几种投影的特点及分带方法

合集下载

高斯投影6度和3度分带公式(一)

高斯投影6度和3度分带公式(一)

高斯投影6度和3度分带公式(一)高斯投影6度和3度分带公式介绍高斯投影是一种常用的地图投影方法,通过将地球表面上的点投影到平面上,实现地球表面的测绘和制图工作。

而在高斯投影中,存在两种常见的分带方式,即6度分带和3度分带。

下面将详细介绍这两种分带方式的相关公式和举例。

6度分带公式在6度分带方式中,地球被划分为60个纵向分带,每个分带占据经度范围为6度。

在每个分带内,利用高斯投影公式将地球上的经纬度点投影到平面上。

其公式如下:x = m0 * l * cos(B) + m0 * l^3 * cos(B)^3 * (1 - ta n(B)^2 + eta^2 * x^2) / 6 + (1)y = m0 * B + m0 * l^2 * cos(B)^2 * (1 + eta^2 * x^2) / 2 + (2)其中,x和y分别为经纬度点的投影平面坐标,B为纬度,l为经度差,eta为扁率的平方,m0为高斯投影系数。

公式(1)和(2)中的省略号表示高阶项,为了简化计算一般可以忽略。

下面以将经度为度、纬度为度的点投影为例进行说明。

首先,需要计算各个参数的值。

根据地理坐标系的定义,可以得到扁率的平方eta等于,经度差l等于度(经纬度一般采用度数表示)。

接着,根据所在纬度的带号(34度属于6度分带中的第6带),可以获得该带的高斯投影系数m0。

再根据公式(1)和(2),将以上参数代入计算即可得到该点在投影平面上的坐标。

3度分带公式与6度分带不同,3度分带将地球划分为120个纵向分带,每个分带占据经度范围为3度。

其余的计算方法和6度分带类似,公式如下:x = m0 * l * cos(B) + m0 * l^3 * cos(B)^3 * (1 - tan(B)^2 + eta^2 * x^2) / 6 + ... (1')y = m0 * B + m0 * l^2 * cos(B)^2 * (1 + eta^2 * x^2) / 2 + ... (2')需要注意的是,参数的计算方法和6度分带相同,但是高斯投影系数m0的计算会有所不同。

如何理解UTM和高斯投影以及3度带、6度带的问题

如何理解UTM和高斯投影以及3度带、6度带的问题

几种地图投影的特点及分带方法做空间分析之前数据准备的时候,将多源数据(如DEM,遥感影像,土地利用图,土壤图,行政区划图等等)转换到统一的坐标系下,让它们能叠在一起,这个工作繁琐,经常让俺头疼,每次得摸索一阵子,好不容易搞明白了,下次做的时候,又因为好久不做,忘得一干二净,为了防止下次做的时候又重新再摸索,就在博客里记一下笔记,供以后用到的时候参考。

在ARCGIS下经纬度坐标的数据和公里格网数据是能自动叠加在一起的——在公里格网数据的投影设置正确的情况下。

而且,6度带的数据与3度带的数据也能自动叠加在一起。

只要投影设置正确了,所有图层都能在ArcGIS里面叠加在一起,整个Data Frame的坐标系统以第一个添加的图层为准,全部自动统一到这个坐标系统下。

拿到数据第一件事情,先看X,Y坐标的整数位数,有以下两种情况:(东阳何生的经验总结)1、X坐标6位,Y坐标7位(东阳何生的经验总结)没有加带号的坐标,坐标单位是米,假偏东500公里。

(东阳何生的经验总结)2、X坐标8位,Y坐标7位(东阳何生的经验总结)加了带号的坐标,坐标单位是米。

X坐标最前面两位就是添加的带号,这时就要判断是3度带还是6度带,我国幅员辽阔,经度从东经72度到135度,有经验的人一看带号就能大致知道是6度分带还是3度分带;没有经验的,就随便假设一个,然后根据下面的公式算出其中央经线,再与研究区域所在的经度对照,看是否相符,从而判断出是3度分带还是6度分带。

带号与中央经线一一对应,知道两者中的任何一个,都能推算出另外一个的值,计算公式如下:(东阳何生的经验总结)6度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°(适用于1∶2.5万和1∶5万地形图)3度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)搞清楚数据坐标的投影之后,就可以在ARCGIS里面定义,此方法可以解决大部分数据叠加问题,采用地方坐标系的特例另当别论,这里只讨论通常情况。

常用的几种地图投影

常用的几种地图投影

在这些公式中略去六次以上各项的 原因,是因为这些值不超过0.005m,这 样在制图上是能满足精度要求的。实用 上将化为弧度,并以秒为单位,得:
xs y
"
N
"2
2
"2
sin cos
"3
N
"4
24
"4
sin cos3 (5 tan 2 9 2 4 4 )
2
1 n ,m r n P 1, tan(45 ) a 4

四、等距离圆锥投影 正轴等距离圆锥投影沿经线保持等 距离,即 m 1 ,根据此条件可推导出 正轴等距离投影的公式。
, c s x s cos , y sin (c s) a b m 1, P n , sin r r 2 ab
式中: 为纬线投影半径,函数 f 取决
于投影的性质(等角、等积或等距离投
影),它仅随纬度的变化而变化; 是地
球椭球面上两条经线的夹角; 是两条 常数。
经线夹角在平面上的投影; 是小于1的
在正轴圆锥投影中,经纬线投影后正
交,故经纬线方向就是主方向。因此经
纬线长度比(
m, n )也就是极值长度比
二、圆柱投影的分类 圆柱投影可以按变形性质而分为等 角、等面积和任意投影(其中主要是等距 离投影)见图。此外尚有所谓透视圆柱投 影,其特点是建立x坐标的方法不同,从 变形性质上看,也是属于任意投影。见
图5-10
按“圆柱面”与地球不同的相对位臵 可分为正轴、斜轴和横轴投影。又因 “圆柱面”与地球球体相切(于一个大圆) 或相割(于两个小圆)而分为切圆柱或割 圆柱投影。见图5-11,5-12。

投影坐标系的详细介绍

投影坐标系的详细介绍

1.UTM投影的特点
UTM投影的中央经线长度比为0.999 6,这是为了使得B=0°, l=3°处的最大变形值小于0.001而选择的数值。两条割线(在 赤道上,它们位于离中央子午线大约±180km(约±1°4 0’)处)上没有长度变形;离开这两条割线愈远变形愈大;在两 条割线以内长度变形为负值;在两条割线之外长度变形为正值。
(一)高斯投影
1.控制测量对地图投影的要求
采用等角投影(又称为正形投影) 长度和面积变形不大 能按高精度的、简单的、同样的计算公式把各区域联成 整体
2.高斯投影描述
想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子 午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心 轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各 一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成 为投影面 。
2. 编制“世界地图”用的投影:等差分纬线多圆 锥投影
这个投影是由我国地图出版社于1963年设计的一种不等分纬线的 多圆锥投影。是我国编制“世界地图”常用的一种投影。
这种投影的特点是赤道和中央纬线是互相垂直的直线,其他纬 线是对称于赤道的同轴圆弧,其圆心均在中央经线上,其他经线 为对称于中央经线的曲线,每一条纬线上各经线间的间隔,随离 中央经线距离的增大而逐渐缩小,按等差递减。极点为圆弧,其 长度为赤道的1/2。
3.高斯投影必须满足以下三个条件:
(1)中央子午线投影后是一条直线 (2)中央子午线投影后长度不变,其投影长度比恒等于1 (3)投影后角度不产生变形,满足正形投影要求 高斯投影除了在中央子午线上没有长度变形外,不在中央子午线 上的各点,其长度比都大于1,且离开中央子午线愈远,长度变 形愈大。
4.高斯投影的分带

几种地图投影的特点及分带方法

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。

1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

地图学---第四章 几种常见的地图投影

地图学---第四章 几种常见的地图投影

第一节
圆锥投影
一、圆锥投影的一般公式及其分类 1、概念
2、分类
(1)按圆锥面与地球相对位置的不同,可分正轴、 横轴、斜轴圆锥投影。
正轴圆锥投影
横轴圆锥投影
斜轴圆锥投影
2、分类
(2)按标准纬线分为切圆锥投影和割圆锥投影。
(3)圆锥投影按变形性质分为等角、等积和等距
圆锥投影三种。
3、一般公式
圆锥投影(正轴)一般公式
(1)将各带的坐标纵轴西移500公里 Y=y+500000m
yA=245863.7m yB=168474.8m y′A=745863.7m y′B=331525.2m
(2)加上投影带号。 Y通=n*1000000+Y
y〞A=20745863.7m y〞B=20331525.2m
四、通用横轴墨卡托投影
1、圆锥投影一般变形规律
①变形只与纬度有关,与经差无关,同一纬线上的变 形是相同的; ②切圆锥投影中,标准纬线上长度比等于n0=1,其 余纬线上长度比均大于1,并向南、北方向增大; ③在割圆锥投影中,标准纬线n1=n2=1,变形自标准纬 2向内、向外增大,在 1、 2 之间n<1,在 线 1、 之外n>1。 适合中纬度处沿纬线伸展的制图区域之投影
五、圆柱投影的变形分析与应用
五、圆柱投影的变形分析与应用
正轴圆柱投影:赤道附近沿纬线延伸的地区
墨卡托投影:
编制海图
在赤道附近,如印度尼西亚、非洲等地区, 也可以编制各种比例尺地图。
编制世界时区图 制作某些世界范围的专题地图,如世界交通 图、卫星轨迹图等。
五、圆柱投影的变形分析与应用
横轴圆柱投影:沿经线方向延伸的地区
二、正轴等角圆锥投影

浅谈高斯投影及投影分带

浅谈高斯投影及投影分带

浅谈高斯投影及投影分带摘要:高斯投影是高斯(德国数学家、物理学家、天文学家)于19 世纪20年代拟定,后经克吕格(德国大地测量学家)于1912 年对投影公式加以补充,故称为高斯-克吕格投影,又名“等角横切椭圆柱投影”,是地球椭球面和平面间正形投影的一种。

投影特点:(1)正形投影,保证了投影角度的不变性和图形的相似性,在某点各方向长度比的同一性,这样给测量和计算带来极大的方便;(2)投影带的中央子午线投影没有变形,离中央子午线越远,变形越大(投影后直线变长)6°带投影及带号从首子午线起,每隔经度差6°划一带,自西向东将整个地球划分为60个带,用数字1、2、3……依次编号。

第一个6°带的中央子午线经度为3°,任意带的中央子午线经度计算公式:L0=6N-3。

(1)任意带的起止经度:6(N-1) ~ 6N(2)任意带的中央子午线经度:L0=6N-3(3)任意点的6度带的带号N:N=int(L/6)+13°带投影及带号即经差为3度,从东经1.5度开始,自西向东每隔3度为一个投影带,全球共分120个带,用1,2,3,4,5,......表示。

即东经1.5~4.5度为第一度带,其中央经线的经度为东经3度;东经4.5~7.5度为第二带,其中央经线的经度为东经6度;东经7.5~10.5度为第三带,其中央经线的经度为东经9度。

3度带带号=(经度+1.5°)/3取整,3度带中央经线=3度带带号*3以中央子午线作为坐标纵轴,则Y坐标会出现负值,不便于使用,故规定将坐标纵轴向西偏移500km。

我国在北半球,X坐标不会出现负值,但南半球的国家则会存在这个问题。

怎么办,类似的思路,将坐标横轴向南偏移一个适当的距离。

南半球的Y轴一般向南偏移10000km。

常见投影方式

常见投影方式

只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影”1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

介绍几种常用的地图投影

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|)一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”)1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

地图学几种投影的主要参数

地图学几种投影的主要参数

几种投影的主要参数Gauss Kruger(高斯-克吕格投影):除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

该投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。

限制长度变形最有效的方法是将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

经差6度为六度带,经差3度为三度带。

六度带自0度子午线起自西向东分带,带号为1—60带。

三度带基于六度带,自 1.5度子午线起每隔经差3度自西向东分带,带号为1—120带。

我国经度范围73W—135E,十一个六度带。

各带中央经线:75,75+6n。

三度带为二十二个。

主要参数:投影代号(Type),基准面(Datum),单位(Unit),中央经度(OriginLongitude),原点纬度(OriginLatitude),比例系数(ScaleFactor),东伪偏移(FalseEasting),北纬偏移(FalseNorthing)Transverse Mercator(横轴墨卡托投影):墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

主要参数有:投影代号(Type),基准面(Datum),单位(Unit),原点经度(Origin Longitude),原点纬度(Origin Latitude),标准纬度(Standard ParallelOne)。

UTM(通用横轴墨卡托投影):是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996,是为了保证离中央经线左右约330km处有两条不失真的标准经线。

高斯投影的方法与特性

高斯投影的方法与特性

高斯投影的方法与特性一、高斯投影的方法:高斯-克吕格投影这个投影投影是由德国数学家、物理学家、天文学家高斯于19 世纪20 年代拟定,后经德国大地测量学家克吕格于1912 年对投影公式加以补充,故称为高斯-克吕格投影。

又称为横轴墨卡托投影、切圆柱投影,是墨卡托投影的变种。

在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点0作为坐标原点,以中央子午线的投影为纵坐标轴,以赤道的投影为横坐标轴,这样便形成了高斯平面直角坐标系。

高斯-克吕格投影是一种等角横轴切椭圆柱投影。

它是假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面而成的。

该投影是19世纪20年代由德国数学家、天文学家、物理学家高斯最先设计,后经德国大地测量学家克吕格补充完善,故名高斯-克吕格投影,简称高斯投影。

这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形愈大。

赤道线投影后是直线,但有长度变形。

除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。

经线和纬线投影后仍然保持正交。

所有长度变形的线段,其长度变形比均大于 1. 随远离中央经线,面积变形也愈大。

若采用分带投影的方法,可使投影边缘的变形不致过大。

我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。

其中大于1:1万的地形图采用3°带;1:2.5万至1:50万的地形图采用6°带。

二、投影特点:1.经投影后,中央子午线为一直线,且长度不变,其它经线为凹向中央子午线的曲线,且长度改变,中央子午线两侧经差相同的子午线互相对称;2.经投影后,赤道为一直线,且长度改变,其它纬线呈凸向赤道的曲线,赤道两侧纬差相同的纬线互相对称;3.中央子午线与赤道经投影后仍保持正交。

地图投影的概念方法和变形及分类依据

地图投影的概念方法和变形及分类依据

地图投影的概念方法和变形及分类依据地图投影变形是球面转化成平面的必然结果,没有变形的投影是不存在的。

对某一地图投影来讲,不存在这种变形,就必然存在另一种或两种变形。

但制图时可做到:在有些投影图上没有角度或面积变形;在有些投影图上沿某一方向无长度变形。

一、地图投影的概念地球椭球体表面是个曲面,而地图通常是二维平面,因此在地图制图时首先要考虑把曲面转化成平面。

然而,从几何意义上来说,球面是不可展平的曲面。

要把它展成平面,势必会产生破裂与褶皱。

这种不连续的、破裂的平面是不适合制作地图的,所以必须采用特殊的方法来实现球面到平面的转化。

球面上任何一点的位置取决于它的经纬度,所以实际投影时首先将一些经纬线交点展绘在平面上,并把经度相同的点连接而成为经线,纬度相同的点连接而成为纬线,构成经纬网。

然后将球面上的点按其经纬度转绘在平面上相应的位置。

由此可见,地图投影就是研究将地球椭球体面上的经纬线网按照一定的数学法则转移到平面上的方法及其变形问题。

其数学公式表达为:χ=f1(λ,φ)y=f2(λ,φ)(2-1)根据地图投影的一般公式,只要知道地面点的经纬度(λ,φ),便可以在投影平面上找到相对应的平面位置(χ,у),这样就可按一定的制图需要,将一定间隔的经纬网交点的平面直角坐标计算出来,并展绘成经纬网,构成地图的"骨架"。

经纬网是制作地图的"基础",是地图的主要数学要素。

二、地图投影的基本方法地图投影的方法,可归纳为几何透视法和数学解析法两种。

1.几何透视法几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。

如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上,即将球面经纬线转换成了平面上的经纬线。

几何透视法是一种比较原始的投影方法,有很大的局限性,难于纠正投影变形,精度较低。

常用的几种投影介绍

常用的几种投影介绍

1.理解下列投影的基本概念Transverse Mercator(横轴墨卡托投影):墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

主要参数有:投影代号(Type),基准面(Datum),单位(Unit),原点经度(OriginLongitude),原点纬度(OriginLatitude),标准纬度(StandardParallelOne)。

UTM(通用横轴墨卡托投影):是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996,是为了保证离中央经线左右约330km处有两条不失真的标准经线。

该投影角度没有变形,中央经线为直线,且为投影的对称轴。

UTM投影分带方法是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。

主要的参数有:单位,中央子午线,中央子午线比例系数,基准面,原点纬度,纵坐标北移假定值,横坐标东移假定值。

Gauss Kruger(高斯-克吕格投影):除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。

分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

通常按经差6度或3度分为六度带或三度带。

六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。

地图投影的判别和选择投影方法的依据

地图投影的判别和选择投影方法的依据

地图投影的判别和选择投影方式的依据大家知道,地图投影的类型之多,分别使用在不同的场合下,那么我们在生产中选择地图投影的依据是什么呢?应该怎样确定投影类型呢?不同的投影类型的特点及变形特点如何?带着这些问题请看本文讲解.不同类型的投影通常具有不同的经纬线特点,因此投影类型可以通过判别经纬线网的形状来确定。

在确定投影类型时,准确区分经纬线是直线与曲线、同心圆弧与同轴圆弧,是非常重要的。

一、地图投影的判别不同的投影具有不同的变形特点。

判别投影的类型和变形性质,是正确使用地图的基础。

由于大比例尺地图通常属于国家基本比例尺地形图,投影简单,易于查知,且包含的制图区域小,无论采用何种投影,变形都很小。

因此,地图投影的判别主要是针对小比例尺地图而言。

判别地图投影,一般先是根据经纬线网的形状确定投影的类型,如方位投影、圆柱投影、圆锥投影等;然后是判定投影的变形性质,如等角、等积或任意投影。

1、确定投影类型不同类型的投影通常具有不同的经纬线特点,因此投影类型可以通过判别经纬线网的形状来确定。

在确定投影类型时,准确区分经纬线是直线与曲线、同心圆弧与同轴圆弧,是非常重要的。

直线只要用直尺比量,便可确定。

判断曲线是否为圆弧,可用点迹法,即将透明纸覆盖在曲线上,在透明纸上沿曲线按一定间距定出3至6个点,然后沿曲线徐徐向一端移动透明纸,若这些点始终都不偏离此曲线,则证明此曲线是圆弧,否则就是其它曲线。

判别纬线是同心圆弧还是同轴圆弧,可量算相邻圆弧间的纬线间隔(即经线长),若处处相等,则证明这些圆弧为同心圆弧,否则便是同轴圆弧。

此外,由于正轴圆锥投影与正轴方位投影的经纬线形状有时可能完全相同,因此,在判别时,可以通过以下两种方法来区分:一是量算相邻两条经线的夹角是否与实地经差相等。

若相等则为方位投影,否则就是圆锥投影;二是分析制图区域所处的地理位置。

若制图区域在极地一带,则为正轴方位投影,若在中纬度地带,则为圆锥投影。

2、确定投影变形性质在确定了投影的类型之后,可以进一步根据经纬线网的图形特征,确定投影的变形性质。

各种地图投影的特点

各种地图投影的特点

平射方位投影(球面投影)此投影在投影中心点附近变形较小,离开中心点越远变形越大,等变形线为以投影中心为圆心的同心圆。

故适宜制作圆形区域的投影。

被广泛使用。

如欧洲一些国家波兰、希腊等曾用它周围大比例尺地形图投影。

美国提出的“通用极球面投影”即是等角割圆柱投影。

等角方位无角度变形,长度和面积的变形在中心点附近较小,离中心点越远越大,其等变形线是以极点为圆心的同心圆.适于圆形的小的制图区域,正轴常用于两级地区的航空或海图.常用于南北半球气象气候图. 斜轴用于世界某一大陆或大区域的小比例尺地图等积方位保持面积正确,适用于表示具有面积对比关系的地图.地图集,横轴东西半球图.也适于非洲大陆.斜轴非洲以外的各大陆图,常用于我国政区图的数学基础,反映我国版图全貌,同四邻关系位置以及正确的面积对比都较好等距方位变形大小介于等角和等积之间,应用广泛.正轴两极地图,横轴东西半球.斜轴更为广泛,陆半球和水半球,集中显示水域和陆机.由于这投影具有从中心到周围任一点保持方位角和距离都相等,对于航空中心,气象中心,地震观测站等为中心,编制一定范围的地图具有重要意义.正轴圆柱投影的各种变形都是纬度的函数,即长度、面积和角度的等变形线都与纬线平行。

故正轴圆柱投影适合于制作在赤道附近向东西延伸地区的地图。

斜轴与横轴圆柱投影的各种变形都是天顶距的函数,即长度、面积和角度的等变形线都与等高圈平行。

故横轴圆柱投影适合于制向南北延伸的狭长地区的地图,斜轴圆柱投影适合于制作任意方向延伸的狭长地区的地图。

单标准纬线等角圆柱投影适合于制作赤道附近的地图,双标准纬线等角圆柱投影适合于制作和赤道对称的沿纬线延伸的地图。

另外,此投影经常用于制作世界图,如时区图、卫星轨迹图。

等角航线表现为直线对航海具有重要意义。

这意味着只要在海图上将起点和终点连成一直线,再量出它与经线的交角,航行时一直保持这个角度,便可达到终点。

实际上,两点间的最短距离是大圆航线,故沿等角航线航行是不经济的。

几种投影的特点及分带方法

几种投影的特点及分带方法
1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形
投影到圆柱体上,再把圆柱体展开,这就是一幅选定 标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线
取零子午线或自定义原点经赤道的投影为横坐标Y轴,构成
墨卡托平面直角 坐标系。
享受地球生动影像
提供全面遥感服务
2. 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影
Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,
两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度
自西向
东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影
2.3 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse
Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影
,但支持
UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保

第四、五章地图投影2三种常用投影

第四、五章地图投影2三种常用投影

(正轴方位投影)
1、方位投影(正轴)的一般公式:
f z x cos y sin d 1
Rdz
2

R sin z P 1 2
a b sin 2 ab

a 或者: tan 45 4 b
16世纪荷兰地图学家墨卡托(Mercator)所创造的,故又称 为墨卡托投影,属于正轴等角圆柱投影,是广泛应用于航 海、航空方面的重要投影之一。
该投影赤道上的长度比为最小,两极的长度比为无穷大。 面积比是长度比的平方,所以面积变形很大。 例如,格林兰岛的实地面积仅是南美洲的1/8左右,但从等
课 后 作 业
掌握:三种几何投影(建立、经纬线形状、变形分布 特点和应用范围) 掌握:正轴等角割圆锥投影 了解:墨卡托投影的应用 论:圆锥 投影最适宜于作为中纬度处沿纬线伸展的制图区域 之投影。 圆锥投影在编制各种比例尺地图中均得到了广 泛应用,原因如下: 1)地球上广大陆地位于中纬地区; 2)这种投影经纬线形状简单,经线为辐射直线, 纬线为同心圆圆弧,在编图过程中比较方便,特别 在使用地图和进行图上计算时比较方便,通过一定 的方法,容易改正变形。
角圆柱投影图上看,它比南美洲还大(如图)。
切投影仅适合制作赤道附近沿纬线延伸地区的地图。 割投影适合制作沿纬线延伸地区的地图。 两者均不适合制作高纬度地区的地图。
等角航线是地面上两点间同所有经线构成相同方位 角的一条曲线。等角航线又名恒向线、斜航线。 在墨卡托投影中它成为两点之间的直线(墨卡托投影
2
横轴方位投影
东、西半球(横轴方位投影)
1.正轴方位投影: 切点在极点(φ =90。)经线为从一点 向外放射的直线束,纬线为以切点为圆心的同心圆。投影 中心为各经线的交点,所以投影后的夹角δ 与经差λ 相等 即δ =λ ,并且因为经线和纬线相互正交。主要作两极地 图。 2.横轴方位投影: 切点在赤道(φ =0。)除经过切点的经 线和赤道投影为直线外,其余经纬线都是曲线,主要用于 东、西半球图。 3.斜轴方位投影: 切点在任意纬度(0。<φ <90。)除经 过切点的经线投影为直线外,其余经纬线都为曲线,主要 用于编大陆半球图、大洲图、大洋图,全球航空图以及机 场为中心的航行半径图,地震带的范围图,大城市交通图 等。

高斯投影分带的方法

高斯投影分带的方法

高斯投影分带的方法高斯投影是一种常用的地图投影方法,在不同的纬度带采用不同的中央经线和偏移量对地球表面进行投影。

高斯投影被分为若干个带区,每个带区的数据使用相同的投影参数进行计算,以保证地图的准确性和一致性。

以下是10条关于高斯投影分带的方法:1. 球形还是椭球?对于高斯投影分带的计算,选择的数据是基于球形模型还是椭球模型。

对于小范围的地图,使用球形模型计算更为简单,但对于大范围地图,椭球模型更能精确地模拟地球的形状。

2. 中央经线的选择高斯投影分带中要选定中央经线的位置,一般取为地理范围中心线或者是地理经度整数度线。

不同的国家和地区也有自己的经验和规则来确定中央经线的位置。

3. 都需要哪些参数在进行高斯投影分带的计算时,需要的参数有:椭球体长短半轴,扁率,中央子午线经度,比例因子和假东偏移量。

这些参数经过计算后将决定不同纬度带的投影坐标计算方式。

4. 针对不同需求选择投影方式高斯投影分带的方式可以使用传统的高斯投影形式,也可以使用高端的UTM方式进行计算。

选择哪种投影方式取决于地图的需求和投资预算。

5. 将地球表面分割成不同的区域在进行高斯投影分带之前,需要将地球表面分割成不同的带区。

这些带区根据纬度的区间和中央经线的位置进行命名和编号。

以中国为例,中国采用3度分带方式。

6. 编号的规则高斯投影分带时,标准的编号规则是按照地球表面上每度纬度带的长度来进行计算的。

在中国的北京市,经度的每一度分割成200个小分段,每个小分段长度约为30米,纬度的度数分割成了30个带区。

7. 纵向方向和横向方向的计算高斯投影分带的计算可以分为两个方向:纵向方向和横向方向。

纵向方向是指垂直于中央经线的方向,而横向方向是指与中央经线平行的方向。

8. 计算精度掌握由于高斯投影分带涉及到许多计算参数和技术细节,因此计算精度是非常重要的。

计算精度可以通过更精细的划分和参数选择进行改善,以保证地图的精度和它所描绘的现实一致。

9. 相关软件的应用在进行高斯投影分带时,需要使用相关的软件和算法进行计算。

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带共6页

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带共6页

一、墨卡托投影、高斯-克吕格投影、UTM投影1.墨卡托(Mercator)投影墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-2019,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。

根据坐标判断高斯投影的分带

根据坐标判断高斯投影的分带

(1)引用国家控制点
一般情况下国家控制点都是按正常的3度带和6度带。一般看坐标的带号即可知道。在一般的RTK测量中,都是以3度带来投影,这样变形越小。根据之前所说L=3n 来判断中央子午线。
以经验来计算,如上图所示,选用经度中的度去除以3,如果不能整除时,往后减1得到112,往后加1得到114,再分别去除以3,如果能除尽,则说明此为中央子午线。在这里114可以除尽,说明114为中央子午线,而它的控制范围为左右1度30 分,即112度30分 ~ 115度30分。而当前的113度21分在这个范围内,说明114即为当地3度带的中央子午线。
5、高斯平面直角坐标系
在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点o作为坐标原点,以中央子午线的投影为纵坐标x轴,以赤道的投影为横坐标y轴。
在我国 坐标都是正的, 坐标的最大值(在赤道上)约为330km。为了避免出现负的横坐标,可在横坐标上加上500 000m。此外还应在坐标前面再冠以带号。这种坐标称为国家统一坐标。
根据坐标判断高斯投影的分带 [原文地址] 分类: 未分类 | 转自 03327w | 被1人转藏 | 2009-03-08 00:15:51
手机口袋:用手机阅读我收藏过的文章?
一、高斯-克吕格投影
1、高斯-克吕格简介
高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外, 其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成
墨卡托平面直角 坐标系。
享受地球生动影像
提供全面遥感服务
2. 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影
东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。
地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为20345486,其中20即为带号,345486为横坐标值。
2.当地中央经线经度的计算
六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线
带的高斯-克吕格 投影。
2.2 UTM投影简介
UTM投影全称为“通用横轴墨卡托投影”,是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的
经线上没有
变形,而中央经线上长度比0.9996。UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。与高斯-克吕格投影相
似,该
投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真
的标准经 线。 UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。
我国的卫星影像资料常采用UTM投影。
1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影
为直线的条件,将
中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。高斯一克吕
格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小
2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl
Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于
经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图);6°×49-180-3°=111°(适用于1∶50万以下地形图)。
三度带中央经线经度的计算:中央经线经度=3°×当地带号
1. 墨卡托(Mercator)投影
1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator
2.3 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse
Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影
,但支持
UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保
1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator
1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形
投影到圆柱体上,再把圆柱体展开,这就是一幅选定 标准纬线上的“墨卡托投影”绘制出的地图。
“海底地形图编绘规范”(GB/T
17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:
100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。
1.2 墨卡托投影坐标系
,中央经线
无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影
带坐标一致,只要算出
一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。
按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又
2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl
Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于
1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影
为直线的条件,将
中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。高斯一克吕
格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小
1.2 墨卡托投影坐标系
取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成
墨卡托平面直角 坐标系。
享受地球生动影像
提供全面遥感服务
2. 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线
向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均
等扩大的特性,保持了方向和相互位置关系的
正确。在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线
1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。我国的经度范围西起
73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二 个。
我国大于等于50万的大中比例尺地形图多采用六度带高斯-克吕格投影,三度带高斯-克吕格投影多用于大比例尺测图,如城建坐标多采用三度
1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~
4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间
, 跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为
,中央经线
无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影
航行,方向不变可以一直到达 目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T
17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:
100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。
要使带数不致过多以减
少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。
六度带自0度子午线 起每隔经差6度自西向东分带,带号依次编为第
1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自
北伪 偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。
2.4 高斯-克吕格投影与UTM投影坐标系 高斯-
克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即
为各带的坐标原 点。为了避免横坐标出现负值,高斯-
享受地球生动影像
提供全面遥感服务
二、分带方法 1.我国采用6度分带和3度分带:
1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,
用1,2, 3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。
持长度不
变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经
线上长度比 0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,
UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用 X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 *
相关文档
最新文档