(完整版)三角函数的诱导公式
三角函数高中数学诱导公式大全
三角函数高中数学诱导公式大全三角函数是高中数学中的重要内容,它与三角形的关系密切,广泛应用于各个学科中。
掌握三角函数的诱导公式对于解决各种问题是非常有帮助的。
下面我们就来详细介绍一些三角函数的诱导公式。
1.正弦函数的诱导公式:sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinBsin2A = 2sinAcosAsinA + sinB = 2sin((A + B)/2)cos((A - B)/2)sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)2.余弦函数的诱导公式:cos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinBcos2A = 2cos^2A - 1 = 1 - 2sin^2AcosA + cosB = 2cos((A + B)/2)cos((A - B)/2)cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)3.正切函数的诱导公式:tan(A + B) = (tanA + tanB) / (1 - tanAtanB)tan(A - B) = (tanA - tanB) / (1 + tanAtanB)tan2A = 2tanA / (1 - tan^2A)tanA + tanB = sin(A + B) / (cosAcosB)tanA - tanB = sin(A - B) / (cosAcosB)4.余切函数的诱导公式:cot(A + B) = (cotAcotB - 1) / (cotB + cotA)cot(A - B) = (cotAcotB + 1) / (cotB - cotA)cot2A = cot^2A - 2cotA / (cot^2A - 1)cotA + cotB = cotAcotB - 1 / (cotA + cotB)cotA - cotB = cotAcotB + 1 / (cotB - cotA)这些诱导公式可以帮助我们在计算三角函数的复杂表达式时,将其化简为更简洁的形式。
(完整版)三角函数诱导公式总结
三角函数诱导公式与同角的三角函数【知识点1】诱导公式及其应用公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-)公式五: sin(2π-α) = cos α; cos(2π-α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π+α) =- sin α.公式七: sin(32π-α)=- cos α; cos(32π-α) = -sin α.公式八: sin(32π+α) = -cos α; cos(32π+α) = sin α.公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___. (3)16sin()3π-= __________.的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos2例4、下列各式不正确的是【 】A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .32m例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】A .5B .-5C .6D .-6例7、试判断sin(2)cos()(9tan (5)2αππααπαπα-+⎛⎫+- ⎪⎝⎭··cos 为第三象限角)符号 例8、化简3sin(3)cos()cos(4)25tan(3)cos()sin()22πααππαπαπααπ-⋅-⋅+-⋅+⋅-例9、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(α--α-πα-π+α-π例10、若1sin()3πθ-=,求[]cos()cos(2)33cos()1cos sin()cos()sin()22πθθππθθθπθπθπ+-+--⋅-⋅--+的值.提示:先化简,再将1sin 3θ=代入化简式即可.例11、若α例12、设)(x f 满足(sin )3(sin )4sin cos ,(||)2f x f x x x x π-+=⋅≤,求)(x f 的表达式.例13、设222sin()cos()cos()()31sin cos()sin ()22f παπαπααπαπαα+--+=+++-+,1sin 2α≠-,求23()6f π-的值.【知识点2】同角的三角函数的基本关系式 同角三角函数的基本关系式有两个: ①平方关系: sin 2α + cos 2α= ②商数关系:=ααcos sin 例14、化简cos α1-sin α1+sin α+sin α1-cos α1+cos α(π<α<3π2)得【 】A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α 例15、若cos(π6-α)=m (|m |≤1),则sin(23π-α)的值为【 】A .-mB .-m 2 C.m2 D .m例16、1+2sin (π-3)cos (π+3)化简的结果是【 】A .sin3-cos3B .cos3-sin3C .±(sin3-cos3)D .以上都不对 例17、tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+a )的值为【 】A .m +1m -1 B.m -1m +1C .-1D .1 例18、已知)1(,sin <=m m α,παπ<<2,那么=αtan 【 】A 21m m- B 21m m-- C 21mm-± D m m 21-±例19、若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于【 】 A 2 B 2- C 2-或2 D 0例20、已知3tan =α,23παπ<<,那么ααsin cos -的值是【 】 A 231+-B 231+-C 231-D 231+ 例21、已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A=n ,则1g sin A 的值为【 】A .m +1nB .12(m -n )C.12(m +1n ) D.12(m -1n)例22、已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为【 】 A .21 B .21-C .23-D .23 例23、(2011年高考江西卷)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-552,则y= . 例24、已知)0(32cos sin πθαα<<=+,求θtan 精选试题1、以下四个命题中,正确的是【 】A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2、sin34π·cos 625π·tan 45π的值是【 】A .-43B .43C .-43D .433、已知()21sin -=+πα,则()πα7cos 1+的值为【 】A .332 B . -2 C . 332- D . 332± 4、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π【 】 A 、21-B 、21C 、23-D 、235、若(),2,53cos παππα<≤=+则()πα2sin --的值是【 】 A . 53 B . 53- C . 54 D . 54-6、已知cos78°约等于0.20,那么sin66°约等于【 】A .0.92 B.0.85 C.0.88 D.0.957、已知343tan ,,2,cos 2322πππααπα+=∈+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且则的值是【 】A .35-B .35C .45D .45-8、22222sin 1sin 2sin 3sin 89sin 90︒+︒+︒++︒+︒=9、已知3cos()5πα+=-,322παπ<<,则tan()2πα-=10、若1sin()22πα-=-,则tan(2)πα-=________. 11、已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan =.12、 已知cos()63πα-=25cos()sin ()66ππαα+--的值.提示:把56πα+化成()6ππα--,进而利用诱导公式求解.。
(完整版)诱导公式总结大全(最新整理)
同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间 1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘 积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等 于下面顶点上的三角函数值的平方。
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函数的和差化积公式 sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2) sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2) cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2) cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道 sin(a+b)=sina*cosb+cosa*sinb,sin(ab)=sina*cosb-cosa*sinb 我们把两式相加就得到 sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到 cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道 cos(a+b)=cosa*cosb-sina*sinb,cos(ab)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到 cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到 sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和 差化积的四个公式. 我们把上述四个公式中的 a+b 设为 x,a-b 设为 y,那么 a=(x+y)/2,b=(xy)/2 把 a,b 分别用 x,y 表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
完整版)三角函数诱导公式总结
完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
三角函数诱导公式全集
三角函数诱导公式全集三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
三角函数的诱导公式【六公式】
)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
三角函数诱导公式一览表
三角函数诱导公式一览表以下是三角函数诱导公式一览表,其中包括了七个公式,每个公式都有一些关于三角函数的值的关系。
公式一:对于任意角α,终边相同的角的同一三角函数的值相等,即sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα。
公式二:对于任意角α,π+α的三角函数值与α的三角函数值之间的关系为sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα。
公式三:对于任意角α,α与-α的三角函数值之间的关系为sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα。
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系,即sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα。
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系,即sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα,cot(2π-α)=-cotα。
公式六:对于任意角α,π/2±α与α的三角函数值之间的关系为sin(π/2+α)=cosα,cos(π/2+α)=-sinα,___(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π/2-α)=cosα,cos(π/2-α)=sinα,___(π/2-α)=cotα,cot(π/2-α)=tanα。
公式七:对于任意角α,3π/2±α与α的三角函数值之间的关系为sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotα,cot(3π/2-α)=tanα。
三角函数诱导公式图解
三角函数的诱导公式三角函数的基本公式公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式二:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot (π+α)=cotα公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式四:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式五:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cos αcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cot αcot(3π/2-α)=tanα三角函数的常见公式(1)(sinα)2+(cosα)2=1(2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2正弦sin2a=2sina·cosa两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sin αsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsin β诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαsin(π/2-α)=cos αcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtana=sina/cosatan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα三角函数诱导公式公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cot α公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六?3?±α及±α与α的三角函数值之间的关系:22?sin(+α)=cosα2?cos (+α)=-sinα2?tan(+α)=-cotα2?cot(+α)=-tanα2?sin(-α)=cos α2?cos(-α)=sinα2?tan(-α)=cotα2?cot(-α)=tanα23?sin(+α)=-cosα23?cos(+α)=sinα23?tan(+α)=-cotα23?cot(+α)=-tanα23?sin (-α)=-cosα23?cos(-α)=-sinα23?tan(-α)=cotα23?cot(-α)=tan α2(以上k∈z)。
三角函数诱导公式大全
三角函数诱导公式大全三角函数诱导公式三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)2诱导公式作用及用法一、三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。
12个诱导公式
12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。
以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。
在解题时,可以根据需要选择合适的诱导公式进行转化。
例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。
除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。
这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。
三角函数诱导公式概览
三角函数诱导公式概览诱导公式是三角函数中的一个重要概念,用于将角度较大的三角函数转换为角度较小的三角函数,以便于计算和理解。
诱导公式共有54个,其中一些基本的、常用的诱导公式如下:1.2.公式一:终边相同的角的同一三角函数的值相等o(\sin (\alpha + k \cdot 360^\circ) = \sin \alpha)((k \in \mathbb{Z}))o(\cos (\alpha + k \cdot 360^\circ) = \cos \alpha)((k \in \mathbb{Z}))o(\tan (\alpha + k \cdot 360^\circ) = \tan \alpha)((k \in \mathbb{Z}))o类似地,对于余切、正割、余割也适用。
3.4.公式二:π+α的三角函数值与α的三角函数值之间的关系o(\sin(\pi + \alpha) = -\sin\alpha)o(\cos(\pi + \alpha) = -\cos\alpha)o(\tan(\pi + \alpha) = \tan\alpha)o类似地,对于余切、正割、余割也适用。
5.6.公式三:任意角α与-α的三角函数值之间的关系o(\sin(-\alpha) = -\sin\alpha)o(\cos(-\alpha) = \cos\alpha)o(\tan(-\alpha) = -\tan\alpha)o类似地,对于余切、正割、余割也适用。
7.8.公式四:π-α与α的三角函数值之间的关系o(\sin(\pi - \alpha) = \sin\alpha)o(\cos(\pi - \alpha) = -\cos\alpha)o(\tan(\pi - \alpha) = -\tan\alpha)o类似地,对于余切、正割、余割也适用。
9.10.公式五:2π-α与α的三角函数值之间的关系o(\sin(2\pi - \alpha) = -\sin\alpha)o(\cos(2\pi - \alpha) = \cos\alpha)o(\tan(2\pi - \alpha) = -\tan\alpha)o类似地,对于余切、正割、余割也适用。
三角函数诱导公式
常用公式诱导公式三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinα (k为整数)cos(α+k*2π)=cosα(k为整数)tan(α+k*2π)=tanα(k为整数)公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2-α) = cosαcos(π/2-α) =sinα由于π/2+α=π-(π/2-α),由公式四和公式五可得公式六:sin(π/2+α) = cosαcos(π/2+α) = -sinα诱导公式记背诀窍:奇变偶不变,符号看象限。
或者也可以这样记:分变整不变,符号看象限。
和(差)角公式三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)积化和差的四个公式sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)倍角公式sin(3a)→3sina-4sin^3a=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a→(2cos^2a-1)cosa-2(1-cos^2a)cosa=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^2a)cosa=4cos^3a-3cosasin3a→4sinasin(60°+a)sin(60°-a)=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)-sina][(√3/2)+sina]=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]=4sinasin(60°+a)sin(60°-a)cos3a→4cosacos(60°-a)cos(60°+a)=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cosa-cos30°)(cosa+cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)tan3a→tanatan(60°-a)tan(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三倍角sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a) 其他多倍角四倍角sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=(-1+2*cosA)*(16*cosA^4-16*cosA^2+1)tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)N倍角根据棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)为方便描述,令sinθ=s,cosθ=c考虑n为正整数的情形:cos(nθ)+ i sin(nθ)= (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*虚部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …对所有的自然数n:⒈cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c (也就是cosθ)表示。
诱导公式大全
诱导公式大全诱导公式是数学中的一个重要概念,它可以帮助我们简化复杂的表达式,解决各种数学问题。
在本文中,我们将为大家详细介绍各种常见的诱导公式,希望能够帮助大家更好地理解和运用这些公式。
一、三角函数的诱导公式。
1. sin(A ± B) = sinAcosB ± cosAsinB。
2. cos(A ± B) = cosAcosB ∓ sinAsinB。
3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)。
这些诱导公式可以帮助我们简化三角函数的加减运算,特别是在解决三角函数的复合运算问题时,能够起到很大的作用。
二、指数函数的诱导公式。
1. e^x ± e^(-x) = 2coshx。
2. e^x ∓ e^(-x) = 2sinhx。
3. (e^x + e^(-x)) / 2 = coshx。
4. (e^x e^(-x)) / 2 = sinhx。
这些诱导公式是指数函数的一些常见运算公式,通过这些公式,我们可以将指数函数的运算转化为双曲函数的运算,从而简化计算过程。
三、对数函数的诱导公式。
1. ln(xy) = ln x + ln y。
2. ln(x/y) = ln x ln y。
3. ln(x^n) = nlnx。
对数函数的诱导公式主要是针对对数的乘除运算和指数的换底运算,这些公式在解决对数函数的复合运算问题时非常有用。
四、微积分中的诱导公式。
1. (x^n)' = nx^(n-1)。
2. (e^x)' = e^x。
3. (lnx)' = 1/x。
4. (sinx)' = cosx。
5. (cosx)' = -sinx。
6. (tanx)' = sec^2x。
这些微积分中的诱导公式是我们在求导过程中经常会用到的公式,通过这些公式,我们可以快速求得各种函数的导数,解决各种微积分问题。
高中三角函数公式及诱导公式大全
高中三角函数公式及诱导公式大全以下是高中三角函数公式及诱导公式的大全:1.三角函数的基本关系:•正弦函数(sin):sinθ = 对边/斜边•余弦函数(cos):cosθ = 邻边/斜边•正切函数(tan):tanθ = 对边/邻边2.三角函数的诱导公式:•正弦函数的诱导公式:sin(-θ) = -sinθ•余弦函数的诱导公式:cos(-θ) = cosθ•正切函数的诱导公式:tan(-θ) = -tanθ•正弦函数的互余公式:sin(π/2 - θ) = cosθ•余弦函数的互余公式:cos(π/2 - θ) = sinθ•正切函数的互余公式:tan(π/2 - θ) = 1/tanθ3.三角函数的和差公式:•正弦函数的和差公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ•余弦函数的和差公式:cos(θ ± φ) = cosθcosφ ∓ sinθsinφ•正切函数的和差公式:tan(θ ± φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)4.三角函数的倍角公式:•正弦函数的倍角公式:sin2θ = 2sinθcosθ•余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ•正切函数的倍角公式:tan2θ = (2tanθ) / (1 - tan^2θ)5.三角函数的半角公式:•正弦函数的半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]•余弦函数的半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]•正切函数的半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]6.三角函数的和的积公式:•正弦函数的和的积公式:sinθ + sinφ = 2sin((θ + φ)/2)cos((θ - φ)/2)•余弦函数的和的积公式:cosθ + cosφ = 2cos((θ + φ)/2)cos((θ - φ)/2)•正弦函数的差的积公式:sinθ - sinφ = 2cos((θ + φ)/2)sin((θ - φ)/2)•余弦函数的差的积公式:cosθ - cosφ = -2sin((θ + φ)/2)sin((θ - φ)/2)这些公式是三角函数中常见的重要公式,掌握它们能够帮助解决各种三角函数相关的数学问题,并在数学推导和计算中提供便利。
三角函数的诱导公式
三角函数的诱导公式三角函数在数学中是一类基础重要的函数,其中正弦函数、余弦函数和正切函数是最为常见和常用的三角函数。
在学习三角函数时,我们经常会遇到需要化简和推导三角函数的表达式的情况。
而三角函数的诱导公式则是帮助我们简化和推导这些表达式的重要工具。
一、正弦和余弦的诱导公式正弦函数和余弦函数是最为基础的三角函数之一,在数学中具有广泛的应用。
它们之间通过诱导公式可以相互转化和推导出一些简化的表达式。
1. 正弦的诱导公式:sin(A ± B) = sinA·cosB ± cosA·sinB这个诱导公式是我们最常用的,通过它我们可以将两个正弦函数的和差转换为两个三角函数的乘积或差积。
2. 余弦的诱导公式:cos(A ± B) = cosA·cosB ∓ sinA·sinB与正弦的诱导公式类似,余弦的诱导公式可以将两个余弦函数的和差转换为两个三角函数的乘积或差积。
二、正切的诱导公式正切函数是另一个常见的三角函数,它表示一个角的正弦值与余弦值的商。
正切函数的化简和推导也可以借助诱导公式来完成。
正切的诱导公式可以表示为:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA·tanB)该诱导公式可以将正切函数的和差转换为两个正切函数的商或差商,帮助我们简化三角函数的表达式。
三、其他除了正弦、余弦和正切之外,还有一些其他的三角函数,如余割、正割和余切等。
这些三角函数同样可以通过诱导公式进行化简和推导。
具体的诱导公式可以表述如下:1. 余割的诱导公式:csc(A ± B) = 1 / (sinA·cosB ± cosA·sinB)2. 正割的诱导公式:sec(A ± B) = 1 / (cosA·cosB ∓ sinA·sinB)3. 余切的诱导公式:cot(A ± B) = (cotA·cotB ∓ 1) / (cotB ± cotA)以上是几个常见三角函数的诱导公式,它们对于化简和推导三角函数表达式时起着至关重要的作用。