物理化学第三章本章重点

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

大学物理化学 第三章 多组分系统热力学习指导及习题解答

大学物理化学 第三章 多组分系统热力学习指导及习题解答
证明: RT d ln f =Vmdp
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x

物理化学第三章(简)

物理化学第三章(简)

(10)
有简并度时定域体系的微态数
S 定位=kN ln ∑ g i e
i
− ε i / kT
U + T
− ε i / kT
A定位= − NkT ln ∑ g i e
i
有简并度时离域体系的微态数
同样采用最概然分布的概念, 同样采用最概然分布的概念,用Stiring公 公 式和Lagrange乘因子法求条件极值,得到微态 乘因子法求条件极值, 式和 乘因子法求条件极值 数为极大值时的分布方式 N i* 离域子)为: (离域子)
)N
N!
U + T
A非定位= − kT ln
(∑ g i e −ε i / kT ) N
i
N!
Boltzmann公式的其它形式
能级上粒子数进行比较, 将 i 能级和 j 能级上粒子数进行比较,用最概然分布公式相 比,消去相同项,得: 消去相同项,
− ε i / kT
N gi e = − ε j / kT N g je
简并度增加,将使粒子在同一能级上的微态数增加。 简并度增加,将使粒子在同一能级上的微态数增加。
有简并度时定域体系的微态数
个粒子的某定位体系的一种分布为: 设有 N 个粒子的某定位体系的一种分布为:
能级 各能级简并度 一种分配方式
ε1 , ε 2 , ⋅ ⋅⋅, ε i
g1 , g 2 , ⋅ ⋅⋅, gi N1 , N 2 , ⋅ ⋅⋅, N i
等概率假定
对于U, 确定的某一宏观体系, 对于 V 和 N 确定的某一宏观体系,任何一个可能出 现的微观状态, 有相同的数学概率, 现的微观状态 , 都 有相同的数学概率 , 所以这假定又称为 等概率原理。 等概率原理。 等概率原理是统计力学中最基本的假设之一 , 它与求 等概率原理 是统计力学中最基本的假设之一, 是统计力学中最基本的假设之一 平均值一样,是平衡态统计力学理论的主要依据。 平均值一样,是平衡态统计力学理论的主要依据。 例如,某宏观体系的总微态数为 Ω ,则每一种微观状态 P 例如, 出现的数学概率都相等, 出现的数学概率都相等,即:

03-物理化学课程讲义-第三章1

03-物理化学课程讲义-第三章1

B
TdS pdV B dnB
B
dH TdS V dp B dnB
B
TdS Vdp B dnB
B
dG S dT V dp B dnB
B
SdT Vdp B dnB
B
dA S dT p V B dnB
B
SdT pdV B dnB
例如:体系只有两个组分,其物质的量和偏摩尔 体积分别为 n1,V1 和 n2 ,V2 ,则体系的总体积为:
V n1V1 n2V2
偏摩尔量的集合公式
写成一般式有:U nBUB
B
H nB HB B
A nB AB
B
S nBSB B
G nBGB B
U U B ( nB )T , p,nc (cB)
物理化学课程讲义
—— 第三章 多组分系统热力学
引言
多组分系统 两种或两种以上的物质(或称为组分)所形
成的系统称为多组分系统。 多组分系统可以是均相的,也可以是多相的。
混合物(mixture) 多组分均匀系统中,各组分均可选用相同的方 法处理,有相同的标准态,遵守相同的经验定律, 这种系统称为混合物。

dZ Z1dn1 Z2dn2 Zkdnk
k
= ZBdnB B=1
在保持偏摩尔量不变的情况下,对上式积分
Z Z1
n1 0
dn1
Z2
n2 0
dn2
Zk
nk 0
dnk
n1Z1 n2 Z2 nk Zk
偏摩尔量的集合公式
k
Z= nB ZB
B=1
这就是偏摩尔量的集合公式,说明体系的总的容 量性质等于各组分偏摩尔量的加和。
组分体系

《物理化学》第三章(化学平衡)知识点汇总

《物理化学》第三章(化学平衡)知识点汇总
《物理化学》重要 知识点
第三章:化学平衡
第三章 化学平衡
化学反应的平衡条件
aA dD
dG SdT Vdp B dnB
B
gG hH
等温等压条件下:
AdnA DdnD GdnG HdnH
dG BdnB
B
35
根据反应进度的定义:
d
$
化学反应的等温方程式
40
平衡常数表示法
一、理想气体反应标准平衡常数
K$
pG pH p$ p$ eq eq p A pD p$ p$ eq eq
a d
g
h
K $ (1)
pNH3 $ p
g h nG nH a d nA nD


项减小,温度不变时, K
$
为一常数,则
项增大,平衡向右移动。
谢谢观看!!!


p Kn K p nB B
Kn
与温度、压力及配料比有关
45
复相化学反应 在有气体、液体及固体参与的多相体系中,如果凝聚相 (固相及液相)处于纯态而不形成固溶体或溶液,则在常 压下,压力对凝聚相的容量性质的影响可以忽略不计,凝 p p CaCO (s) CaO(s) CO ( g ) K p p 聚相都认为处于标准态。因此,在计算平衡常数时只考虑 气相成分。
$
$ ln K $ r H m 0, 0 T $ d ln K $ 0 r H m 0, dT
$ ln K $ r H m T RT 2 p
K $ 随温度的升高而增加 K
$
随温度的升高而降低

大学物理化学第三章化学势

大学物理化学第三章化学势

物质的量分数,又称为摩尔分数,无量纲。
2. 质量摩尔浓度mB
mB def
nB mA
溶质B的物质的量与溶剂的质量之比称为溶质B的质
量摩尔浓度,单位是 mol kg-1 。
上一内容 下一内容 回主目录
返回
2021/2/14
溶液组成的表示法
3. 物质的量浓度cB
cB def
nB V
溶质B的物质的量与溶液体积V的比值称为溶质B的物质的量
化学平衡的条件是:除系统中各组分的温度和压力相等外,还 要求产物的化学势之和等于反应物的化学势之和。
总结:在等T,p W ' 0 的条件下,传质过程朝化学势降低的方向 进行,平衡时化学势相等—化学势判据(所有判据的统一)
上一内容 下一内容 回主目录
返回
2021/2/14
五、化学势与温度和压力的关系:
上一内容 下一内容 回主目录
返回
2021/2/14
三、化学势的物理意义
定温定压下, dG SdT Vdp BdnB BdnB
若不做非体积功:
BdnB < 0 自发过程
BdnB 0 平衡
物质的化学势是决定物质传递方向和限度的强度
因素,这就是化学势的物理意义。(等T , p,W ' 0)
dU TdS pdV
U ( nB
)S ,V ,nC
dnB
令:H f (S, p, nB , nC ...)
dH TdS Vdp
H ( nB )S , p,nC dnB
令:A=f(T,V,nB , nC ...)
dA SdT pdV
A ( nB )T ,V ,nC dnB
上一内容 下一内容 回主目录

物理化学第三章化学平衡

物理化学第三章化学平衡



恒压下两边对T求导得
rG m / T T



R

d ln K dT


rH T
2

m

d ln K dT


rH m RT
2
――等压方程微分式

3-5 化学反应等压方程―K 与温度的关系
二、积分式 设ΔrHm 不随温度变化,前式积分得:

ln K T

为比较金属与氧的亲和力,不是用氧化物的ΔfGm 而

是用金属与1mol氧气作用生成氧化物时的ΔGm :

2x y
M (s) O 2 ( g )

2 y
M xO
y
常见氧化物的 G m T 参见下图。
Gm T

3-8
0 -100 -200 -300 -400

图及其应
Fe3O4 Co K Zn Cr Na Mn V C CO Al Ni

3-2 复相化学平衡
(1)ΔrGm (298)==178-298×160.5×10-3=130.2(kJ/mol)

p(CO2)/p = K = exp(-

130 . 2 1000 8 . 314 298
)=1.5x10-23
p(CO2)= 1.5×10-18(Pa)
(2) ΔrGm (1110)=178-1110×160.5×10-3=0
3-7 平衡组成的计算
二、已知平衡组成计算平衡常数
例题:在721℃、101325Pa时,以H2 还原氧化钴(CoO) ,测得平衡气相中H2的体积分数为0.025;若以CO还原 ,测得平衡气相中CO的体积分数0.0192。求此温度下 反应 CO(g)+H2O(g)=CO2(g)+H2(g) 的平衡常数。 分析:乍一看所求反应与题给条件无关,但将两个还 原反应写出来,可以找到他们之间的关系。

物理化学 第三章 热力学第二定律

物理化学 第三章  热力学第二定律
Siso S(体系) S(环境) 0
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i

Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆

Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4

《物理化学》第3章 第1讲 (3.1,3.2,3.3)

《物理化学》第3章  第1讲 (3.1,3.2,3.3)
第3章 化学平衡 章
本章将热力学原理应用于化学反应系统, 本章将热力学原理应用于化学反应系统 , 研究 在一定条件下给定化学反应所能进行的方向和限 许多情况下, 度 。 许多情况下 , 反应的方向和限度可以通过热 力学计算获得, 而不必依赖于复杂的实验工作, 力学计算获得 , 而不必依赖于复杂的实验工作 , 因此掌握这种计算意义重大。 因此掌握这种计算意义重大。
11
∆rG
Θ m
(p = −RT ln (p
Z
/p /p
Θ z Θ d
D
) )
⇒K
θ
(p = (p
Z
/p /p
Θ z Θ d
D
) )
因此,有凝聚相参加的理想气体反应, 因此,有凝聚相参加的理想气体反应,Kθ等于气相 组分的平衡压力商,而不出现凝聚相的表达式。 组分的平衡压力商,而不出现凝聚相的表达式。 3.2.2 分解压 复相反应中有一类特殊反应, 复相反应中有一类特殊反应,其特点是平衡只涉 及一种气体生成物,其余都是纯态凝聚相,例如: 及一种气体生成物,其余都是纯态凝聚相,例如: CaCO3(s) → CaO(s) + CO2(g) K = pCO2 /p
RT ( ln( pY / p Θ ) y + ln( pZ / p Θ ) z − ln( p A / p Θ ) a − ln( pD / p Θ ) d )
Θ Θ Θ Θ = [ y μY (T ) + z μ Z (T ) − a μ A (T ) − d μ D (T )]
( pY / p Θ ) y ( pZ / p Θ ) z + RT ln ( p A / p Θ ) a ( pD / p Θ ) d
6

(物理化学)第三章 化学反应热力学总结

(物理化学)第三章  化学反应热力学总结

第三章 化学反应热力学总结本章主要是运用热力学的基本概念、原理和方法研究化学反应的能量变化,引入反应焓与温度的关系式——Kirchhoff 公式,建立热力学第三定律以求算化学反应的熵变,引入化学热力学重要关系式——Gibbs-Helmholtz 方程。

一、 基本概念1、化学反应进度 ()/B B d dn ξξν= B B n /∆ξ=∆ν 或 B B n /ξ=∆ν2、盖斯定律3、标准生成热4、标准燃烧热5、热力学第三定律6、规定熵与标准熵 二、化学反应焓变的计算公式1、恒压反应焓与恒容反应焓的关系 p,m V,m BBQ Q (g)RT =+ν∑或 p ,m V ,mB BH U(g )RT ∆=∆+ν∑ 简写为: m m B BH U (g)RT ∆=∆+ν∑ 2、用f B H ∆$计算r m H ∆$: r m H ∆$(298K)=Bf B BH (298K)ν∆∑$3、由标准燃烧焓c m H ∆!的数据计算任一化学反应的标准反应焓r m H ∆!()r m H 298K ∆=$()B C m,B BH 298K -ν∆∑$4、计算任意温度下的r m H ∆!——基尔霍夫公式(1)微分式 r m B p,m p,m Bp H (T)C (B)C T ⎡⎤∂∆=ν=∆⎢⎥∂⎣⎦∑$(2)已知()r m H 298K ∆$求任意温度下的r m H ∆!当(),p m C B 表示式为形式: ()2,p m C B a bT cT =++ 时()()T2r mr m298K HTK H 298K (a bT cT )dT ∆=∆+∆+∆+∆⎰$$,积分得:()()()()2233r m r m b c H TK H 298K a T 298T 298(T 298)23∆∆∆=∆+∆-+-+-$$若令:230r m b c H H (298k)a 29829829823∆∆∆=∆-∆⨯-⨯-⨯$则: 23r m 0b C H (TK)H aT T T 23∆∆∆=∆+∆++$三、化学反应熵变的计算1、知道某一物质B 在298K 时的标准熵值,求该物质在任一温度时的标准熵值的公式()()(),,,298298TKm Bm Bp m K dT STK S K C B T=+⎰$$ 2、已知(),298m B S K $计算标准反应熵变r m S ∆$(298K)r m B m,B S (298k)S (298K)∆=ν∑$$3、任意温度 TK 时的标准反应熵变值r m S ∆$(TK )的计算r m S ∆$(TK )=r mS ∆$ (298K)+TKp,m 298KC dT T∆⎰式中,p m C ∆ 为产物与反应物的热容差, ,p m C ∆=(),Bp m BC B ν∑四、任意温度下化学反应吉布斯自由能的计算1、微分式 m m 2PG ()H T T T ⎡⎤∆∂⎢⎥∆=-⎢⎥∂⎢⎥⎢⎥⎣⎦$$2、不定积分式 'mm 2G H dT I T T∆∆=-+⎰$$ ('I 为积分常数) (1)、m H ∆$为常数时m mG H I T T∆∆=+$$或 m G ∆$=m H ∆$ +IT (2)、m H ∆$表示为温度的函数,且符合Kirchhoff 定律的形式:23m 0b c H (TK)H aT T T 23∆∆∆=∆+∆++$ 式中0H ∆为积分常数 20mH G 11a ln T bT cT I T T 26∆∆=-∆-∆-∆+$ 即 23m 011G (TK)H aT ln T bT cT IT 26∆=∆-∆-∆-∆+$。

物化第三章

物化第三章

恒温恒压 H2O(s), 1 kg
S = ?
263.15 K 100 kPa
可逆相变 0℃、100kPa下的凝固或熔化过程; 可逆判断 不可逆相变过程; 过程设计
H2O(l), 1 kg 263.15 K 100 kPa S1 H2O(l), 1 kg 273.15 K 100 kPa
T2 1 T 1 源自 Q2 > 1 Q 1

T2 Q 2 > T1 Q1
Q1 Q2 > T1 T2
δ Q2 δ Q1 0 (2)无限小循环: T2 T1
<0 不可逆循环 =0 可逆循环
(3)任意循环:
δQ T 0
3.3 熵、熵增原理
Siso S sys Samb 0

> 0 ir =0 r
※iso——隔离系统 ※sys——封闭系统 ※amb——环境
三、应用
封闭 1.应用:判断隔离系统过程的可逆性; 2.说明:一般认为环境内部无不可逆变化; →→封闭系统+环境=隔离系统
※隔离系统可逆→→封闭系统可逆;
※隔离系统不可逆→→封闭系统不可逆。
→→ΔSiso>0即封闭系统过程不可逆;
ΔSiso=0即封闭系统过程可逆;
熵增原理例题
0。 1.一隔离系统可逆变化中,ΔSsys> 0,ΔSamb < 0。 0,ΔU = 2.实际气体经历不可逆循环,ΔSsys =
0。 0,ΔU < 3.实际气体绝热可逆膨胀,ΔSsys = 0。 0, ΔSamb > 4.理想气体经不可逆循环,ΔSsys = 0。 0, ΔSamb > 5.过冷水结成同温度的冰,ΔSsys <

S
2
Qr
T
1

第三章 多组分系统热力学《物理化学》要点

第三章 多组分系统热力学《物理化学》要点


B
μB dnB

B
μB dnB
不但适用于变组成的封闭系统,还适用于变组成的敞开系统。
二、化学势在相平衡中的应用
•在等温等压且W′=
0条件下,封闭体系中过程
自发性判据为:
dGT , P 0
{
自发 (W ' 0) 平 衡态
对于多组分均相系统:等温等压且W′= 0条 件下判据为:
dGT , P B dnB 0
B
{
自发 (W ' 0) 平衡态
对于一个单组分多相封闭系统有


假设 B 由 相 转移至 相 的物质的量 dn 无限小,且:
dn 0 而: dn -dn
dG dG( ) dG( )



B dn B dn



B (dn ) B dn
G 其中只有 n B
T,p, n C
是偏摩尔量,其余三个均不是
偏摩尔量。
对组成可变的系统四个热力学方程为:
dU T dS p dV
dH T dS V dp

B
μB dnB
μB dnB

B
dA -S dT V dP
dG S dT V dp
(3) 多相系统平衡时有: μ в(α)= μв(β) =……B物质在各相 中的化学势相等.
三、化学势与温度压力的关系
( B ) p , nC S B T
SB>0,所以当温度升高时,化学势降低。
( B / T ) 1 B B B TS B HB [ ] p , nC ( ) p ,nC 2 2 2 T T T T T T

物理化学 第三章 相平衡

物理化学 第三章 相平衡

T2 398K 125℃
固-液平衡:
根据克拉贝龙方程
fus H m dT dp fusVm T
T2 p 2 p1 ln fusVm T1 fus H m
例题3 溜冰鞋下面的冰刀与冰接触的地方,长度为 7.62×10-2 m, 宽度为2.45 ×10-5 m。 (1)若某人的体重为60 kg,试问施加于冰的压力? (2)在该压力下冰的熔点?(已知冰的熔化热为 6.01 kJ· -1,Tf*=273.16 K,冰的密度为920 kg.m-3, mol 水的密度为1000 kg· -3)。 m
8 5 1
fus H m
3.2.2 水的相图 (由实验测得)
——描述水的状态如何随系统的T,p而变化的图 3个单相区、3条两相线、1个三相点 各相区的位置 水 冰 汽

p

线 区
临界点

常压加热干燥
610.6 Pa


273.16 K
升华 真空冷冻干燥
(可保持生物活性)


T
水的冰点 273.15K、 101325Pa 0 ℃
第三章 相平衡
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中
有重要的意义。
例如:溶解、蒸馏、重结晶、萃取、提纯及金
相分析等方面都要用到相平衡的知识。
3.1
3.1.1 基本概念
相律
1.相与相数(P)
相:体系中物理、化学性质完全均匀(一致)
的部分。
相与相:明显界面;物理方法可分开;
2.组分和组分数
组分(Component),也称独立组分
描述体系中各相组成所需最少的、能独立存在 的物质(讨论问题方便)。 组分数: 体系中组分的个数,简称组分,记为C。

物理化学第三章热力学第二定律主要公式及其适用条件

物理化学第三章热力学第二定律主要公式及其适用条件

第三章 热力学第二定律主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。

W 为在循环过程中热机中的工质对环境所作的功。

此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据a mb s y s i s o S S S ∆+∆=∆{0, 0, >=不可逆可逆 式中iso, sys 和amb 分别代表隔离系统、系统和环境。

在隔离系统中,不可逆过程即自发过程。

可逆,即系统内部及系统与环境之间皆处于平衡态。

在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。

此式只适用于隔离系统。

6. 环境的熵变rd δ/S Q T =ambys amb amb amb //S T Q T Q s -==∆7. 熵变计算的主要公式222r 111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出(1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程(2) T 2112l n (/)l n (/)S n R V V n R p p ∆== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。

物理化学第三章化学平衡

物理化学第三章化学平衡
θ Δr Gm T T θ r m 2
• 代入Δr G =-RTlnKθ θ • 得: lnK
θ m
θ Δ H - r m T2 p
ΔH T p RT
θ θ • 若 Δr Hm 与温度无关,或温度变化范围较小, 可视为常数。 Δr Hm
反应自发向右进行,趋向 平衡 反应自发向左进行,趋向 平衡
=0 反应达到平衡
化学平衡的实质,从动力来看,是正、 逆反应的速率相等:从热力学来看, 是产物的化学势总和等于发育物化学 势的总合。
ΔG
G T, p r m ξ
vBuB 0
B
严格讲,反应物与产物处于统一 体系的反应都是可逆的,不能进 行到底。
• 二、反应的方向和平衡的条件
• 设某不做非膨胀功的封闭系统有一化学反应, • aA + dD = gG + hH • 在等温等压下,若上述反应向右进行了无限小量的反应,此时体 系的吉氏函数为: • dG(T,p) uBdnB

B

dG(T , p ) uBvBdξ ( vBuB )dξd
vB
• 这时Kθ、Kc、Kx 均只是与温度有关。
第三节 平衡常数的计算
• (一)平衡常数的测定和平衡转化率的计算
• 1.平衡常数的测定
• ① 如果外界条件不变,体系中各物质的浓度不随时间改变,表明体系达到平衡。
• ②从反应物开始正向进行方向或者从产物开始逆向进行反应,若测得的平衡常数相同
• 表明体系已达到平衡。 • ③改变参加反应各物质的初浓度,若多得平衡常数相同,表明体系已达到平衡。 A
• 对第二式不定积分,有:

物理化学-第三章热力学第二定律

物理化学-第三章热力学第二定律
2020/10/7
Carnot定理推论的意义:
把理想气体进行Carnot循环所得结论,推广到其他 工作物质。
引入不等号的意义
I R
就是这个不等号,推广到其他物理和化 学过程,解决了热力学判断变化方向和限 度的问题。
2020/10/7
例:设某蒸气机的高温热源用的是过热蒸
汽,T1=800 K,低温热源是空气,T2=
由式(iii),(iv)有
V2 V3 V1 V4
Q1
Q2
nR(T1
T2 )ln
V2 V1
(v)
W Q1 Q2 T1 T2
Q1
Q1
T1

可逆热机 效率:
η
W Q1
Q1 Q2 Q1
T1 T2 T1
结论:1)理想气体卡诺热机的效率η只与两个热源
的温度(T1,T2)有关,温差愈大,η愈大。
300 K,则该热机的最高效率是?
解: T1 T2 0.625
T1
2020/10/7
冷冻系数P91
2020/10/7
Qc Tc
W Th Tc
冷冻系数表示每施一个单位的功 于制冷机从低温热源中所吸收热 的单位数。(卡诺热机倒开)
3.4 熵的概念
从Carnot循环得到的重要关系式
W 1 TC
3. 结论:自然界中发生的一切实际过程都有一定的 方向和限度。不可能自发按原过程逆向进行,即自
然界中一切实际发生的过程都是不可逆的。
4、热力学第二定律的经典表述
克劳休斯说法:不可能把热由低温物体转移到高 温 物体,而不产生其它影响。
开尔文说法: 不可能从单一热源吸热使之完全变
为功,而不产生其它影响。
2020/10/7

物理化学复习 第三章

物理化学复习 第三章
1. 恒温过程 T系统=T环
山东科技大学
dA T W ; 或 AT W
可逆过程: dA T WR; 或 AT WR
★ 恒温过程中系统 A 的减小值等于可逆过程中系统所做的功。 ★ 恒温可逆过程中系统做最大功—最大功原理。 ★ A 可以看作系统做功的能力—功函。
第三章 热力学第二定律
山东科技大学
如两相达到相平衡时,在相同T、P时,则相同组份在两相 中化学势必然相等,如一相中化学势大于另一相,则从高 的向低的转移直到相等。 3)理想气体混合物的化学势: 对于1mol纯理想气体组份,在T下从标准态压力p0恒温变 压至p时,其化学势μ0(Pg,T,p0)变至μ*(Pg,T,p)则二者 之间关系为: μ*(Pg,T,p) =μ0 (Pg,T,p0)+RTln(p/p0). 上述简写: μ* =μ0+RTln(p/p0).
X i dni
第三章 热力学第二定律
偏摩尔量的物理意义 (1) 偏摩尔量是一个变化率。

山东科技大学
向 T,p,n j≠i 恒定的多组分系统中加入 dni (mol )的i 物质,广延性质X增加dX, 偏摩尔量为 dX / dni 。 (2) 偏摩尔量是一个增量。 向 T,p,n j≠i 恒定的无限大多组分系统 中加入 1 mol 的i 物质,广延性质X增加ΔX, 偏摩尔量为 Δ X 。 (3) 偏摩尔量是一个实际的摩尔贡献量。 偏摩尔量是1 mol 的i 物质对T,p,n j≠i 恒定的多组分系统的广延 性质X的实际贡献量。
2.液体或固体恒压变温过程
S nCp,m ln(T2 / T1 )
第三章 热力学第二定律
4.环境熵变与隔离体系熵变:
山东科技大学
因环境是一个无限大的热源,与体系换热不会对其压力 和温度有影响,因此与体系换热引起的环境熵变为: △S环境=Q环/T=-Q体系/T; △S隔离 =△S环境+ △S体系;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 热力学第二定律
一.基本要求
1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。

2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。

3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。

4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ∆∆∆和G ∆的计算。

6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的r m H ∆,r m S ∆和r m G ∆,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d G 的表示式计算温度和压力对Gibbs 自由能的影响。

二.把握学习要点的建议
自发过程的共同特征是不可逆性,是单向的。

自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。

但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。

例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。

不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。

又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。

自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。

例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。

所以
学习自发过程的重要性在于如何利用自发过程为人类做功,而不要拘泥于自发过程的定义。

热力学第二定律就是概括了所有自发的、不可逆过程的经验定律,通过本章的学习,原则上解决了判断相变化和化学变化的自发变化的方向和限度的问题,完成了化学热力学的最基本的任务。

所以,学好本章是十分重要的。

通过学习Carnot 循环,一方面要熟练不同过程中功和热的计算,另一方面要理解热机效率总是小于1的原因。

了解如何从Carnot 循环导出熵函数,以及了解Carnot 定理及其推论与热力学第二定律的联系。

Clausius 不等式就是热力学第二定律的数学表达式,从这个不等式可以引出熵判据,并从熵判据衍生出Helmholtz 自由能判据和Gibbs 自由能判据,原则上完成了化学热力学判断变化方向和限度的主要任务。

从Carnot 定理引入了一个不等号,I R ηη≤,通过熵增加原理引出了熵判据。

但必须搞清楚,用绝热过程的熵变只能判断过程的可逆与否,而只有用隔离系统的熵变才能判断过程的可逆与否及自发与否。

要计算隔离系统的熵变,必须知道如何计算环境的熵变。

在计算熵变时,一定要用可逆过程的热效应。

如果实际过程是一个不可逆过程,则要设计始、终态相同的可逆过程,所以要掌握几种设计可逆过程的方法。

例如,如何将不可逆相变,设计成可逆地绕到可逆相变点(如熔点、沸点或饱和蒸汽压点)的可逆过程,并能熟练地掌握可逆过程中,,H S ∆∆和G ∆的计算。

不一定完整地了解熵的本质和热力学第三定律(因为本教材没有介绍统计热力学),只需要了解,熵是系统的混乱度的一种量度,凡是混乱度增加的过程都是自发过程。

由于热力学能的绝对值无法计算,所以使得与热力学能有联系的其他函数如,H A 和G 的绝对值也无法计算,所以,只能计算它们的变化值。

在使用这些函数时,都要加上“∆”的符号,即U ∆,H ∆,A ∆和G ∆。

原则上熵的绝对值也是不知道的,但是,热力学第三定律规定了:在0 K 时,完整晶体的熵等于零这个相对标准,由此而得到的熵值称为规定熵。

在298 K 时的常见物质的规定熵,即标准摩尔熵值,可以从热力学数据表上查阅,并可以用来计算化学反应的熵变。

定义新函数的出发点就是为了使用方便。

在用熵作为判据时,既要利用可逆过程的热效应计算系统的熵变,又要计算环境的熵变,这很不方便。

而平时实验是在等温、等容的条件下进行(较少),或在等温、等压的条件下进行(绝大多数),所以定义了Helmholtz自由能和Gibbs自由能这两个新函数,希望利用系统本身的性质作为判据,显然,Gibbs自由能的用处更广。

既然是定义的函数,说明它实际上是不存在的,所以只有在特定的条件下才有一定的物理意义。

化学热力学之所以能判断变化的方向和限度,主要是利用判据,熵判据是最根本的,而Helmholtz自由能和Gibbs自由能判据是在熵判据的基础上衍生出来的。

今后Gibbs自由能判据用得最多,因为大部分化学反应实验都是在等温、等压和不做非膨胀功的条件下进行的。

在使用判据时,必须满足判据所需要的适用条件。

四个热力学基本公式的导出,主要是通过热力学第一定律和热力学第二定律的联合公式,以及,,
H A G的定义式,它们与第一定律的适用条件一样,只适用于恒定组成的均相封闭系统,并且还引入了不做非膨胀功的限制条件。

从这四个基本公式,可以知道每个热力学函数的特征变量,这在今后定义化学势时很有用。

四个基本公式中,公式d d d
=-+在今后将用得最多,必须记住。

G S T V p
至于Maxwell方程,它主要用在求算热力学函数与,,
p V T之间的变化关系,把实验可测量(如,,
p V T)去替代实验不可测量(如熵),或在做证明题时,知道如何进行偏微分公式的变换。

对于非化学专业的学生,这部分内容本教材已删除了,免得陷在偏微分方程中,感到热力学是如此的难学而失去信心,其实这部分并非是化学热力学的主要研究任务。

初学者对热力学的基本概念不容易掌握,课听懂了,书看懂了,但是碰到具体问题还是不会判断。

所以,在学完热力学第一和第二定律之后,最好要总结一下各种热力学函数变量的计算,讨论一些容易混淆的问题,或精选一些选择题,搞一次抢答竞赛,活跃一下学习气氛,便于在愉快的气氛中,理解和巩固热力学的基本概念。

相关文档
最新文档