中的变量用参数 t 表示,通常表示时间。
轨道方程可以表示为 x =f(t), y = g(t), z = h(t) 的形式。
2. 直角坐标方程:轨迹方程可以通过直角坐标系表示为 F(x, y, z) = 0 的形式。
不同的表示形式适用于不同的问题,具体选择何种表示形式需要根据具体问题进行分析。
三、轨道方程的求解方法在物理学和数学中,我们可以通过不同的方法来求解轨道方程。
1. 已知运动规律,求参数方程:如果我们已经知道了运动体的运动规律,例如位置、速度、加速度等与时间的函数关系,那么我们可以通过积分来求解参数方程。
2. 已知轨迹,求轨道方程:如果我们已经知道了运动体的轨迹,通过观察或者实验得到了轨迹方程,那么我们可以通过逆向推导的方法来求解轨道方程。
3. 根据运动体的物理性质,推导轨道方程:有时候,我们可以根据运动体所受的力、能量守恒等物理性质来推导轨道方程。
四、轨道方程的应用轨道方程在物理学、工程学、航空航天等领域有着广泛的应用。
1. 物理学:在物理学中,我们可以通过轨道方程来描述天体的运动轨迹、粒子在电磁场中的运动轨迹等。
2. 工程学:在工程学中,轨道方程可以用来描述机械运动体的运动轨迹,例如汽车行驶的轨迹、机械臂的运动轨迹等。
3. 航空航天:在航空航天领域,轨道方程可以用来描述飞行器的轨迹,例如卫星、飞船等的轨迹。
五、轨道方程的相关知识点在研究轨道方程的过程中,还涉及到一些相关的知识点。
高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~
专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。
高考数学一轮备考:轨迹方程的求解知识点
高考数学一轮备考:轨迹方程的求解知识点高考数学一轮备考:轨迹方程的求解知识点?一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
④代换依条件的特点,高中英语,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
高中数学解析几何|求轨迹方程方法最全总结
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
两定点之积为定值的轨迹方程
两定点之积为定值的轨迹方程一、知识点回顾1. 距离公式- 在平面直角坐标系中,两点A(x_1,y_1),B(x_2,y_2)之间的距离d = √((x_2 - x_1)^2+(y_2 - y_1)^2)。
2. 设点的坐标- 设所求轨迹上的动点坐标为P(x,y),两定点坐标设为A(x_1,y_1),B(x_2,y_2)。
二、问题分析设两定点A(x_1,y_1),B(x_2,y_2),动点P(x,y),已知| PA|×| PB| = k(k为定值且k>0)。
1. 根据距离公式可得:- | PA|=√((x - x_1)^2+(y - y_1)^2),| PB|=√((x - x_2)^2+(y - y_2)^2)。
2. 因为| PA|×| PB| = k,所以√((x - x_1)^2+(y - y_1)^2)×√((x - x_2)^2+(y - y_2)^2)=k。
3. 两边平方可得:- ((x - x_1)^2+(y - y_1)^2)×((x - x_2)^2+(y - y_2)^2)=k^2。
- 展开式子:- (x^2 - 2x_1x+x_1^2 + y^2-2y_1y + y_1^2)×(x^2 - 2x_2x+x_2^2 + y^2-2y_2y + y_2^2)=k^2。
- 这是一个比较复杂的四次方程。
三、特殊情况1. 当两定点在坐标轴上时- 例如A(a,0),B(-a,0)(a≠0),设P(x,y)。
- 则| PA|=√((x - a)^2+y^2),| PB|=√((x + a)^2+y^2)。
- 因为| PA|×| PB| = k,所以√((x - a)^2+y^2)×√((x + a)^2+y^2)=k。
- 两边平方得((x - a)^2+y^2)×((x + a)^2+y^2)=k^2。
- 展开(x^2 - a^2+y^2)^2=k^2,即x^4 - 2a^2x^2+a^4 + 2y^2(x^2 - a^2)+y^4=k^2。
高考数学知识点:动点的轨迹方程_知识点总结
高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
高考数学轨迹方程的求解知识点归纳整理
高考数学轨迹方程的求解知识点归纳整理符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的根本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种曲线的定义,那么可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
轨迹方程知识点总结
轨迹方程知识点总结一、轨迹方程的概念轨迹方程是指在平面直角坐标系中,描述某一特定几何对象的运动过程中所有可能位置点的集合的方程。
它是描述物体或点在运动中所遵循的规律和路径的数学工具。
轨迹方程是一种抽象的数学概念,通过它可以描述所有可能的位置点的集合,从而揭示几何对象的运动轨迹规律。
二、轨迹方程的表示1. 参数方程表示法轨迹方程可以使用参数方程来表示。
参数方程的形式通常为x=f(t),y=g(t),其中t为参数,x和y是时间t的函数。
通过变化参数t的取值范围,就可以得到轨迹上的所有点的坐标。
2. 极坐标方程表示法轨迹方程也可以使用极坐标来表示。
极坐标方程的形式通常为r=f(θ),其中r是极坐标系下到原点的距离,θ是到x轴正向的角度。
通过变化θ的取值范围,就可以得到轨迹上的所有点的极坐标表示。
3. 一般方程表示法轨迹方程还可以用一般方程来表示。
一般方程的形式通常为F(x,y)=0,其中F是一个关于x和y的函数。
通过解一般方程,就可以得到轨迹上的所有点的坐标。
三、轨迹方程的应用1. 描述物体的运动轨迹轨迹方程可以被用来描述物体在运动中所遵循的路径规律。
通过物体的运动速度和加速度等信息,可以推导出物体的轨迹方程,从而预测物体的位置和运动状态。
2. 分析几何对象的性质轨迹方程可以被用来分析几何对象的性质。
通过对轨迹方程的分析,可以得到几何对象的面积、周长、对称性等性质,从而深入理解几何对象的结构和特点。
3. 解决实际问题轨迹方程也可以被用来解决实际问题。
例如,通过轨迹方程可以计算物体的轨迹长度、运动时间、最大速度、最大加速度等参数,从而为实际问题的分析和解决提供数学工具和方法。
四、轨迹方程的求解方法1. 参数方程的求解对于参数方程表示的轨迹方程,可以通过分离变量、积分等方法求解。
例如,对于一条直线的参数方程x=at,y=bt,可以求解出轨迹方程为y=ax/b。
2. 极坐标方程的求解对于极坐标方程表示的轨迹方程,可以通过代入坐标变换、积分等方法求解。
高考数学轨迹方程的求解相关知识点
高考数学轨迹方程的求解相关知识点数学轨迹方程的求解是高考数学试卷中重要的一部分,下面是编辑老师整理的轨迹方程的求解方法,希望对您提高学习效率有所帮助.符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
高考数学重要知识点轨迹方程的求解
高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。
轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。
在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。
下面我将详细介绍一下轨迹方程的求解方法。
轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。
当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。
通过解方程可以得到轨迹方程。
例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。
2.抛物线轨迹:另一个常见的轨迹形式是抛物线。
对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。
例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。
3.圆轨迹:圆是另一种常见的轨迹形式。
当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。
当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。
在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。
另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。
除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。
求轨迹方程方法总结
求轨迹方程方法总结轨迹方程是描述物体运动路径的数学表达式。
当我们了解物体的运动规律时,可以使用轨迹方程来描述其运动轨迹,从而帮助我们更好地理解和预测物体的运动。
下面将总结几种常用的推导轨迹方程的方法。
一、基础几何方法:1. 直线运动:对于直线运动,轨迹方程可以通过位移与时间的关系来推导。
如果物体的初始位置为(x0, y0),速度为v,则物体在时间t后的位置(x,y)可以表示为 x = x0 + vt,y = y0。
从而得到轨迹方程 y = y0 + vt。
2.曲线运动:对于曲线运动,可以通过几何关系来推导轨迹方程。
例如,对于抛体运动,可以通过重力加速度和初速度的关系,推导出位置关于时间的二次方程,从而得到轨迹方程。
二、解微分方程方法:1.一阶微分方程:对于一阶微分方程,可以通过求解微分方程得到轨迹方程。
例如,对于匀加速直线运动,可以得到速度关于时间的一阶微分方程,通过求解得到速度与时间的表达式,再通过积分得到位移与时间的表达式,从而得到轨迹方程。
2.二阶微分方程:对于二阶微分方程,可以通过推导得到物体的运动规律,并进一步得到轨迹方程。
例如,对于单摆运动,可以通过考虑受力平衡和受力大小的关系,推导出物体的运动方程,从而得到轨迹方程。
三、向量方法:1.位矢法:对于具有速度和加速度的运动,可以通过位矢法推导轨迹方程。
位矢是一个描述位置和方向的向量,通过将速度积分得到位矢,再通过对位矢微分得到速度,通过对速度微分得到加速度,从而得到物体的位矢关于时间的表达式。
2.矢量投影法:对于运动方向发生变化的运动,可以利用矢量投影法推导轨迹方程。
将位矢投影到坐标轴上,得到物体在各个坐标轴上的分量,从而得到轨迹方程。
四、参数方程方法:1.参数方程是一种用参数表示物体运动轨迹的方法。
可以将物体的运动分解为水平方向与竖直方向上的分量,再通过参数来表示时间的变化。
将水平和竖直方向的分量分别定义为x(t)和y(t),则轨迹方程可以表示为(x(t),y(t))。
轨迹与方程知识点总结
轨迹与方程知识点总结1. 轨迹的概念轨迹是指物体在运动过程中所留下的路径。
在数学中,轨迹通常是指平面内某一点在移动过程中所留下的路径。
轨迹的研究是解析几何的一个重要内容,它在实际问题中有着广泛的应用。
2. 轨迹的性质轨迹的性质是指轨迹具有的一些普遍规律和特点。
在数学中,研究轨迹的性质可以帮助我们更好地理解和解决一些几何问题。
3. 方程的概念方程是指含有未知数的等式。
在数学中,方程通常用来描述一些变量之间的关系或者某些变量的取值条件。
解方程是解析几何中的一个重要内容,它在实际问题中有着广泛的应用。
4. 方程的解方程的解是指能够满足方程的未知数的取值。
解方程的过程通常包括推导、变形、代入等步骤,通过这些步骤我们可以确定方程的解。
5. 轨迹与方程的关系轨迹与方程之间存在着密切的关系。
一方面,我们可以通过研究轨迹来建立方程,从而描述物体的运动规律;另一方面,我们也可以通过解方程来确定物体的轨迹,从而揭示轨迹的性质。
因此,研究轨迹与方程的关系对于解析几何的理论和应用都有着重要意义。
6. 常见轨迹的方程在几何学中,有一些常见的轨迹,它们的方程形式是相对固定的。
这些常见轨迹包括直线、圆、抛物线、椭圆、双曲线等,它们都有着特定的方程形式。
研究这些常见轨迹的方程形式可以帮助我们更好地理解几何学中的一些基本概念和定理。
7. 应用实例轨迹与方程的知识在实际问题中有着广泛的应用。
例如,在物理学中,我们可以通过研究物体的轨迹来建立描述物体运动规律的方程;在工程学中,我们可以通过解方程来确定物体的轨迹,从而设计出符合要求的结构等。
因此,轨迹与方程的知识有着重要的理论和实际意义。
综上所述,轨迹与方程是解析几何的重要内容,它们之间存在着密切的关系。
研究轨迹与方程的知识可以帮助我们更好地理解和解决一些几何问题,并且在实际问题中有着广泛的应用前景。
我们应该在学习和工作中注重轨迹与方程的研究,不断提升自己的分析和解决问题的能力。
高三数学重点知识点:轨迹方程的求解
高三数学重点知识点:轨迹方程的求解轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也确实是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】确实是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的差不多步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直截了当将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直截了当关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一样步骤那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
轨迹方程求法汇总
轨迹方程求法汇总轨迹方程是描述物体运动轨迹的数学表达式。
在不同情况下,轨迹方程的求法也会有所不同。
下面将对一些常见的情况下的轨迹方程求法进行汇总。
1.直线运动:当物体做直线运动时,轨迹方程可以使用直线的一般方程来表示。
直线的一般方程是y = kx + b,其中k表示直线的斜率,b表示直线在y轴上的截距。
根据物体的运动情况和给定的初始条件,可以求解出k和b的值,从而得到轨迹方程。
2.圆周运动:当物体做圆周运动时,轨迹方程可以使用圆的标准方程来表示。
圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)表示圆心的坐标,r表示圆的半径。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)和r的值,从而得到轨迹方程。
3.椭圆运动:当物体做椭圆运动时,轨迹方程可以使用椭圆的标准方程来表示。
椭圆的标准方程是(x-a)²/a²+(y-b)²/b²=1,其中(a,b)表示椭圆心的坐标。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)的值,从而得到轨迹方程。
4.抛物线运动:当物体做抛物线运动时,轨迹方程可以使用抛物线的标准方程来表示。
抛物线的标准方程是y = ax² + bx + c,其中a, b, c为常数。
根据物体的运动情况和给定的初始条件,可以求解出a, b, c的值,从而得到轨迹方程。
5.双曲线运动:当物体做双曲线运动时,轨迹方程可以使用双曲线的标准方程来表示。
双曲线的标准方程是(x-a)²/a²-(y-b)²/b²=1,其中(a,b)表示双曲线的中心坐标。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)的值,从而得到轨迹方程。
6.螺旋线运动:当物体做螺旋线运动时,轨迹方程可以使用极坐标方程来表示。
极坐标方程是r=aθ,其中r表示到原点的距离,θ表示与x轴的夹角,a为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求轨迹方程知识点梳理文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
知识点梳理
轨迹方程
动点的轨迹方程的求法:直接法、定义法、相关点法、参数法、交轨法等。
?
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
?
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化——转化成某一基本轨迹的定义条件;
3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P (x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
?
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
?
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
可以说是参数法的一种变种。
用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。
交轨法实际上是参数法中的一种特殊情况。
?
巩固练习
已知直线l:y=kx+1与圆C:(x-2)2+(y-3)2=1相交于A,B两点.
(1)求弦AB的中点M的轨迹方程;
(2)若O为坐标原点,S(k)表示△OAB的面积,,求f(k)的最大值.解:(1)直线l与y轴的交点为N(0,1),圆心C(2,3),设M (x,y),
∵MN与MC所在直线垂直,∴,(x≠0且x≠2),
当x=0时不符合题意,当x=2时,y=3符合题意,
∴AB中点的轨迹方程为:x2+y2-2x-4y+3=0,.(6分)
(2)设A(x1,y1),B(x2,y2),
∵S△OAB=S△ONB-S△ONA,且|ON|=1,∴
将y=kx+1代入方程(x-2)2+(y-3)2=1得(1+k2)x2-4(1+k)
x+7=0,
∵,
∴4S△OAB2=|x2-x1|2=(x1+x2)2-4x1?x2=,
∴=,(10分)
∵由,∴,∵△>0得,
∴时,f(k)的最大值为.(14分)??
已知圆C:x2+(y-1)2=5,直线l:mx-y+2-m=0
(1)求证:不论m取何实数,直线与圆总有两个不同的交点;
(2)求弦AB中点M的轨迹方程.
解:(1)直线lmx-y+2-m=0即m(x-1)-(y-2)=0
过定点P(1,2),且12+(2-1)2<5,点P在圆C内,
故直线l与圆C必有两个交点.(4分)
(2)设M(x,y),则有CM⊥AB,
∴,(x,y-1)?(x-1,y-2)=0,
即∴x2+y2-x-3y+2=0,即为点M的轨迹方程.(8分)??
已知圆C:(x-3)2+(y-4)2=4,
(1)直线l1过定点A?(1,0).若l1与圆C相切,求l1的方程;
(2)直线l2过B(2,3)与圆C相交于P,Q两点,求线段PQ的中点M的轨迹方程.。