人教版九年级数学下册投影同步练习3新人教版

合集下载

人教版九年级下册数学第二十九章第1节《投影》训练题 (3)(含答案解析)

人教版九年级下册数学第二十九章第1节《投影》训练题 (3)(含答案解析)

九年级下册数学第二十九章第1节《投影》训练题 (3)一、单选题1.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为()A.8cm B.20cm C.3.2cm D.10cm2.下列说法错误的是()A.太阳光所形成的投影是平行投影B.在一天的不同时刻,同一棵树所形成的影子长度不可能一样C.在一天中,不论太阳怎样变化,两棵相邻树的影子都是平行或重合的D.影子的长短不仅和太阳的位置有关,还与事物本身的长度有关3.小明同学拿着一个如图所示的三角形木架在太阳光下玩,他不断变换三角形木架的位置,他说他发现了三角形木架在地上出现过的影子有四种:①点;②线段;③三角形;④四边形.你认为小明说法中正确的个数有()A.4个B.3个C.2个D.1个4.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.5.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长6.太阳发出的光照在物体上是__________,车灯发出的光照在物体上是__________()A.平行投影,中心投影B.中心投影,平行投影C.平行投影,平行投影D.中心投影,中心投影7.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.42318.下面说法正确的有()①矩形的平行投影一定是矩形;②梯形的平行投影一定是梯形;③两条相交直线的平行投影可能是平行的;④如果一个三角形的平行投影是三角形,那么它的中位线平行投影一定是这个三角形平行投影对应的中位线.A.①②B.④C.②③D.①④9.下列投影是正投影的是()A.①B.②C.③D.都不是二、填空题10.小张与小王的身高相同,若在路灯下,发现小张的影子比小王的影子短,则说明小张离路灯较________.11.在直角坐标平面内,一点光源位于A(0,5)处,线段CD垂直于x轴,D为垂足,C(3,1),则点C的影子E的坐标为____.12.如图,小张和小刘身高相同,在灯光下,小张的影子比小刘的影子长,这说明小张比小刘距离灯光_____.13.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是________m.14.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是_____m2.15.如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为________.16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为_____cm.17.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处竖立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为________ 米.18.小红拿一个长方形()的木框在阳光下玩,长方形木框在地面上形成的投影如图所示:不可能形成的投影的是________.(填序号)19.在____________的照射下,在同一时刻,不同物体的物高与其影长成比例.三、解答题20.如图,AB表示路灯,CD、C′D′表示小明所在两个不同位置:(1)分别画出这两个不同位置小明的影子;(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DD′长为3米,你能帮他算出路灯的高度吗?(B、D、D′在一条直线上)21.两棵树在一盏路灯下的影子如图所示(1)确定该路灯灯泡的位置(用点P 表示).(2)画出表示婷婷的影长的线段(用线段AB 表示).(3)若小树高为2m,影长为4m;婷婷高1.5m,影长为4.5 米,且婷婷距离小树10 米,试求出路灯灯泡的高度.22.如图,正方形ABCD的边长为4,M,N,P分别为AD,BC,CD的中点.现从点P观察线段AB,当长度为1的线段l(图中的黑粗线)以每秒1个单位长的速度沿线段MN从左向右运动时,l将阻挡部分观察视线,在△P AB区域内形成盲区.设l的左端点从M点开始,运动时间为t秒(0≤t≤3).设△P AB区域内的盲区面积为y(平方单位).(1)求y与t之间的函数关系式;(2)请简单概括y随t的变化而变化的情况.23.如图,AB和DE是直立在地面上的两根立柱,AB=5 m,DE=10 m,某一时刻AB在太阳光下的投影BC=3 m.画出DE在阳光下的影子,计算立柱DE这一时刻在阳光下投影的长.24.如图所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.25.画图:如图是小明与妈妈(线段AB)、爸爸(线段CD)在同一路灯下的情景,其中粗线分别表示三人的影子.请根据要求进行作图(不写画法,但要保留作图痕迹)(1)画出图中灯泡P所在的位置.(2)在图中画出小明的身高(线段EF)26.在生活中需测量一些球的足球、篮球)的直径.某校研究性学习小组,通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线DA、CB分别与球相切于点E、F,则EF即为球的直径.若测得AB的长为41.5cm,∠ABC=37°.请你计算出球的直径(精确到1cm).27.如图是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D处竖直立一根木棒CD,并测得此时木棒的影长DE=2.4米;然后,小希在BD的延长线上找出一点F,使得A、C、F三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.28.在同一水平线l上的两根竹竿AB、CD,它们在同一灯光下的影子分别为BE、DF,如图所示:(竹竿都垂直于水平线l)(1)根据灯光下的影子确定光源S的位置;(2)画出影子为GH的竹竿MG(用线段表示);(3)若在点H观测到光源S的仰角是∠α,且cosα=4,GH=1.2m,请求出竹竿MG的长度.529.如图,在底面是正三角形的三棱柱中,边AB,A'B'垂直于投影面P且AB,A'B'上的高所在截面平行于投影面,若已知CD的投影长为2 cm,CC'的投影长为6 cm.(1)画出三棱柱在投影面P上的正投影;(2)求出三棱柱的表面积.30.在长、宽都为4m,高为3m的房间的正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在墙角D、E处,灯罩的直径BC≈1.414)【答案与解析】1.D【解析】【解析】根据位似图形的性质得出相似比为1:2,对应边的比为1:2,即可得出投影三角形的对应边长.∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为1:2,三角尺的一边长为5cm,∴投影三角形的对应边长为:512÷=10(cm).故选D.本题考查了位似图形的性质以及中心投影的应用,根据对应边的比为1:2,再得出投影三角形的对应边长是解决问题的关键.2.B【解析】【解析】根据平行投影定义及特点即可得出答案.A. 太阳光线可以看成平行光线,这样的光线形成的投影是平行投影,正确;B. 在一天的不同时刻,同一棵树所形成的影子方向不可能一样,长度有可能一样,错误;C. 太阳光线可以看成平行光线,所以在一天中,不论太阳怎样变化,两棵相邻树的影子都是平行或重合的,正确;D. 影子的长短不仅和太阳的位置有关,还和物体本身的长度有关,正确;故选:B.考查平行投影的定义以及特点,掌握平行投影的特点是解题的关键.3.C【解析】【解析】把三角形木架无论怎样摆放,三角形木架在地上的影子不可能为点和四边形,而把三角形木架与地面不垂直时,木架在地上的影子为三角形;垂直时,影子为线段.当他把三角形木架与地面不垂直时,则三角形木架在地上的影子为三角形;当他把三角形木架与地面垂直,则三角形木架在地上的影子为线段.故选C.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影;平行投影中物体与投影面平行时的投影是全等的;在平行投影中,投影线垂直于投影面产生的投影叫做正投影.4.B【解析】试题分析:根据看等边三角形木框的方向即可得出答案.解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选B.点评:本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.5.B【解析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.6.A【解析】【解析】根据太阳发出的光线是平行光线,灯发出的光线是不平行光线.∵太阳发出的光是平行光线,灯发出的光线是不平行的光线,∴太阳发出的光照在物体上是平行投影,车灯发出的光照在物体上是中心投影.故选:A.本题考查了平行投影与中心投影,解题的关键是了解太阳发出的光线是平行光线,灯发出的光线是不平行光线.7.B【解析】【解析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.解:时间由早到晚的顺序为4312.故选B.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.8.B【解析】根据平行投影的概念以及性质可知.①、当矩形和投影面垂直时,矩形的平行投影可以是一条线段,错误;②、当梯形和投影面垂直时,梯形的投影可以是一条线段,错误;③、两条相交直线的平行投影一定相交,错误;④、根据平行投影的性质,显然正确.故选B.本题较简单,但简单不一定就能做对,所以做此类题要注意培养学生认真细心的学习品质.9.C【解析】平行投影法分为正投影和斜投影,正投影是平行光垂直于屏幕的投影.根据题意:①是点光源的投影,是错误的;②是斜投影,故错误;③是正投影,故正确.故选C.本题考查的是正投影的基本知识,本题属于基础题.10.近【解析】【解析】根据中心投影的特点,结合题意,可得小张离路灯较近.中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.所以小张离路灯较近.故答案为:近本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.15,0 4⎛⎫ ⎪⎝⎭【解析】【解析】根据题意可知△CDE∽△AOE,利用相似三角形的对应边的比相等可得影长DE的长度,加上3即为点E的横坐标,其纵坐标为0.∵OA⊥x轴,CD⊥x轴,∴CD∥OA,∴△CDE∽△AOE,∴DE:EO=CD:OA,设DE=x,∴3xx+=15,解得:x=34,∴DE=34,∴OE=3+34=154,∴点E的坐标为(154,0).故答案为:(154,0).用到的知识点为:相似三角形的对应边成比例;x轴上点的纵坐标为0.12.远【解析】【解析】根据中心投影的特点,结合题意,可得小张离路灯较远.中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.所以小张离路灯较远,故答案为:远本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.13.4.8【解析】【解析】设此树的高度是hm ,再根据同一时刻物高与影长成正比即可得出结论.设此树的高度是hm ,则1.6,1.2 3.6h = 解得h =4.8(m ).故答案为:4.8.考查平行投影的特点,掌握同一时刻物高与影长成正比是解题的关键.14.0.72π【解析】【解析】利用中心投影的性质可判定圆环形阴影与桌面相似,则利用相似的性质得到 S 桌面:S 圆环阴影 =231,3-⎛⎫ ⎪⎝⎭然后利用比例性质计算出地面圆环形阴影的面积. 圆桌面的面积()222π0.60.20.32π()m =-=, ∵圆环形阴影与桌面相似, ∴S 桌面:S 圆环阴影=231,3-⎛⎫ ⎪⎝⎭∴地面圆环形阴影的面积290.32π0.72π().4m =⨯= 故答案为:0.72π考查了相似三角形的应用以及中心投影,熟练掌握相似三角形的性质是解题的关键.15.④①③②【解析】【解析】根据影子变化规律可知道时间的先后顺序.解:从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.则四幅图按先后顺序排列应是④①③②.故答案为:④①③②.本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.16.【解析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.∵∠ACB=90°,BC=12cm,AC=8cm,∴,∵△A1B1C1是△ABC的中心投影,∴△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1.故答案为本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.17.10【解析】【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.∵标杆的高标杆的影长=楼高楼影长,即23=15楼高,∴楼高=10米.故答案为:10.本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.()4【解析】【解析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故()4不可能,即不会是梯形.故答案为:(4)本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.19.平行光线【解析】【解析】根据平行投影的定义解题即可.在平行光线的照射下,在同一时刻,不同物体的物高与其影长成比例.本题考查了平行投影的定义,解题的关键是熟练的掌握平行投影的定义20.(1)详见解析;(2)4.5米.【解析】【解析】(1)连接AC、AC′并延长交地面分别为E和E′,则DE和DE′分别为两个不同位置小明的影子;(2)依题意容易得到△EDC∽△EBA,利用它们对应边成比例就可以求出路灯的高度.(1)作图如图:(2)∵CD∥AB,C′D′∥AB,∴'''''CD ED C D D EAB EB AB BE==,,∴'''ED D EEB BE=.∵DE=CD=1.5,D′E′=2CD=3,∴1.531.56BD BD=++,解得:BD=3,∴AB=BE=BD+DE=3+1.5=4.5(米).本题考查了中心投影,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例就可以求出路灯高度.21.(1)见解析;(2)见解析;(3)路灯灯泡的高度为10.5m.【解析】(1)根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把两棵树的顶端和影子的顶端连接并延长可交于一点,即点光源的位置;连接PC 并延长交QA 的延长线与点B,即可得;由DF∥PQ 得△DEF∽△QEP,根据相似三角形的性质有DF DEPQ QE=,即244PQ QD=+①,同理可得CA ABPQ QB=,即1.5 4.510 4.5PQ QD=++②,联立①②可得PQ.(1)如图,点P 即为灯泡所在位置;(2)如图,线段AB 即为婷婷的影长;(3)由题意知,DF=2,DE=4,DA=10,AC=1.5,AB=4.5,∵DF∥PQ,∴△DEF∽△QEP,∴DF DEPQ QE=,即244PQ QD=+①,∵CA∥PQ,∴△CAB∽△PQB,∴CA ABPQ QB=,即1.5 4.510 4.5PQ QD=++②,由①②可得PQ=10.5,答:路灯灯泡的高度为10.5m.本题考查了中心投影和相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.22.(1)当0≤t≤1时,y=3t;当1<t≤2时,y=3;当2<t≤3时,y=9-3t;(2)1秒内,y随t的增大而增大;1秒到2秒,y的值不变;2秒到3秒,y随t的增大而减小.【解析】【解析】(1)根据正方形的性质得AM=2,盲区为梯形,且上底为下底的一半,高为2,然后分段计算:当0≤t≤1时,梯形的上底为t,则下底为2t;当1<t≤2时,梯形的上底为1,下底为2;当2<t≤3时,梯形的上底为1-(t-2)=3-t,则下底为2(3-t),然后根据梯形的面积分别计算出三中情况下的梯形的面积即可;(2)根据一次函数的性质求解.解:(1)∵正方形ABCD的边长为4,点M,N,P分别为AD,BC,CD的中点,∴AM=2,盲区为梯形,且上底为下底的一半,高为2,当0≤t≤1时,y=12(t+2t)·2=3t,当1<t≤2时,y=12(1+2)×2=3,当2<t≤3时,y=12[3-t+2(3-t)]·2=9-3t.(2)1秒内,y随t的增大而增大;1秒到2秒,y的值不变;2秒到3秒,y随t的增大而减小.本题考查了视点、视角和盲区:把观察者所处的位置定为一点,叫视点.人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.视线到达不了的区域为盲区. 23.图详见解析,立柱DE这一时刻在阳光下投影的长为6 m.【解析】【解析】利用同一时刻物体高度与影长比值相等进而得出答案.如图所示:EF即为所求;∵AB=5m,某一时刻AB在阳光下的投影BC=3m,DE=10m,∴AB DEBC EF=,则5103EF=,解得:EF=6,答:DE这一时刻在阳光下投影的长为6 m.考查平行投影的特点,同一时刻物体高度与影长比值相等是解题的关键.24.详见解析.【解析】【解析】本题可根据盲区的定义,作出盲区,只要老鼠在猫的盲区内,老鼠就是安全的.如图,阴影部分就是安全区域.本题主要考查了视点,视角和盲区在实际中的应用.人在观察物体时,眼睛到目标的射线叫做视线,两条视线的夹角叫做视角,视线看不到的地方叫做盲区.25.(1)详见解析;(2)详见解析.【解析】【解析】(1)利用中心投影的图形的性质连接对应点得出灯泡位置即可;(2)根据灯泡位置即可得出小明的身高.解:(1)如图,点P即为灯泡所在位置;(2)如图所示,线段EF即为所求.本题主要考查作图-应用与设计作图,解题的关键是熟练掌握中心投影的定义和性质.26.球的直径约为25cm.【解析】【解析】过A作AM⊥BF于M,利用37°的正弦值可近似的求出球的直径EF.如图,过A作AM⊥BF于M,∵光线DA、CB分别与球相切于点E、F,并且AD∥CB,∴EF=AM,在Rt△BAM中,EF=AM=AB•sin37°≈25cm.答:球的直径约为25cm.本题考查了解直角三角形的应用,切线的性质.用到的知识点为:圆的切线垂直于经过切点的半径;一个角的正弦值等于这个角的对边与斜边之比.27.43米.【解析】【解析】根据相似三角形的性质得到CDAB=DE CDBD AB,=DFBF,等量代换得到DEBD=DFBF,代入数据即可得到结论.由题意得:∠ABD=∠CDE=90°,∠ADB=∠CED,∴△CDE∽△ABD,∴CDAB=DEBD.∵∠F=∠F,∴△CDF∽△ABF,∴CDAB=DFBF,∴DEBD=DFBF,即2.4BD=2.52.5BD,∴BD=60,∴1.72AB=2.460,∴AB=43.答:小雁塔的高度AB是43米.本题考查了相似三角形的判定与性质以及平行投影,正确得出△AEC∽△ADB是解题的关键.28.(1)如图见解析;(2)如图见解析;(3)竹杆MG的长度为0.9m.【解析】【解析】(1)过影子顶端与竹竿顶端作射线,交点S即为所求;(2)连接光源S与影子顶端H,过G作垂直于地面的直线,与SH交于点M,GM即为所求;(3)求得MH=1.5m,依据Rt△MHG中,∠MGH=90°,可得MG2=MH2﹣GH2=0.81,即可得到MG=0.9m(1)如图,点S即为所求;(2)如图,MG即为所求;(3)∵cosα==,GH=1.2m,∴MH=1.5m,在Rt△MHG中,∠MGH=90°,则MG2=MH2﹣GH2=0.81,则MG=0.9m,答:竹杆MG的长度为0.9m.本题考查中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源29.(1)画图见解析;(2)见解析.【解析】(1)根据正投影的画法即可画出;(2)(1)三棱柱在投影面P上的正投影如图.(2)∵CD∥MH,∴CD=MH.又∵MH=2 cm,∴CD=2 cm.在Rt△ADC中,设AD=x cm,则AC=2x cm ,又CD=2 cm ,由勾股定理,解得cm. 三棱柱表面积S=2S △ABC +3S 矩形ACC'A',CC'=HK=6 cm ,因此,三棱柱表面积S=2×12×2×3+3×6×3 =3(cm 2). 本题考查了正投影的画法以及直三棱柱的表面积的求法. 30.灯罩的直径BC 约为0. 23m.【解析】根据题意画出几何图,则AN=0.08m ,AM=2m ,计算出m ,再证明△ABC ∽△ADE ,然后利用相似比可计算出BC.解:如图,光线恰好照在墙角D. E 处,AN=0.08m ,AM=2m ,由于房间的地面是边长为4m 的正方形,则m , ∵BC ∥DE ,∴△ABC ∽△ADE , ∴BC ANDE AM=0.082=, ∴BC≈0.23(m).答:灯罩的直径BC 约为0.23m.故答案为约为0.23m.本题考查了中心投影,相似三角形的应用.。

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】

第二十九章投影与视图29.1投影第1课时投影知能演练提升能力提升1.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()2.如图,树是小明昨天画的一幅画的一部分,则小明创作这幅画的时间大约在()A.早上8点B.中午12点C.下午4点D.不能确定3.如图,晚上小明在灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短,再变长D.先变长,再变短4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,则下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确结论的序号是.5.小军晚上到新世纪广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的一盏路灯一定位于两人.”6.两棵树及其影子的情形如图所示.(1)哪个图反映了在阳光下的情形?哪个图反映了在路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.①②7.如图,小明家楼边立了一根长为4 m的竹竿,小明在测量竹竿的影子时,发现影子不全落在地面上,有一部分落在楼房的墙壁上(如图),小明测出它落在地面上的影子长为2 m,落在墙壁上的影子长为1 m.此时,小明想把竹竿移动位置,使其影子刚好不落在墙上.试问:小明应把竹竿移到什么位置?(要求竹竿移动距离尽可能小)8.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?创新应用9.如图,在一面与地面垂直的围墙的同一侧有一根高10 m的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF=2 m,落在地面上的影子BF=10 m;而电线杆落在围墙上的影子GH=3 m,落在地面上的影子DH=5 m.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.A太阳光线是平行的,同一地点同一时刻树与影长的比应是一样的,影子的方向也应相同.2.C3.C路灯的光线可以看成是从一个点发出的,所产生的投影为中心投影.过灯所在的位置点及小明头顶作射线与地面相交,交点到小明脚跟的距离就是影长.如图,根据画出的每个位置的影长容易发现:小明从A到B的影子变化可分为两个阶段:A→M影子越来越短,M→B影子越来越长,因此从A→B影子先变短,再变长,故选C.4.①③④当木杆绕点A按逆时针方向旋转时,如图所示,当AB与光线BC垂直时,m最大,则m>AC,故①成立,②不成立;最小值为AB与底面重合时,即n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.5.之间6.解(1)题图①反映了在阳光下的情形,题图②反映了在路灯下的情形.(2)题图①中的光线是平行的,题图②中的光线相交于一点.(3)如图,AB,EF分别是表示小丽在阳光下和路灯下影长的线段.①②7.解设影子刚好不落在墙上时的影长为x m,则4-12=4x,x=83,所以小明应把竹竿移到离墙83m的位置.8.解能,如图.9.解(1)平行.(2)过点E作EM⊥AB于点M,过点G作GN⊥CD于点N,则MB=EF=2 m,ND=GH=3 m,ME=BF=10 m,NG=DH=5 m,所以AM=AB-MB=10-2=8(m),由平行投影可知,AMME =CNNG,即810=CD-35,解得CD=7 m,即电线杆的高度为7 m.第2课时正投影知能演练提升能力提升1.有一个热水瓶如图所示,平行光线从正前方照射得到它的正投影是()2.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影3.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影试验,矩形木板在地面上形成的投影不可能是()4.在太阳光下,转动一个正方体,观察正方体在地面上投下的影子,那么这个影子最多可能是()A.四边形B.五边形C.六边形D.七边形5.正方形在太阳光的投影下得到的几何图形一定是()A.正方形B.平行四边形或一条线段C.矩形D.菱形6.在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子,将光源改为灯光将如何?7.一个圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,求圆柱的体积和表面积.创新应用8.如图,已知一纸板的形状为正方形ABCD,AD,BC与投影面平行,AB,CD与投影面不平行.(1)画出它的正投影A1B1C1D1;(2)若其边长为10 cm,∠ABB1=45°(点B1与点B是对应点),求正投影A1B1C1D1的面积.能力提升1.A2.D3.A4.C最多可能是如图所示的六边形ABCDEF.5.B6.解(1)(2)可作为太阳光照射下的影子;(1)(2)(3)可作为灯光照射下的影子.7.解因为圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,所以圆柱的底面半径为2,高为4.所以圆柱的体积是π×22×4=16π,圆柱的表面积是2×π×22+4π×4=24π.创新应用8.解(1)正投影A1B1C1D1如图所示.(2)如图,过点A作AH⊥BB1于点H.∵∠ABB1=45°,∴△ABH是等腰直角三角形,∴AH=√2AB=5√2 cm,2∴A1B1=AH=5√2 cm.∵A1D1=AD=10 cm,∴矩形A1B1C1D1的面积=A1B1·A1D1=5√2×10=50√2(cm2).即正投影A1B1C1D1的面积是50√2 cm2.。

2020-2021学年九年级数学下册 第3章 投影与视图 3.1 投影同步练习 (全国通用版)人教版

2020-2021学年九年级数学下册 第3章 投影与视图 3.1 投影同步练习 (全国通用版)人教版

通用版)人教版3.1 投影知|识|目|标1.通过生活体验与观察实物的投影,理解投影的概念并能判断几何体的投影.2.通过观察太阳光下实物的投影,理解平行投影的性质并能解决简单的问题.3.通过观察灯光下实物的投影,理解中心投影的性质并能解决简单的问题.4.在理解各类型投影的基础上,能进行投影的作图.目标一理解投影的基本概念例1 教材补充例题小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上的投影不可能是( )图3-1【归纳总结】投影的四个要素:(1)投影线:照射的光线;(2)投影面:投影所在的地面、墙壁或屏幕等;(3)投影物:实物(或几何体、平面图形);(4)投影:平面图形.目标二理解平行投影并能解决简单的问题例2 教材补充例题如图3-1-2,AB和DE是直立在地面上的两根立柱.AB=5 m,某一时刻AB在阳光下的投影BC=3 m,同时测量出DE在阳光下的投影长为6 m.(1)请你在图中画出此时DE在阳光下的投影;(2)请你计算DE的长.图3-1-2【归纳总结】1.平行投影的两个特征:(1)平行投影中,形成影子的光线是平行的,平行物体在地面上形成的影子平行或在同一直线上;通用版)人教版(2)同一时刻,太阳光下,物高与影长成正比.2.画平行投影的两个步骤:第一步:画出经过一个物体顶端和其影子的顶端的一条光线;第二步:经过另一物体的顶端画出平行于上述直线的光线,从而得到这个物体的影子.目标三理解中心投影并能解决简单的问题例3 教材补充例题晚上,小亮在广场上乘凉.图3-1-3中的线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12 m,小亮的身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.【归纳总结】中心投影的三个特点:(1)等高物体垂直于地面放置:①离点光源越近,影子越短;②离点光源越远,影子越长.(2)等长物体平行于地面放置:①离点光源越近,影子越长;②离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及其在物体的影子上的对应点在同一条直线上.目标四会进行投影的作图例4 教材补充例题画出图3-1-4中所摆放的长方体在投影面P上的正投影.通用版)人教版【归纳总结】正投影的判断与作图:(1)正投影的投影线与投影面垂直(因为太阳光线与地面不一定垂直,所以以太阳光线为投影线、以地面为投影面的投影不一定是正投影);(2)当物体的某个平面平行于投影面时,这个面的正投影与这个面是全等形;(3)画图时,应先判断投影线与物体的相对位置,然后依据正投影的性质画出物体的正投影.例5 高频考题如图3-1-5,电线杆上有一盏路灯O,电线杆与三根等高的标杆整齐地排列在马路的一侧,AB,CD,EF是三根标杆,MB,ND分别是AB,CD的影子.(1)请画出路灯O的位置;(2)画出标杆EF在路灯下的影子FH.图3-1-5【归纳总结】中心投影的判断与作图:(1)任意两条投影光线(直线)的交点就是光源的位置;(2)物体在灯光的照射下形成的影子是中心投影;(3)中心投影的光线是从一点出发的投射线,物体的某个面与投影面平行时,这个面的投影与这个面相比,被放大了(即位似变换).通用版)人教版知识点一投影光线照射物体,会在平面上(如地面、墙壁)留下它的影子,把物体映成它的影子叫作投影,照射的光线叫投影线,投影所在的平面叫投影面.物体在投影下的像简称为物体的投影.知识点二平行投影由______光线形成的投影是平行投影.平行投影的特征:(1)点的投影仍为点;(2)线段的投影可能为点或线段;(3)一点在某一线段上,则该点的投影一定在该线段的投影上;(4)平行线段的平行投影是平行或重合的线段(若投影线与线段平行,则为两个点);(5)平行于投影面的线段,它的投影与这条线段平行且等长;(6)与投影面平行的平面图形,它的投影与这个图形全等.在平行投影中,如果投影线与投影面互相______,就称为正投影(如图3-1-6).知识点三中心投影如果光线从______发出(如灯泡、电影放映机、幻灯机的光线),这样的投影称为中心投影,如图3-1-7,这个“点”就是中心,相当于物理上学习的“点光源”.生活中的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.图3-1-7中心投影的特点:(1)等高的物体垂直于地面放置时,在灯光下离点光源近的物体的影子短,离点光源远的物体的影子长.(2)等长的物体平行于地面放置时,一般情况下,离点光源越近,影子越长.离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及它的影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.通用版)人教版[点拨] 平行投影与中心投影的区别与联系:区别联系光线物体的某个面与投影面平行时,这个面的投影平行投影平行的投射线与这个面全等中心投影从一点发出的投射线与这个面相比,被放大了(位似变换)都是物体在光线的照射下,在某个平面内形成的影子讨论:哪些投影一定不会改变△ABC的形状和大小?甲:“中心投影.”乙:“平行投影.”丙:“正投影.”丁:“当△ABC平行于投影面时的平行投影.”你认为谁的说法正确?通用版)人教版教师详解详析【目标突破】 例1 B例2 [解析] (1)根据平行投影的性质可先连接AC ,再过点D 作DF ∥AC 交地面于点F ,EF 即为所求;(2)根据平行的性质可知△ABC ∽△DEF ,利用相似三角形对应边成比例即可求出DE 的长. 解:(1)DE 在阳光下的投影是EF.如图所示.(2)∵△ABC ∽△DEF ,∴AB DE =BC EF ,而AB =5 m ,BC =3 m ,EF =6 m ,∴5DE =36,∴DE =10(m ).例3 [解析] (1)直接连接点光源和物体顶端形成的直线与地面的交点即是影子的顶端;(2)如图,根据中心投影的特点可知△CAB∽△CPO ,利用相似比即可求解.解:(1)如图,连接PA (P)照射下的影子. (2)在△CAB 和△CPO 中,∵∠C =∠C ,∠ABC =∠POC =90°, ∴△CAB ∽△CPO ,∴AB PO =CBCO ,即1.612=CB 13+CB,∴CB =2(m ), ∴小亮影子的长度为2 m .例4 [解析] 由观察可知,长方体上的四边形ABCD 平行于投影面,从A ,B ,C ,D 各点向投影面引垂线,画出垂足A′,B ′,C ′,D ′,分别连接A′B′,B ′C ′,C ′D ′,A ′D ′,可得到图中长方体在投影面P 上的正投影.通用版)人教版解:如图所示,四边形A′B′C′D′是长方体在投影面P上的正投影.例5解:(1)如图,点O即为所求.(2)如图,FH即为所求.【总结反思】[小结] 知识点二平行垂直知识点三一点[反思] 丁的说法正确.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。

人教版九年级数学下册 投影习题

人教版九年级数学下册 投影习题

《29.1投影》习题一、单选题1.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子().A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短2.下列命题正确的是().A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上,得到的光区仍是矩形3.如图是小明一天上学.放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是().A.(1)(2)(3)(4)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(3)(4)(1)4.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是().5.如图,AB,CD是两根木杆,它们在同一平面内的同一直线MN上,则下列有关叙述正确的是().A.若射线BN正上方有一盏路灯,则AB,CD的影子都在射线BN上;B.若线段BD正上方有一盏路灯,则AB的影子在射线BM上,CD的影子在射线DN上;C.若在射线DN正上方有一盏路灯,则AB,CD的影子都在射线BN上;D.若太阳处在线段BD的正上方,则AB,CD的影子位置与选项B中相同.6.小刚走路时发现自己的影子越走越长,这是因为().A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮二、填空题7.已知小聪的身高为1.8米,在太阳光下的地面影长为2.4米,若此时测得一旗杆在同一地面的影长为20米,则旗杆高应为.8.矩形在光线下的投影,可能是_________或_________也可能是_________.9.太阳光线形成的投影是_________,灯光形成的投影是_________.10.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而(填“变大”、“变小”或“不变”).11.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是___ ___ ,影子的长短随人的位置的变化而变化的是___12.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB•在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_______.13.如图,甲、乙两盏路灯相距20米.一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部[正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为米.14.小丽站在30米高的楼上远眺前方的广场,在离楼房15米处,有一个高为5米的障碍物,那么离楼房__________米的范围内小丽看不见三、解答题15.小明同学在教室透过窗户看外面的小树,他能看见小树的全部吗?请在(1)中画图说明.如果他想看清楚小树的全部,应该往(填前或后)走.在(2)中画出视点A(小明眼睛)的位置.(1)(2)16.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)17.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.18.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A 点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?19.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.如下图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P 表示).如果是太阳光请画出光线.(2)在图中画出表示大树高的线段21.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼之间的距离AC=24m,现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1m ,≈1.41,≈1.73)?22.如图,是两根柱子在同一灯光下的影子.(1)请在图中画出光源的位置(用点P表示光源);(2)在图中画出人物DE在此光源下的影子(用线段EF表示).答案与解析1.知识点:中心投影答案:A解析:试题分析:由题意小亮离光源是由远到近的过程,根据中心投影的特点,即可得到身影的变化特点.小亮在路灯下由远及近向路灯靠近时,其影子应该逐渐变短,故选A.考点:本题考查了中心投影的特点点评:本题属于基础应用题,只需学生熟练掌握中心投影的特点,即可完成.2.知识点:简单几何体的三视图、平行投影、中心投影答案:C解析:试题分析:根据中心投影、平行投影的性质,三视图的知识依次分析个选项即可.A.三视图是平行投影,故本选项错误;B.牡丹花不能看作视点,故本选项错误;C.球的三视图均是半径相等的圆,本选项正确;D.阳光从矩形窗子里照射到地面上,得到的光区可能是平行四边形,故本选项错误;故选C.考点:本题考查的是三视图点评:解答本题的关键是掌握从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.3.知识点:平行投影答案:B.解析:试题分析:根据平行投影的规律:早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长可得顺序为(4)(3)(1)(2).故选B.考点:平行投影.4.知识点:平行投影答案:A解析:试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.考点:本题考查了平行投影特点点评:解答本题的关键是掌握平行投影的特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.5.知识点:中心投影答案:B解析:试题分析:两个影长在相反方向,连接两个物体与影长的对应顶点,可得交于一点,那么应为点光源的光线形成的影子.如图所示:它们是点光源的光线形成的影子,锐线段BD正上方有一盏路灯,则AB的影子在射线BM上,CD的影子在射线DN上,故选B.考点:本题考查的是中心投影点评:解决本题的关键是理解点光源的光线交于一点.6.知识点:中心投影答案:A解析:试题分析:中心投影的形成光源为灯光,根据中心投影的性质即可判断.小刚走路时发现自己的影子越走越长,这是因为从路灯下走开,离路灯越来越远,故选A.考点:此题主要考查了中心投影的性质点评:中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7.知识点:相似三角形的性质、平行投影答案:15m.解析:试题分析:设旗杆高为xm,根据同时同地物高与影长成正比列出比例式:,解得x=15m.考点:相似三角形的应用.8.知识点:平行投影答案:平行四边形矩形线段9.知识点:平行投影、中心投影答案:平行投影中心投影10.知识点:中心投影答案:变小;解析:试题分析:易知投影为光线路程从蜡烛A点到人物头所连接的直线延伸到墙上,设为AD.当人离墙的距离变小时候(即往右边移动),易知其AD与AB的夹角会变小,AD长度变小,根据勾股定理易知,斜边变小,其中一条直角边固定不变,则另一条直角边肯定会长度变小.考点:勾股定理点评:本题难度中等,需要学生作图简单推理.应注意数形结合的培养并在考试中应用11.知识点:平行投影、中心投影答案:太阳光下形成的影子;灯光下形成的影子.解析:试题分析:根据平行投影和中兴投影的性质分别分析得出答案即可.试题解析:根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.考点: 1.平行投影;2.中心投影.12.知识点:相似三角形的性质、平行投影答案:10m解析:试题分析:根据已知连接AC,过点D作DF∥AC,即可得出EF就是DE的投影;利用三角形△ABC∽△DEF.得出比例式求出DE即可.作法:连接AC,过点D作DF∥AC,交直线BE于F,则EF就是DE的投影.∵太阳光线是平行的,∴AC∥DF.∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴,∵AB=5m,BC=3m,EF=6m,∴,∴DE=10(m).考点:此题主要考查了平行投影的画法以及相似三角形的应用点评:解答本题的关键是掌握平行投影的性质,根据已知得出△ABC∽△DEF.13.知识点:相似三角形的性质、中心投影答案:解析:考点:相似三角形的应用.分析:易得△ABO∽△CDO,利用相似三角形对应边的比相等可得路灯甲的高.解答:解:∵AB⊥OB,CD⊥OB,∴△ABO∽△CDO,∴=,=,解得AB=8,故答案为8.点评:考查相似三角形的应用;用到的知识点为:相似三角形对应边的比相等.14.知识点:相似三角形的性质、中心投影答案:15~1815.知识点:中心投影答案:小明同学在教室透过窗户看外面的小树,他不能看见小树的全部;如果他想看清楚小树的全部,应该往前走;点A(小明眼睛)的位置,图形见解析.解析:试题解析:小明同学在教室透过窗户看外面的小树,他不能看见小树的全部;如果他想看清楚小树的全部,应该往前走;点A(小明眼睛)的位置,如图:.考点:光的直线传播.16.知识点:中心投影答案:作图见解析.解析:试题分析:先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P 作过木桩顶端的直线与地面的交点即为F.试题解析:作图如下:考点:1.作图题;2.中心投影.17.知识点:相似三角形的应用、平行投影答案:(1)画图见解析;(2)米.解析:试题分析:(1)连接AC,过D点作AC的平行线即可;(2)过M作MN⊥DE于N,利用相似三角形列出比例式求出旗杆的高度即可.试题解析:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴又∵AB=1.6,BC=2.4,DN=DE-NE=15-xMN=EG=16∴解得:x=.答:旗杆的影子落在墙上的长度为米.考点: 1.相似三角形的应用;2.平行投影.18.知识点:相似三角形的判定与性质、中心投影答案:变短3.5米.解析:试题分析:如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.试题解析:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.考点:相似三角形的应用.19.知识点:平行投影答案:解:(1)连接AC,过点D作,交直线BC于点F,线段EF即为DE的投影.(2)DE=10(m)说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.20.知识点:中心投影答案:图形见解析.解析:试题分析:(1)根据光线相交于一点得出确定路灯的位置;(2)利用AB,DE,确定大树的高.试题解析:(1)根据光线(图中虚线)相交于一点,即可得出路灯确定路灯的位置P;(2)如图所示:MQ表示大树高的线段.考点:平行投影.21.知识点:解直角三角形、平行投影答案:16.2m22.知识点:中心投影答案:如图,点P是影子的光源,EF就是人在光源P下的影子.解析:考点:作图—应用与设计作图.分析:(1)连接A′与柱子A的顶点,B′与柱子B的顶点,相交于点P,则点P就是光源所在的位置;(2)连接PD并延长与底面相交于点F,即可得到影子EF.解答:(1)如图所示,点P是影子的光源;(2)如图所示,EF就是人在光源P下的影子.点评:本题考查了应用于设计作图,找出光源是解题的关键,是基础题,比较简单。

【新】人教版九年级数学下册 投影同步练习及答案

【新】人教版九年级数学下册 投影同步练习及答案

正投影
1. 如图,从左面看圆柱,则图中圆柱的投影是()
A.圆B.矩形
C.梯形D.圆柱
2. 太阳光垂直照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是
()
A.与窗户全等的矩形 B.平行四边形
C.比窗户略小的矩形 D.比窗户略大的矩形
3. (2013达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确
的是()
A.③①④② B.③②①④ C.③④①② D.①②①③
4. 如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.
5. 如图是木杆和旗杆竖立在操场上,其中木杆在阳光下的影子已画出.
(1)用线段表示这一时刻旗杆在阳光下的影子;
(2)比较旗杆与木杆影子的长短;
(3)图中是否出现了相似三角形?
(4)上面的投影是正投影吗?为什么?
参考答案
1.B
2.A
3.C
4.15
π4
5.解:(1)线段MN即是旗杆在阳光下的影子.
(2)根据图形可观察出旗杆的影子长.
(3)有相似三角形,分别由旗杆及其影子和木杆及其影子以及太阳光线构成.(4)不是正投影,只有投影线和投影面垂直的投影才是正投影.。

初三数学下册(人教版)第二十九章投影与视图29.2知识点总结含同步练习及答案

初三数学下册(人教版)第二十九章投影与视图29.2知识点总结含同步练习及答案

描述:例题:初三数学下册(人教版)知识点总结含同步练习题及答案第二十九章 投影与视图 29.2 三视图一、学习任务1. 掌握常见物体的三视图的画法及其作用.二、知识清单三视图三、知识讲解1.三视图三视图定义将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓绘制出来的平面图形称为视图.从物体的前面向后面投射所得的视图称主视图;从物体的上面向下面投射所得的视图称俯视图;从物体的左面向右面投射所得的视图称左视图;三视图就是主视图、俯视图、左视图的总称.常见几何体的三视图 由视图到立体图形① 主视图反映物体的长和高,主要提供正面的形状;② 左视图反映物体的高和宽,主要提供左侧面的形状;③ 俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.下列几何体,主视图和俯视图都为矩形的是( )四、课后作业(查看更多本章节同步练习题,请到快乐学)解:D.如图是由个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )解:B.6如图是某个几何体的三视图,则该几何体的形状是( )A. 长方体B. 圆锥C. 圆柱D. 三棱柱解:D.根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.答案:1.某几何体的三视图如图所示,则这个几何体是A .圆柱B .正方体C .球D .圆锥D()解析:由主视图和左视图都是三角形可知,这个几何体是圆锥.答案:2.如图是由六个小正方体组合而成的一个立体图形,它的主视图是A.B .C.D .B()3. 将如图所示的绕直角边 旋转一周,所得几何体的左视图是A .B.C .Rt△ABC BC ()高考不提分,赔付1万元,关注快乐学了解详情。

答案:D .A答案:解析:4.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A.B .C .D .D此类题主要考查学生们的空间想象能力,一般考查常见的简单的几何体有圆柱,正方体及其组合体.应注意看的见的轮廓线与看不见的轮廓线的画法与圆锥与圆柱的视图的区别是否有圆心,相对来说考查的较为简单,此题故选D .()。

人教版九年级数学下册《29.1投影》同步练习题带答案

人教版九年级数学下册《29.1投影》同步练习题带答案

人教版九年级数学下册《29.1投影》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的叫做物体的投影.2.平行投影:由光线形成的投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.3.中心投影:由光线形成的投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.4.正投影:投影线于投影面产生的投影.注意:(1)只有在平行投影中,才会出现正投影;(2)同一物体或等高物体垂直于地面放置,离点光源越近,影子越短;(3)同一物体或等长物体平行于地面放置,离点光源越远,影子越短,但不会小于物体本身的长度.基础分点训练知识点平行投影、中心投影、正投影1.在太阳光的照射下,一个矩形框在水平地面上形成的投影不可能是()2.(易错题)若一个木棒长为1.5 m,则它的正投影的长一定()A.大于1.5 mB.小于1.5 mC.等于1.5 mD.小于或等于1.5 m3.如图,球在灯泡的照射下形成了影子,当球竖直向下运动时,球的影子的大小变化是()A.越来越小B.越来越大C.大小不变D.不能确定中档提分训练4.(2024·白银期末)下列各种现象属于中心投影现象的是()A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子5.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()6.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()7.一个正五棱柱按如图所示摆放,光线由上到下照射此正五棱柱时的正投影是()8.如图,在平面直角坐标系中,点(2,2)是一个光源,木杆AB两端的坐标分别为(0,1),(3,1),则木杆AB在x轴上的投影A'B'长为()A.2√3B.3√2C.5D.69.(2024·武威校级三模)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一棵大树,它在这个路灯下的影子是MN.(1)在图中画出路灯的位置并用点P表示;(2)在图中画出表示大树的线段MQ.拓展素养训练10.如图,长方形纸板ABCD在投影面α上的正投影为四边形A1B1C1D1,其中边AB,CD与投影面平行,AD,BC与投影面不平行.若长方形ABCD的边AB=1 cm,BC=√2cm,∠BCC1=45°,求其正投影四边形A1B1C1D1的面积.参考答案1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.2.平行投影:由平行光线形成的投影.例如,物体在太阳光的照射下形成的影子(简称日影)就是平行投影.3.中心投影:由同一点(点光源)发出的光线形成的投影.例如,物体在灯泡发出的光照射下形成的影子就是中心投影.4.正投影:投影线垂直于投影面产生的投影.注意:(1)只有在平行投影中,才会出现正投影;(2)同一物体或等高物体垂直于地面放置,离点光源越近,影子越短;(3)同一物体或等长物体平行于地面放置,离点光源越远,影子越短,但不会小于物体本身的长度.基础分点训练知识点平行投影、中心投影、正投影1.在太阳光的照射下,一个矩形框在水平地面上形成的投影不可能是(C)2.(易错题)若一个木棒长为1.5 m,则它的正投影的长一定(D)A.大于1.5 mB.小于1.5 mC.等于1.5 mD.小于或等于1.5 m3.如图,球在灯泡的照射下形成了影子,当球竖直向下运动时,球的影子的大小变化是(A)A.越来越小B.越来越大C.大小不变D.不能确定中档提分训练4.(2024·白银期末)下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子5.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是(C)6.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是(D)7.一个正五棱柱按如图所示摆放,光线由上到下照射此正五棱柱时的正投影是(B)8.如图,在平面直角坐标系中,点(2,2)是一个光源,木杆AB两端的坐标分别为(0,1),(3,1),则木杆AB在x轴上的投影A'B'长为(D)A.2√3B.3√2C.5D.69.(2024·武威校级三模)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一棵大树,它在这个路灯下的影子是MN.(1)在图中画出路灯的位置并用点P表示;解:(1)点P位置如图.(2)在图中画出表示大树的线段MQ.(2)线段MQ如图.拓展素养训练10.如图,长方形纸板ABCD在投影面α上的正投影为四边形A1B1C1D1,其中边AB,CD与投影面平行,AD,BC与投影面不平行.若长方形ABCD的边AB=1 cm,BC=√2cm,∠BCC1=45°,求其正投影四边形A1B1C1D1的面积.解:如图,过点B作BH⊥CC1于点H.∵∠BCC1=45°,BC=√2cm=1(cm).∴BH=BC·sin 45°=√2×√22∵长方形纸板ABCD在投影面α上的正投影为四边形A1B1C1D1∴B1C1=BH=1 cm,C1D1=CD=AB=1 cm.∴S=1×1=1(cm2).四边形A1B1C1D1即其正投影四边形A1B1C1D1的面积为1 cm2.。

人教版九年级下册数学 29.1投影 同步习题

人教版九年级下册数学 29.1投影 同步习题

29.1投影同步习题一.选择题1.长方形的正投影不可能是()A.正方形B.长方形C.线段D.梯形2.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m3.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()A.3B.5C.6D.74.太阳光照射一扇正方形的窗户,投在平行于窗户的墙上的影子形状是()A.比窗户略大的正方形B.比窗户略小的正方形C.与窗户全等的正方形D.平行四边形5.下列哪种影子不是中心投影()A.皮影戏中的影子B.晚上在房间内墙上的手影C.舞厅中霓虹灯形成的影子D.太阳光下林荫道上的树影6.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42317.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”8.木棒长为1.5m,则它的正投影的长一定()A.大于1.5m B.小于1.5mC.等于1.5m D.小于或等于1.5m9.一天下午小红先参加了校运动会女子200m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()A.乙照片是参加200m的B.甲照片是参加200m的C.乙照片是参加400m的D.无法判断甲、乙两张照片10.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm2二.填空题11.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.12.甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比的关系是13.小明拿一个等边三角形木板在阳光下玩,等边三角形木板在地面上形成的投影可能是.(填序号)14.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD =4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.15.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.三.解答题16.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?17.如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.18.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.参考答案一.选择题1.解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是梯形,故选:D.2.解:∵AB∥OP,∴△CAB∽△COP,∴=,∴=,∴OP=5(m),故选:D.3.解:延长P A、PB分别交x轴于A′、B′,作PE⊥x轴于E,交AB于D,如图,∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3,∵AB∥A′B′,∴△P AB∽△P A′B′,∴=,即=,∴A′B′=6,故选:C.4.解:太阳光照射一扇正方形的窗户,投在平行于窗户的墙上的影子形状是与窗户全等的正方形.故选:C.5.解:∵皮影戏中的影子,晚上在房间内墙上的手影,舞厅中霓红灯形成的影子,它们的光源都是灯光,故它们都是中心投影,故选项A、B、C不符合题意,太阳光下林荫道上的树影的光源是太阳光,这是平行投影,故选项D符合题意,故选:D.6.解:时间由早到晚的顺序为4312.故选:B.7.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,可得应该是下午.故选C.8.解:正投影的长度与木棒的摆放角度有关系,但无论怎样摆都不会超过1.5 m.故选:D.9.解:下午,影子在身体的东边,时间越早影子越短,故乙是参加200m的图片,故选:A.10.解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOD,∴=,即=,解得:BD=2m,同理可得:AC′=m,则BD′=1m,∴S圆环形阴影=22π﹣12π=3π(m2).故选:B.二.填空题11.解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.12.解:甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比相等.故答案为相等.13.解:当等边三角形木框与阳光平行时,投影是①;当等边三角形木框与阳光垂直时,投影是③;当等边三角形木框与阳光有一定角度时,投影是④;故答案为:①③④.14.解:∵AB∥CD,∴△P AB∽△PCD,假设CD到AB距离为x,则=,=,x=1.8,∴AB与CD间的距离是1.8m;故答案为:1.8.15.解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,解得:EF=7.5m.故答案为:7.5.三.解答题16.解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴=,即=,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则小云的身影变短了4﹣1.2=2.8米.∴变短了,短了2.8米.17.解:如图,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以该平行四边形的面积=30×40=1200(cm2).18.解:(1)线段CP为王琳在站在P处路灯B下的影子;(2)由题意得Rt△CEP∽Rt△CBD,∴,∴,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC,∴,解得:AC=12米.答:路灯A的高度为12米.。

人教版九年级数学下册投影-同步练习【新审】

人教版九年级数学下册投影-同步练习【新审】
上; C .若在射线 DN正上方有一盏路灯,则 AB,CD的影子都在射线 BN上; D .若太阳处在线段 BD的正上方,则 AB,CD的影子位置与选项 B中相同 .
10.在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是(

A .若栏杆的影子落在围栏里,则是在太阳光照射下形成的
B .若这盏路灯有影子,则说明是在白天形成的影子
某一时
刻 AB?在阳光下的投影 BC=3米,在测量 AB的投影时,
同时测
量出 DE在阳光下的投影长为 6 米,则 DE的长为 _______.
7.说出平行投影与中心投影的异同.
8.点光源发出的光线照射到物体上,会形成影子,那么在手术室里有 几个影子?说明你的理由.
4 位医生,会有
9.如图, AB,CD是两根木杆,它们在同一平面内的同一直线 MN 上,则下列有关叙述正确的是( ) A .若射线 BN正上方有一盏路灯,则 AB,CD的影子都在射线 BN上; B .若线段 BD正上方有一盏路灯,则 AB的影子在射线 B在路灯照射下形成的
D .若所有的栏杆的影子都在围栏外,则是在太阳光照射下形成的
11.如图, BE, DF是甲,乙两人在路灯下形成的影子, ?请在图中画出灯泡的位置.
12.如图,在圆桌的正上方有一盏吊灯, 在灯光下,圆桌在地板上的投影是面积为 4 m2 的圆.已知圆桌的高度为 1m,圆桌面的半径为 0.5m,?试求吊灯距圆桌面的距离.

A .从路灯下走开,离路灯越来越远
B .走到路灯下,离路灯越来越近
C .人与路灯的距离与影子长短无关
D .路灯的灯光越来越亮
4.两个物体映在地上的影子有时在同侧,有时在异侧,则这可能是 ________投影. [

2022年人教版九年级下《正投影》同步练习(附答案)

2022年人教版九年级下《正投影》同步练习(附答案)

29.1 投影第2课时正投影1.正方形在太阳光的投影下得到的几何图形一定是〔〕2.当棱长为20的正方体的某个面平行于投影面时,这个面的正投影的面积为〔〕A. 20B. 300C. 400D. 6003.当投影线由上到下照射水杯时,如下图,那么水杯的正投影是〔〕4.以下命题中真命题的个数为〔〕①正方形的平行投影一定是菱形;②平行四边形的平行投影一定是平行四边形;③三角形的平行投影一定是三角形.5.一个长方形的正投影的形状、大小与原长方形完全一样,那么这个长方形_______投影面;一个长方形的正投影的形状、大小都发生了变化,那么这个长方形_______投影面.6.一纸板的形状为正方形ABCD(如图),其边长为10cm,AD、BC与投影面β平行,AB、CD 与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1,假设∠ABB1=45°,求正投影A1B1C1D1的面积.第2课时由三视图确定几何体1.下面是一些立体图形的三视图〔如图〕,•请在括号内填上立体图形的名称.2.如图4-3-26,以下图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明翻开包装后画出它的主视图和俯视图如下图.根据小明画的视图,你猜小明的爸爸送给小明的礼物是〔〕A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如下图,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如下图,试举例说明物体的形状.7.几何体的主视图和俯视图如下图.〔1〕画出该几何体的左视图;〔2〕该几何体是几面体?它有多少条棱?多少个顶点?〔3〕该几何体的外表有哪些你熟悉的平面图形?8.小刚的桌上放着两个物品,它的三视图如下图,你知道这两个物品是什么吗?9.一个由几个相同的小立方体搭成的几何体的俯视图如下图,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.。

2020—2021年人教版九年级数学下册【推荐】投影-同步练习(3)及答案(基础提分试卷).docx

2020—2021年人教版九年级数学下册【推荐】投影-同步练习(3)及答案(基础提分试卷).docx

29.1 投影一、自主学习1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.太阳光线可以看成___________.3.皮影戏中的皮影是由_________投影得到.4.图29-1是两棵小树在同一时刻的影子,请问图A的影子是在_________光线下形成的,图B 的影子是在_________光线下形成的.(填“太阳”或“灯光”)图29-1二、基础巩固5.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定6.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A.与窗户全等的矩形;B.平行四边形;C.比窗户略小的矩形;D.比窗户略大的矩形7.在同一平面内的影子如图29-2所示,此时,第三根木棒的影子表示正确( )图29-28.有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图29-3所示,请你在图中画出这时木棒CD的影子.图29-39.如图29-4所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,那么你能在图中画出此时的太阳光线及甲木杆的影子吗?在你画的图形中有相似三角形吗?为什么?图29-410.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A.两根都垂直于地面;B.两根平行斜插在地上;C.两根竿子不平行;D.一根倒在地上11.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A.路灯的左侧;B.路灯的右侧;C.路灯的下方;D.以上都可以12.不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A.相等B.长的较长C.短的较长D.不能确定13.当你走向路灯时,你的影子在你的_________,并且影子越来越________.14.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时15.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的大灯泡一定位于两人_______________.16.如图29-5所示,试确定灯泡所在的位置.图29-5三、能力提高17.一天上午小红先参加了校运动会女子100 m比赛,过一段时间又参加了女子400 m比赛,图29-6是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100 m的B.甲照片是参加400 m的C.乙照片是参加400 m的D.无法判断甲、乙两张照片图29-618.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长19.图29-7是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会如何变化?图29-720.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.21.某一时刻甲木杆高2 m,它的影长是1.5m,小颖身高1.6m,那么此时她的影长为几米?22.如图29-8所示,小明从路灯下,向前走了5 m,发现自己在地面上的影子长DE是2 m,如果小明的身高为1.6 m,那么路灯距地面的高度AB是_________ m.图29-8 图29-923.晚上,小亮走在大街上,他发现当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3 m,左边的影子长为1.5 m.又知自己身高1.80 m,两盏路灯的高相同,两盏路灯之间的距离为12 m,则路灯的高为________ m.24.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形( )A.四边形B.五边形C.六边形D.七边形25.图29-9是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有_____________.26.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好被站在他后面的同学踩在脚下,而小宁的影子却没有被他后面的同学踩在脚下,你知道他们的队列是向哪个方向的吗?小宁和小勇哪个高?为什么?27.如图29-10所示,为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7m的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7 m,观察者目高CD=1.6 m,请你计算树(AB)的高度.(精确到0.1 m)图29-10四、模拟链接28.如图29-11所示,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5 m,窗户的高度AF为2.5 m.求窗外遮阳篷外端一点D到窗户上椽的距离AD。

人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)

人教版九年级下册数学 第29章  投影与视图  同步练习题(含答案)

人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。

人教版九年级数学下册29.1 投影同步练习3附答案【新】

人教版九年级数学下册29.1 投影同步练习3附答案【新】

29.1投影专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C 的水平距离为8.8 m.在阳光下某一时刻测得1米的标杆影长为0.8 m,树影落在斜坡上的部分CD=3.2 m.已知斜坡CD的坡比i=1:3,求树高AB.(结果保留整数,参考数据:3 1.7)专题二灯光下的投影4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).6.如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.(1)当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.(2)当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.(3)上面(1)、(2)问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四 规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6 m 的小明(AB )的影子BC 的长是3 m ,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB =6 m .(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11n 到B n 处时,其影子B n C n 的长为 m (用含n 的代数式表示).【知识要点】1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面. 2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点(点光源)发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点. 6.(1)当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;(2)当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化; (3)当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.【温馨提示】1.平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.区别联系光线 物体与投影面平行时的投影平行投影 平行的投影线 全等都是物体在光线的照射下,在某个平面内形成的影子(即都是投影)中心投影从一点出发的投影线放大(位似变换)3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化. 4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.【方法技巧】1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置. 3.分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案1.C 【解析】太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长. 故选C.2.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8(米).3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6 m ,CH =3DH ≈2.7 m.由题意可知10.8DH HE =, ∴HE =0.8DH =1.28 m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78(m). ∵8.01=AE AB ,所以168.078.128.0≈==AE AB (m).4.①③④ 【解析】当木杆绕点A 按逆时针方向旋转时,如图所示,m >AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.5.解:如图所示.(1)点P 就是所求的点;(2)EF 就是小华此时在路灯下的影子.6.解:(1)如图,线段AC 是小敏的影子.(2)过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ . 在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3(米). ∵tan55°=错误!未找到引用源。

第二十九章 投影 同步练习2022-2023学年人教版九年级数学下册

第二十九章 投影 同步练习2022-2023学年人教版九年级数学下册

人教版九下 29.1 投影一、选择题(共20小题)1. 小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是( )A. B.C. D.2. 由下列光源形成的投影不是中心投影的是( )A. 手电筒B. 台灯C. 太阳D. 电灯3. 球的正投影是( )A. 圆面B. 椭圆面C. 点D. 圆环4. 如图,晚上小亮在路灯下散步,在从A处走向B处的过程中,他在地上的影子( )A. 逐渐变短B. 先变短后变长C. 逐渐变长D. 先变长后变短5. 平行投影为一点的几何图形不可能是( )A. 点B. 线段C. 射线D. 三角形6. 下列投影一定不会改变△ABC的形状和大小的是( )A. 中心投影B. 平行投影C. 当△ABC平行于投影面时的正投影D. 当△ABC平行于投影面时的平行投影7. 下列哪种光源的光线所形成的投影不能称为中心投影( )A. 探照灯B. 台灯C. 太阳D. 路灯8. 下面属于中心投影的是( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出9. 在下面四个几何体中,左视图是三角形的是( )A. B.C. D.10. 小明从路灯底部走开时,他的影子( )A. 逐渐变长B. 逐渐变短C. 不变D. 无法确定11. 正方形在太阳光下的投影不可能是( )A. 正方形B. 一条线C. 矩形D. 三角形12. 下列光线所形成的投影不是中心投影的是( )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线13. 小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( )A. 始终不变B. 越来越远C. 时近时远D. 越来越近14. 如图,某剧院舞台上的照明灯P射出的光线形成“锥体”,该“锥体”截面图的“锥角”是60∘,已知舞台ABCD是边长为6m的正方形,要使灯光恰好能照射到整个舞台,则照明灯P悬挂的高度是( )A. 3√6mB. 3√3mC. 4√3mD. √6m15. 如图所示,将两个圆柱体紧靠在一起,从上面看这两个圆柱体,得到的平面图形是( )A. B.C. D.16. 下列关于投影的说法不正确的是( )A. 正午,上海中心大厦在地面上的投影是平行投影B. 匡衡借光学习时,他在地面上的投影是中心投影C. 三角形木板的正投影可以是一个点D. 晚上,小强向路灯走去,他的影子越来越短17. 下列说法正确的是( )A. 三角形的正投影一定是三角形B. 长方形的正投影一定是长方形C. 球的正投影一定是圆D. 圆锥的正投影一定是三角形18. 睹影知竿,指看竹竿的影子,便知道竹竿的曲直长短.其中形成“影”的光源是( )A. 油灯B. 蜡烛C. 太阳D. 纱灯19. 如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在蜡烛与墙BC之间运动,则他在墙上的投影的长度随着他离墙的距离变小而( )A. 变大B. 变小C. 不变D. 不能确定20. 如图是由一些相同的小正方体组成的几何体从正面、左面、上面看得到的三个平面图形.则组成该几何体的小正方体的个数是( )A. 4B. 5C. 6D. 7二、填空题(共6小题)21. 如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号).①越来越长②越来越短③长度不变在D处小明发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是米.22. 在平行投影中,两人的高度和他们的影子.23. 冬日暖阳,下午4点时分,小明在学校操场晒太阳,身高1.5米的他,在地面上的影长为2米,则此时高度为9米的旗杆在地面的影长为米.24. 在某一时刻,直立地面的一根竹竿的影长为3米,一根旗杆的影长为25米,已知这根竹竿的长度为1.8米,那么这根旗杆的高度为米.25. 当某一几何体在投影面P前的摆放方式确定以后,改变它与投影面P的距离,其正投影的形状发生变化.(填“会”或“不会”)26. 广场上的一个大型艺术字板块在地面上的投影如图所示,则该投影属于.(填写“平行投影”或“中心投影”)三、解答题(共6小题)27. 如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长为3米,落在地面上的影子DH的长为5米.根据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.28. 光线由上而下分别照射一个三棱锥和四棱锥(其底面分别为正三角形和正方形).分别画出它们的正投影.29. 小红想利用阳光下的影长测量学校旗杆AB的高度.如图,某一时刻她在地面上竖直立了一个2m长的标杆CD,测得其影长DE=0.4m.(1)请在图中画出此时旗杆AB在阳光下的投影BF;(2)如果BF=1.6m,求旗杆AB的高.30. 画出下列几何体的直观图.(1)棱长分别为3,4,5个单位的长方体.(2)棱长为3个单位的正方体.31. 在路灯下,小明如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子;(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡距地面的高度.32. 如图,AB,CD,EF是三个等高的标杆,已知AB,CD在路灯下的影子分别为BM,DN,在图中作出标杆EF在路灯下的影子FG.答案1. B2. C【解析】用排除法,中心投影的光源为点光源,在各选项中只有C选项不是点光源.3. A4. B5. D6. C7. C8. B9. B10. A11. D12. A13. D【解析】因为在小阳和小明两人从远处沿直线走到路灯下这一过程中,与光源的距离是由远到近的,所以他们在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.14. A【解析】如图,连接AC,PO,易知O在AC上,PO⊥AC.∵∠APC=60∘,PA=PC,∴∠PAC=∠PCA=60∘,∴PA=PC=AC,∵四边形ABCD是边长为6m的正方形,∴AC=6√2m,∴OC=3√2m,∵PC=AC=6√2m,∴PO=3√6m.故选A.15. A16. C【解析】太阳光下的投影是平行投影,故A中说法正确,不符合题意;匡衡借的光是灯光,灯光下的投影是中心投影,故B中说法正确,不符合题意;三角形木板的正投影不可能是一个点,故C中说法不正确,符合题意;路灯下,离路灯越近,影子越短,故D中说法正确,不符合题意.17. C【解析】选项A,三角形的正投影可能是三角形、线段,故A错误;选项B,长方形的正投影可能是长方形、平行四边形、线段,故B错误;选项C,球的正投影一定是圆,故C正确;选项D,圆锥的正投影有可能是圆,故D错误.故选C.18. C【解析】在太阳光下形成的是平行投影,影长与物体高度成正比,根据影子的长短可知竹竿的长短;在灯光下形成的是中心投影,竹竿离光源的远近不同时,影长不同,不能根据影子的长短判断竹竿的长短.19. B【解析】连接光源和人的头部上方可知,墙上的影长随人到墙的距离变化的规律是距离墙越近,影长越短,距离墙越远,影长越长,则此人在墙上的投影长度随着他离墙的距离变小而变小.故选B.20. B21. ①,5.95【解析】小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长.∵CD∥AB,∴△ECD∽△EBA,∴CDBA =DEAE,即1.7AB=22+5,∴AB=5.95(米).22. 成正比例23. 12【解析】设高度为9米的旗杆在地面的影长为x米,根据题意,得:21.5=x9,解得:x=12,∴高度为9米的旗杆在地面的影长为12米.24. 15【解析】设这根旗杆的高度为ℎ米,根据题意得:31.8=25ℎ,解得:ℎ=15即这根旗杆的高度为15米.25. 不会【解析】几何体的正投影的形状只与几何体在投影面P前的摆放方式有关,与几何体离投影面的距离远近无关,所以改变它与投影面P的距离,其正投影的形状不会发生变化.26. 中心投影【解析】因为艺术字板块与其投影对应点的连线不平行,所以该投影属于中心投影.27. (1)平行(2)如图,连接CG,AE,过点E作EM⊥AB于M,过点G作GN⊥CD于N,则MB=EF=2米,ND=GH=3米,ME=BF=10米,NG=DH=5米,所以AM=10−2=8米.由平行投影可知AMME =CNNG,即810=CD−35,解得CD=7米,即电线杆的高度为7米.28.29. (1)如图,连接CE,作AF∥CE交BD于F,则BF即为所求.(2)∵AF∥CE,∴∠AFB=∠CED.而∠ABF=∠CDE=90∘,∴△ABF∽△CDE,∴ABCD =BFDE,即AB2=1.60.4,∴AB=8(m).答:旗杆AB的高为8m.30. (1)如图所示:(2)如图所示:31. (1)如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)由已知可得,ABOD =CACD,∴1.6OD = 1.41.4+2.1,∴OD=4m.∴灯泡距地面的高度为4m.32. 如图所示,FG为标杆EF在路灯下的影子.第11页(共11 页)。

新人教版九年级数学下册 同步检测 29.1-投影-精讲精练(含答案)

新人教版九年级数学下册 同步检测 29.1-投影-精讲精练(含答案)

一、基础知识(一)平行投影太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.扩展:太阳光与影子的关系物体在太阳光照射的不同时刻,不但影子的大小在变化,而且影子的大小也在变化. 在早晨太阳位于正东方,此时的影子较长,位于西方;在上午,影子随着太阳位置的变化,其长度逐渐变短,方向向北方向移动;中午,影子最短,方向正北;到了下午,影子的长度又逐渐变长,其方向向东移动.(二)中心投影灯光的光线可以看成是从一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影.产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为投影中心的位置.视觉现象二、重难点分析本课教学重点:平行投影的认识生活中的中心投影较为多见,如电灯、激光等等,其实太阳光线就是平行光线,还有灯管等光源也是平行光线。

本题教学难点:如何判断平行投影与中心投影分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相较于一点,则为中心投影,其交点是光源的位置.典例精析:例1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )ABCD例2. 春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为 小时.三、感悟中考1.(2013年四川)下面哪个图能近似反映上午九点北京天安门广场上的旗杆与影子的位置关系( )BCD .【答案】C2.(2013年顺城)小芳的房间有一面积为3m 2的玻璃窗,她站在室内离窗子4m 的地方向外看,她能看到窗前面一幢楼房的面积有 m 2(楼之间的距离为20m ).【答案】108四、专项训练。

(一)基础练习1.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是( ).【考点】 人教新课标九年级上册•29章投影与视图•29.1投影2.一天下午小红先参加了校运动会女子100m 比赛,过一段时间又参加了女子400m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )变短,再变长;则乙照片是参加100m的,甲照片是参加400m的.【考点】人教新课标九年级上册•29章投影与视图•29.1投影3.小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为米.4.某校九年级科技小组,利用日晷设计原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是cm.【答案】45.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而(填“变大”、“变小”或“不变”).6.小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有m2(楼之间的距离为20m).(二)提升练习7.如图,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为多少平方米.(不计墙的厚度)【答案】解:在Rt△ACD中,CD=AC=6,S梯形BCDH=(2+6)×4÷2=16,【考点】人教新课标九年级上册•29章投影与视图•29.1投影。

人教版九年级数学下册投影同步练习题

人教版九年级数学下册投影同步练习题

第二十九章投影与视图29.1投影一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列光线所形成的投影是平行投影的是A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【答案】A【解析】四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选A.2.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律【答案】B【解析】在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选B.3.小华在上午8时,上午9时,上午10时,上午12时四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为A.上午8时B.上午9时C.上午10时D.上午12时【答案】A【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选A.学科=网4.小红和小花在路灯下的影子一样长,则她们的身高关系是A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【答案】D【解析】小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断她们身高关系.故选D.5.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度A.变长3.5m B.变长2.5mC.变短3.5m D.变短2.5m【答案】C6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解析】如图,由图易得AB<CD,那么离路灯越近,它的影子越短,故选B.二、填空题:请将答案填在题中横线上.7.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是__________.(填写“平行投影”或“中心投影”)【答案】中心投影【解析】因为在同一时刻,两根长度不等的木杆置于阳光之下,当它们都垂直于地面或都倒在地上或平行插在地面时,木杆长的它的影子就长;当它们垂直竖立在地面上时,它们的影长相等,此时只能是中心投影.故答案为:中心投影.8.如图所示,此时树的影子是在__________(填“太阳光”或“灯光”)下的影子.【答案】太阳光【解析】此时的影子是在太阳光下的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光.9.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是__________(用“=、>或<”连起来)【答案】S1=S<S2【解析】∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.10.如图,在平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为点D,点C坐标为(3,1),则CD在x轴上的影子长为__________.【答案】3 4【解析】∵DC∥AO,∴△ECD∽△EAO,∴DEOE=DCAO,∴3DEDE=15,解得DE=34,即CD在x轴上的影子长为:34;故答案为:34.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.请你确定灯泡所在的位置,并画出表示小亮在灯光下形成的影子线段.【解析】如图所示,点O即为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.12.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是()A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a+b+c=0,且abc≠0,则abc>0;④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习练习题(含详解)

2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习练习题(含详解)

人教版九年级数学下册第二十九章-投影与视图同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.2、如图所示的几何体的左视图是()A.B.C.D.3、如图所示的几何体的俯视图是()A.B.C.D.4、图中几何体的左视图是()A.B.C.D.5、下列几何体中,其三视图完全相同的是()A.B.C.D.6、如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是()A.B.C.D.7、如图所示几何体的左视图是()A.B.C.D.8、如图所示的几何体的左视图为()A.B.C.D.9、如图所示的几何体的俯视图是()A.B.C.D.10、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个几何体由若干大小相同的小正方体搭成,如图分别是从它的正面、上面看到的形状图,若组成这个几何体的小正方体最少需要m个,最多需要n个,则m﹣n=____.2、用一些完全相同的正方体木块搭几何体,从其正面和上面看到的形状图如图所示,则搭成这个几何体所用正方体木块的个数最少为__________.3、如图,一个正方体由64块大小相同的小正方体搭成,现从中取走若干个小立方体块,得到一个新的几何体,新几何体与原几何体的三视图(从正面、从左面、从上面看到的所搭几何体的形状图)相同,最多取走___块小立方体块.4、如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____.5、如图,小亮从一盏9米高的路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE是2米,则小亮的身高DC为____________米.三、解答题(5小题,每小题10分,共计50分)1、如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影).2、如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.3、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图.4、画出从3个方向看如图所示几何体的形状图.5、由5个相同的小立方块搭成的几何体如图所示,请画出它的三视图.---------参考答案-----------一、单选题1、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意.故选:C.【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.2、D【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D.本题考查了左视图,熟记定义是解题关键.3、C【分析】根据几何体的俯视图即为从几何体的上面看到的形状,判断即可.【详解】解:从上面看该几何体,所看到的图形如下:故选:C.【点睛】本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提.4、B【分析】根据左视图是从物体左面看,所得到的图形进行解答即可.【详解】解:图中几何体的左视图是:【点睛】本题主要考查了简单组合体的三视图,解题的关键是掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.6、B【分析】从正面看到的平面图形是主视图,根据主视图的含义逐一判断即可.【详解】解:从正面可以看到2行3列的小正方形图形,第1行1个正方形,第2行3个正方形,按1,2,1的方式排列,所以主视图是B,故选B【点睛】本题考查的是三视图,掌握识别主视图是解本题的关键,注意的是能看到的棱都要画成实线,看不到的棱画成虚线.7、D【分析】根据从左面看到的图形判断即可.【详解】解:该物体从左面看到的图形是:故选D.【点睛】本题考查了三视图,解题关键是明确左视图是从左面看到的视图,树立空间观念是解题关键.8、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键.9、D【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】从上面看得到的图形是故选D【点睛】本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、﹣4【解析】【分析】由主视图和俯视图,判断最多的正方体的个数即可解决问题.【详解】解:由主视图和俯视图可确定所需正方体个数多时的俯视图为:最多的小正方形个数时:∴n=1+2+2+2+3+3=13,最少的小正方形个数时:∴m=1+1+1+2+1+3=9,∴m-n=9-13=﹣4,故答案为:﹣4【点睛】此题主要考查了由三视图判断几何体,根据主视图和俯视图画出所需正方体个数最多和最少的俯视图是关键.2、7【解析】【分析】由主视图和左视图确定左视图的形状,再判断最少的正方体的个数即可.【详解】解:由题中所给出的主视图知物体共3列,且最高两层的有2列,一层的有一列;由俯视图知共5列,所以小正方体的个数最少的几何体为:2+2+1+1+1=7个.故答案为:7.【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.3、8【解析】【分析】由题意得,只需保留原几何的最外层和底层,最中间有8块,即可得.【详解】解:∵新几何体与原几何体的三视图相同,∴只需保留原几何的最外层和底层,∴最中间有2228⨯⨯=(块),故答案为:8.【点睛】本题考查了正方体的三视图,解题的关键是掌握正方体的三视图.4、100π【解析】【分析】根据主视图是边长为10cm 的正方形,可知圆柱的高为10cm ,底面的直径为10cm ,据此即可求出侧面积.【详解】解:∵果罐的主视图是边长为10cm 的正方形,为圆柱体,∴圆柱体的底面直径和高为10cm ,∴侧面积为1010=100ππ⨯,故答案为:100π.【点睛】本题主要考查的是立体图形中的展开图,并进行面积计算,掌握立体图形的展开形式是解题的关键. 5、1.8【解析】【分析】同一时刻下物体高度的比等于影长的比,构造相似三角形计算即可.【详解】如图,由题意知2CE =米,8BC =米,9AB =米,且DC BE ⊥,AB BE ⊥∴10BE BC CE=+=米,∵CD BE⊥,AB BE⊥∴90ABE DCE︒∠=∠=又∵AEB E∠=∠∴ECD EBA△△,∴CD CEAB BE=,即2910CD=,解得 1.8DC=(米),即小亮的身高DC为1.8米;故答案为:1.8.【点睛】本题考查平行投影的相关知识点,能够根据题意构造相似是解题关键点.三、解答题1、见解析【分析】直接利用左视图以及俯视图的观察角度分析得出答案;【详解】解:它的左视图和俯视图,如下图:【点睛】本题主要考查了简单几何体的三视图,正确注意观察角度是解题关键,主视图、俯视图、左视图分别是从物体的正面,上面、左面看得到的图形.2、见解析.【分析】根据三视图的定义,画出对应的视图即可.【详解】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【点睛】本题主要考查了三视图,若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.3、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【详解】(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【点睛】本题考查了几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字.4、见解析【分析】从正面看有3列,每列小正方形数目分别为1,3,1;从左面有1列,小正方形数目为3;从上面看有3列,每行小正方形数目分别为1,1,1;【详解】解:如图所示:【点睛】本题考查了实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.5、见解析.【分析】主视图从左往右3列,正方形的个数依次为2,1,1;左视图从左往右2列,正方形的个数依次为2,1;俯视图从左往右3列,正方形的个数依次为1,1,2;依此画出图形即可.【详解】解:所求三视图如图所示.【点睛】本题考查画几何体的三视图,用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学下册投影同步练习3新人教

专题一太阳光下的投影
1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是〖〗
A.①②③④B.④①③②C.②③①④D.④③②①
2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?
3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8.8 m.在阳光下某一时刻测得1米的标杆影长为0.8 m,树影落在
斜坡上的部分CD=3.2 m.已知斜坡CD的坡比i=1:3,求树高AB.〖结果保留整数,参考数据:3 1.7〗
专题二灯光下的投影
4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC >AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;
③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.
5.如图,小华﹨小军﹨小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.〖1〗请你在图中画出路灯灯泡所在的位置〖用点P表示〗;
〖2〗画出小华此时在路灯下的影子〖用线段EF表示〗.
6.如图所示,点P表示广场上的一盏照明灯.
〖1〗请你在图中画出小敏在照明灯P照射下的影子〖用线段表示〗;
〖2〗若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离〖结果精确到
0.1米〗.〖参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574〗
专题三正投影
7.如图,投影面上垂直立一线段AB,线段长为2 cm.
〖1〗当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.
〖2〗当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.
〖3〗上面〖1〗﹨〖2〗问题中的投影都是正投影吗?为什么?
8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?
专题四规律探究题
9.学习投影后,小明﹨小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6 m的小明〖AB〗的影子BC的长是3 m,而小颖〖EH〗刚好在路灯灯泡的正下方H点,并测得HB=6 m.
〖1〗请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
〖2〗求路灯灯泡的垂直高度GH;
〖3〗如果小明沿线段BH向小颖〖点H〗走去,当小明走到BH的中点B1处时,求其影子
B1C1的长;当小明继续走剩下路程的1
3
到B2处时,求其影子B2C2的长;当小明继续走剩
下路程的1
4
到B3处时,……,按此规律继续走下去,当小明走剩下路程的
1
1
n
到B n处时,
其影子B n C n的长为 m〖用含n的代数式表示〗.
【知识要点】
1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面. 2.平行投影:由平行光线形成的投影是平行投影.
3.中心投影:由同一个点〖点光源〗发出的光线所形成的投影为中心投影. 4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.
5.(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点. 6.(1)当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状﹨大小一样;
(2)当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状﹨大小发生变化; (3)当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.
故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状﹨大小完全相同.
【温馨提示】
1.平行投影与中心投影的区别与联系.
2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化. 3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化.
4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.
【方法技巧】
1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.
2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置.
3.分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.
区别
联系
光线
物体与投影面平行时的投影
平行投影 平行的投影线 全等 都是物体在光线的照射下,在某个平面内形成的影子〖即都是投影〗 中心投影 从一点出发的
投影线
放大〖位似变换〗
参考答案
1.C 【解析】太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长. 故选C.
2.解:画出示意图如图所示.
从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC ﹨CD ﹨DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6
.01
=
=AC AF DG BE . 即
6
.01
8.43.0=
=AF BE . 解得BE =0.5,AF =8.
所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8(米).
3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H . ∵i =tan ∠DCH =CH DH =3
1
=33, ∴∠DCH =30°.
∴DH =
1
2
CD =1.6 m ,CH =3DH ≈2.7 m. 由题意可知1
0.8
DH HE =
, ∴HE =0.8DH =1.28 m.
∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78(m). ∵8.01=AE AB ,所以168
.078
.128.0≈==AE AB (m).
4.①③④ 【解析】当木杆绕点A 按逆时针方向旋转时,如图所示,m >AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.
5.解:如图所示.
〖1〗点P就是所求的点;
〖2〗EF就是小华此时在路灯下的影子.
6.解:〖1〗如图,线段AC是小敏的影子.
〖2〗过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥EQ. 在Rt△PDQ中,∠PQD=55°,DQ=EQ-ED=4.5-1.5=3〖米〗.
∵tan55°=错误!未找到引用源。


∴PD=3tan55°≈4.3〖米〗.
∵DF=QB=1.6米,
∴PF=PD+DF≈4.3+1.6=5.9〖米〗.
答:照明灯P到地面的距离为5.9米.
7.解:〖1〗点.〖2〗线段,这条线段BC的长度为
33
2
.〖3〗〖1〗问中的投影是正投影,〖2〗问中的投影不是正投影,是平行投影.只有投影线和投影面垂直的投影才是正投影.
8.是一个长方形,当正方形倾斜于投影面放置时,它与投影面平行的一边长等于原来的长度,而与投影面不平行的边长缩小.因为正方形的面积为10,它的正投影的面积是5,所以不平行的一边长的投影等于这边的一半,所以正方形与投影面的倾斜角是60度.
9.解:〖1〗如图,点G 即为所求. 〖2〗由题意得△∽△ABC GHC , ∴AB BC
GH HC
=
, ∴
1.63
63GH =
+, ∴ 4.8GH =m.
〖3〗1111△∽△A B C GHC , ∴
1111
1
A B B C GH HC =, 设11B C 的长为x m ,则1.64.83
x
x =
+, 解得32x =
〖m 〗,即1132
B C = m . 同理22221.64.82
B C B C =+, 解得221B C =〖m 〗,3
1
n n B C n =
+.。

相关文档
最新文档