第三章 有界线性算子

合集下载

应用数学基础第三章-赋范线性空间和有界线性算子详解

应用数学基础第三章-赋范线性空间和有界线性算子详解
i1 1 i i
则 d 为 X 上的度量,但这种度量不满足
d(x,y) d(x, y)
1.2 收敛函数与连续映射
定义2:设 X 为赋范线性空间,{xn}n1 X
如果存在
x0 X ,使得
lim
n
xn
x0
0,
则称 {xn} 依范数收敛于 x0,记为
lim
n
xn
x0
这时也称 x0 为序列{xn}n1 的极限。
10 如果 ||•||1 和 ||•||2 等价,则{xn} 为 (X, ||•||1) 中的 Cauchy 序列 {xn} 为 (X, ||•||2) 中的 Cauchy 序列;
20 如果 ||•||1 与 ||•||2 等价,则 {xn} 依范数 ||•||1 收敛于x {xn} 依范数 ||•||2 收敛于 x;
由连续映射的定义易知:
(1) f 在点 x0 X 处连续 对 {xn} X ,如
果 xn x0 ,则 f (xn ) f (x0 ) ; (2) 范数 ||•||:X R 是连续映射;
(3) X 上线性运算(加法与数乘)也是连续映射;
(4) 内积空间中内积运算是连续映射。
1.3 Cauchy 序列与 Banach 空间
第三章
§1 赋范线性空间
1.1 定义及示例
定义1:设 X 是数域 K 上的线性空间,
如果存在映射 ||•||:X→R,并满足:
(1) 非负性:对 xX, ||x||0, 并且
||x||=0 x=0
(2) 齐次性:对 xX,K,||x||=||||x|| (3) 三角不等式:对 x,yX,||x+y|| ||x||+||y||
定义4

第三章 有界线性算子空间(续)

第三章 有界线性算子空间(续)
H * { f ; f 为H C的有界线性泛函}
定义代数运算: f f1 f 2 和 f f1 其含义是指对于 x H 和 C 都有:
f ( x) f1 ( x) f 2 ( x) f ( x) f1 ( x)
H * 构成线性空间。
定义内积:
( f , f ) (, )*
xA x 1
由于 L sup
xA x 0
Lx x
Lx x

L
x1
x
对于 0 必 x1 A 使
Lx1 x1
x x1 L
L
改写成 L 令 x2
x1 x1
即总 x2 A ,且 x2 1使 Lx2 L
4.1 线性泛函的概念 线性泛函是线性赋范空间 A 到复数域 C 的映射,且对 x, y A 及
, K ,有
f ( x y) f ( x) f ( y)
线性泛函的性质: ①连续性:一定连续 处处连续 ②有界性:有界 连续 有界是指 x A ,有 | f ( x) | K x 对于数域,范数用| |代替。
L( x) L1 x L2 ( x) L1 ( x) L2 ( x) K1 x K 2 x K x
其中 K K1 K2 还可证明满足加法的 a、b、c、d 四条。 对于加法中的 0 元素的解释:
x A y B
L 0 是指对于 x A ,都有 Lx 0
x 0
sup Lx
xA x 1
L 的完备性定理: L 完备的充分条件是 A 完备。
定理是说:A 完备, L 一定完备。但 A 不完备, L 可能完备也可 能不完备。 证明略。

第三章 有界线性算子-黎永锦

第三章 有界线性算子-黎永锦

第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。

1.3线性有界算子,巴拿赫空间中的几个定理

1.3线性有界算子,巴拿赫空间中的几个定理

§3线性有界算子,巴拿赫空间中的几个定理一、线性赋泛空间在前一节,对集合引入距离的概念,从而定义了极限下面再引入元素的加法及数乘的代数运算。

定义1:设为一集合,如果:(一)在中定义了加法,即对中的任意元素,存在相应的元素,记,称为的和,并适合:E E ,x y u E ∈u x y =+,x y E(1)(2)()(3)在中存在唯一的元素(称为零元素),对任何中的元素,有(4)在中存在唯一的元素,使称为的负元素,记为。

(二)在中定义了元素与数(实数或复数)的乘法,即在中存在元素,x y y x+=+()()x y z x y z ++=++z E ∈E θE x x xθ+=E 'x 'x x θ+='x x x −E E v记(为任何实数或复数,),称之为与元素的数积,适合:(5)(6)(是数)(7)(8)便称为线性空间(或向量空间),称中元素为向量。

若数积运算只对实数(复数)有意义,则称是实(复)线性空间。

v ax =a a x E ∈x ()()a bx ab x =,a b ()a b x ax bx+=+()a x y ax ay+=+E E E 1x x⋅=定义2:设是线性空间,是的非空子集。

如果对任何,对于中的元素都有及,那么,按中的加法及数积也成为线性空间,称为的线性子空间(或简称子空间)。

和是的两个子空间,称为平凡子空间。

若则称是的真子空间,每个子空间都含有零元素。

E M E αM ,x y x y M +∈x M α∈M E E E E {}0E M ≠M E定义3:设是线性空间的向量是个数,称为的线性组合。

若中之集的任意的有限个向量都线性无关,则称是的线性无关子集。

若是中的线性无关子集且对于中的每个非零向量都是中向量的线性组合,则称是的一组基若中存在由(有限)个线性无关向量组成的基,就说是维(有限维)线性空间,否则说是无限维空间。

E n E M M E A E E x A A E E n E n 12,,,n x x x …12,,,n ααα…11n n x x αα++…1,,n x x …引入距离,则不难验证,满足距离公理的三个条件,于是线性赋范空间就成为距离空间,今后对线性赋范空间总是按(*)式引入距离使之成为距离空间。

第三章 线性算子与线性泛函

第三章 线性算子与线性泛函

证 明 : 用 X 表 示 R上 以 2 为 周 期 的 连 续 函 数 全 体 , 赋 予
范 数 || x || m ax{| x(t) |; t }, 那 么 X 是 一 Banach空 间 。
对 每 个 x X , 其 F - 级 数 的 前 n + 1 项 的 部 分 和 记 为( S n x )(t )。
n
精品课件
共鸣定理的应用
• 1.机械求积公式的收敛性 • 2. Lagrange插值公式的发散性定理:差值
多项式作为连续函数的近似表达时,插值 点的无限增多不能更好的逼近插值函数。 • 3. Fourier级数的发散性问题:存在连续 的周期函数,其Fourier级数在给定点发散。
精品课件
1.机 械 求 积 公 式 的 收 敛 性
如果 fn 在X的每点x处有界, 那么 fn一品课件
定理2.设X,Y都是Banach空间,则B(X,Y)在强收敛意义下是
完备的。
定理3:设X是赋范线性空间,Y是Banach空间, {Tn}B(X,Y) 满足条件:(1){||Tn ||}是有界数列; (2)在X中的某一稠密子集G中的每个元素x,{Tn(x)}都收敛. 则{Tn}强收敛于某一个算子TB(X,Y),且||T||lim||T||.
第三章 线性算子与线性泛函
• 一致有界原理(共鸣定理)及其应用 • Hahn-Banach定理,非零有界线性算子存在
性定理 • 共轭空间与共轭算子 • 开映射、逆算子及闭图形定理 • 算子谱理论简介
精品课件
第一节 共鸣定理及其应用
• 定义:设A是距离空间X的子集,若A在X中的任意 一个非空开集中均不稠密(A没有内点),则称A 是稀疏(疏朗)集;称X是第一纲的,若X可表示成 至多可数的稀疏集的并;不是第一纲的X称为是第 二纲的。

有界线性算子的性质(gM)

有界线性算子的性质(gM)
T = T I R ( T n ) : R( ) 一R( r) ( 特别 的 T o =T ) . 若对某 个 正整数 n , R( ) 是闭 的且 是 上 ( 或下) 半F r e d h o l m 算子 , 则 称 为 上 ( 或下 ) 半 B - F r e d h o l m算子 , 且 由文 献 [ 3 ] 知此 时对 任 意 的 n , T m是 B — F r e d h o l m 算 子且 i n d ( T m ) =i n d ( ) , 于是把 i n d ( T ) 定 义为 i n d ( T n ) . 记S B F + - ( X) 为所 有 指标 i n d ( T ) 小 于 等 于零 的上半 B —
or

( T ) ={ A∈C: T — A隹S F + - ( X) } ,
( T ) ={ A∈C : T - A不 为 D r a z i n可 逆 } ,
L D
( T ) ={ A∈C: T - A不 为左 D r a z i n可 逆 } .
记 n( ) 和Ⅱ ( ) 分别为 的谱集 中极点全体和有 限重极点全体. 对T ∈ B ( X) 及 n为正整数 , 定 义
标i n d ( T ) 定义 为 i n d ( T ) =n ( T ) - d ( T ) . 指标 为零 的 F r e d h o l m算 子称 为 We y l 算 子. 记S F + - ( X) 为上小于 等于零 的算 子全体 , 算 子 的升标 a s c ( T ) 为满 足 Ⅳ( r) =N(
的升标 有 限且 R( “ ) 闭, 则 称 为左 D r a z i n可 逆 的. 记 的 We y l 谱、 本 性 逼 近点 谱 、 D r a z i n谱 、 左 D r a z i n 谱 分别 定义 如下 [ 1 - 2 ] :

第三章 线性算子与线性泛函

第三章 线性算子与线性泛函
n维赋范线性空间上的线性泛函与n元数组一一对 应,有着具体的形式。 有限维赋范线性空间上的线性泛函和线性算子都 是连续的,那无穷维的情形呢,是否有非零的连 续线性泛函,如果有,是否足够多? 解决该问题的基本的想法之一:将我们熟悉的有 限维上的泛函进行推广、延拓。 这节是考虑的实赋范线性空间,对复的情形,类 似结论都是成立的,不在赘述

b
a
x(t )t ≈
0≤ k ≤ n

Ak x(tk )(a ≤ t0 < t1 < < tn = b) (3)
需要讨论的是什么条件下,当n → ∞时,上式的误差趋于0? 现在可证公式(3)对每个连续函数x ∈ C[a, b]都收敛,即
0≤ k ≤ n

Ak x(tk ) → ∫ x(t )dt
1, x = x1 1 || F ||= , F ( x) = inf{|| x1 m ||: m ∈ M } 0, x ∈ M
定理3的证明:由于f 是M 的有界线性泛函,那么 | f ( x) |≤|| f ||M || x ||, 这里 || f ||M = sup{| f (m) |; m ∈ M }.
y ′′∈M y ′∈M
2 做出f 满足以下条件的全部延拓; f |M = f f ( x ) ≤ p ( x ) ,x ∈ X 记这些延拓的全体为Γ . 那么我们有 g |M = f Γ = g | g是D ( g ) 上的线性泛函, . g ( x ) ≤ p ( x ) ,x ∈ D ( g ) M
推论2:设 x1 ∈ X 且x1 ≠ θ ,则存在X上的有界 线性泛函满足 F ( x1 ) =|| x1 || 且 || F ||= 1。
注:这表明只要X多有一点,则X上必存在非零的 连续线性泛函。

《有界线性算子数值域与数值半径的若干性质研究》范文

《有界线性算子数值域与数值半径的若干性质研究》范文

《有界线性算子数值域与数值半径的若干性质研究》篇一一、引言数值域和数值半径是有界线性算子理论中两个重要的概念。

这些概念在算子理论、矩阵分析、数学物理等领域中有着广泛的应用。

研究有界线性算子的数值域和数值半径,对于理解算子性质、优化问题以及矩阵分析等领域具有重要意义。

本文将就这两个概念的一些基本性质进行探讨和研究。

二、有界线性算子的数值域有界线性算子的数值域是指由该算子所有特征值构成的集合。

它具有一些基本的性质,如:连通性、紧致性等。

对于自伴算子,其数值域还具有对称性。

这些性质为我们提供了理解算子行为的重要线索。

三、有界线性算子的数值半径有界线性算子的数值半径是指该算子所有特征值模的上下界之差的一半。

它是一个重要的算子范数,具有许多有用的性质。

例如,对于任何有界线性算子,其数值半径总是非负的,且等于零当且仅当该算子是零算子。

此外,数值半径还与算子的谱性质密切相关。

四、数值域与数值半径的关系数值域和数值半径之间存在着密切的关系。

一方面,通过研究数值域的形状和大小,我们可以推断出算子的某些性质,如稳定性、周期性等。

另一方面,数值半径作为描述算子特征值模的上下界之差的一种度量,可以为我们提供关于算子行为的重要信息。

此外,通过比较不同算子的数值半径,我们可以评估它们的相对大小和性质。

五、若干性质研究(一)数值域的连通性与紧致性对于有界线性算子的数值域,其连通性和紧致性是两个重要的性质。

我们可以通过研究这些性质来了解算子的行为和性质。

例如,当数值域是连通集时,我们可以推断出该算子具有某些特殊的性质;而当数值域是紧致集时,我们可以进一步研究其与算子其他性质之间的关系。

(二)自伴算子的数值域对称性自伴算子的数值域具有对称性,这是由于自伴算子的特征值具有实部。

我们可以利用这一性质来推断出自伴算子的其他性质,如稳定性、可逆性等。

此外,通过研究自伴算子的数值域对称性,我们还可以进一步了解自伴算子在量子力学、统计力学等领域中的应用。

有界线性算子的谱

有界线性算子的谱

第一节有界线性算子的谱一.算子代数定义:厶(X)是一复Banach空间,并且为一具有线性运算与乘法运算的代数系统,我们称英为算子代数。

性质:设R,S,T“(X),xC,则有1、结合律:(RS)T = R(ST), T m+B=r n r(m,neN);2、a(ST) = (aS)T = S(aT);3、R(S + T) = RS + R「(R + S)T = RT + ST ;4、单位算子/满足:IT = TI = T ;5、7\X T X为同构O存在A.B^L(X),使得AT = [ = TB :必左4 = B,称它为T的逆,记作T~\并称丁为可逆算子。

以GZXX)记厶(X)中的可逆算子的全体。

6、若S、TwGL(X),贝iJSreGL(X),且(ST)"1=T^S'\(T n y[ =(T-I)/\当Tw GL(X)时约宦厂〃=(厂丫⑺> 0),厂=I,因而对任何"乙厂有意义。

注:1、算子乘法不满足交换律;2、阿|邙||||71,||鬥|井『(心);3、若在厶(X)中S Q S、T Q T,则必有S n T n ->ST o定义:设丁属于某算子代数,称/(7')=工%7'”=%/ + <7' + ・・・+ ©7'”+・・・n-0(其中系数e C(// > 0)为算子幕级数。

性质:设通常幕级数有收敛半径R,则当TeMX),||T||</?时级数ZF-0工0Z1卜工闯P『vs引理3丄1设TeL(X),则X (/_丁尸=工厂『“■0只要貝右端级数收敛。

特別,当|卩||<1时上式必成立。

推论:若T,SwL(X),T可逆,则00(T + S)-=工厂l_S 厂 g/r-()只要英右端级数收敛:特别,当||s||适当小时必成立。

二、谱与谱半径定义3.1.2设Tw厶(X ),1、若不可逆,即AI-TeGL(X),则称2为丁的谱值。

第三章 有线性算子

第三章 有线性算子

第三章 有界线性算子一 有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。

称)(T D 是T 的定义域。

特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。

如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。

此外取算子范数作为空间中的范数。

定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。

定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。

2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。

在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。

此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。

由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。

在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。

事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。

如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。

有界线性算子与紧算子的关系

有界线性算子与紧算子的关系

有界线性算子与紧算子的关系
受限因需要,我们一般将有界线性算子与紧算子互相联系起来探讨。

在数学领域,有界线性算子是指在满足一定条件下,将函数变换成另一种函数的算子,而紧算子指在给定函数空间下,使空间中所有函数的范数小于等于一定的实数的算子。

显而易见,有界线性算子与紧算子有着密切的联系:有界线性算子的存在确保了算子的一致性,在紧算子的定义下,任何一个有界线性算子都是紧的;此外,紧算子的可逆性可以帮助我们推广有界线性算子的可逆性以及它们的定义范围。

通常情况下,在数学中,有界线性算子由一组线性映射组成,它们可以将某一
段空间里的函数变换成另一个,而紧算子是指那些使空间中函数满足有界性范数的算子。

我们可以用另一种方式来理解:在数学中,有界线性算子是指采用有界性范数定义并容纳所有有界的映射的数学表达的算子;而紧算子则是采用有界性范数定义的映射,使得它们能够满足我们对有界性范数的要求。

因为有界线性算子和紧算子之间存在复杂的联系,因此,如果我们想更深入地
探究有界线性算子和紧算子之间的联系,就需要涉及到复杂的数学证明过程。

比如:我们可以使用拉格朗日中值定理与裂项定理来证明紧算子有界线性算子之间的联系,使它们能够满足有界线性算子的要求;我们还可以使用泰勒展开式与矩阵的运算来研究紧算子的特性。

总之,有界线性算子与紧算子形成了一种博弈的关系,在数学上,它们以有界
性范数作为基础,并满足一定的数学要求,从而确保了紧性对有界线性算子的一致性。

如果我们想更深入地了解它们之间的联系,就需要掌握复杂的数学证明方法,比如拉格朗日中值定理、裂项定理、泰勒展开式等等。

泛函分析第3章--连续线性算子与连续线性泛函

泛函分析第3章--连续线性算子与连续线性泛函

泛函分析第3章--连续线性算子与连续线性泛函第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。

他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。

3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 对n E 中的向量起作用来达到的。

同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。

把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。

撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。

本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。

[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。

若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。

对线性算子,我们自然要求()T D 是X 的子空间。

特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。

例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。

应用数学基础分章习题答案 第三章

应用数学基础分章习题答案 第三章

一、判断1. 设α⋅和β⋅是有限维线性空间X 上的两种范数,{}X y X x X x n ∈∈⊂00,,. 若0l i m 0=-∞→αx x n n 且0lim 0=-∞→βy x n n ,则00y x =. ( )2. 设α⋅和β⋅是线性空间X 上的两种等价范数,{}X y X x X x n ∈∈⊂00,,. 若0l i m 0=-∞→αx x n n 且0lim 0=-∞→βy x n n ,则00y x =. ( )3. 由矩阵A n m C ⨯∈确定的线性算子是有界的. ( )4. 由矩阵A n m C ⨯∈确定的线性算子是连续的. ( )5. 设矩阵A n m C ⨯∈,定义映射:n m A C C →,对任意1(,,)T n n x C ξξ=∈,()A x Ax =,则A 是有界线性算子. ( )6. 设X 和Y 都是赋范线性空间,T:Y X →是线性算子, 若T 在0x x =处连续,则T 在X 上是有界的. ( )7. 若(,)X ⋅是一赋范空间,则)(22222y xyx yx +=-++. ( )8. 若赋范线性空间X 的子集M 是紧的,则M 任何非空的闭子集也是紧的. ( ) 9. ][b a ,上全体有理系数多项式构成的集合P ][b a ,是实空间(C ][b a ,,⋅)(其中)(max t x x bt a ≤≤=)中的完备子空间. ( )10. ][b a ,上全体实系数多项式构成的集合P ][b a ,是实空间(c ][b a ,,⋅)(其中)(m ax t x x bt a ≤≤=)中的闭集. ( )11. 设Y X ,是赋范线性空间,若Y 是有限维的,则),(Y X B 是完备的. ( ) 12. 若赋范线性空间X 是列紧的,则X 是Banach 空间. ( )13. 设X 是赋范线性空间,X y x ∈,,若f X *∀∈, 都有()()f x f y =, 则y x =. ( )14. 设X 是内积空间,X y x ∈,,若X u ∈∀有>>=<<u y u x ,,,则y x =. ( ) 15. 设有内积空间,), , ,(X x X ∈>⋅⋅<若对任意的X u ∈均有0,>=<u x ,则θ=x .( )16. 若赋范线性空间X 的子集M 是紧的,则M 任何非空的闭子集是有界的. ( )17. 可数多个开集的交仍是开集. ( ) 18. 可数多个闭集的并仍是闭集. ( )19. 设A n {}n =1¥是赋范线性空间E 的一列紧子集,则也为紧子集. ( ) 20. 设A i (1£i £n )均为赋范线性空间E 的紧子集,则也为紧子集. ( )21. 设X 是赋范线性空间,x X ∈,且x θ≠,则存在有界线性泛函f X *∈, 使得()f x x =, 1f =. ( )22. )1(+∞≤≤p l p 都是可分的赋范线性空间. ( ) 23. )1(+∞<≤p l p 都是可分的赋范线性空间. ( )24. C [a ,b ]上的范数 x =max a £t £b x (t )和 x 1=x (t )dt a bò是等价的. ( )25. n n C ⨯上的方阵范数1⋅与2⋅是等价范数. ( )26. 设 x n {},y n {}为赋范线性空间X 中的两个Cauchy 列,则 x n -y n {}必收敛.( )二、填空1. ]1,0[1C 是][1,0上所有有连续一阶导数的函数的全体构成的]1,0[C 的子空间,)(max 10t x x t ≤≤=(()[,]x t C a b ∈). 若线性算子T :][][1,01,01C C →的定义为 ()()Tx t =dtt dx )(,则T 是 . 2. ]1,0[1C 是][1,0上所有有连续一阶导数的函数的全体构成的]1,0[C 的子空间,)(max 10t x x t ≤≤=(()[,]x t C a b ∈),线性算子T :][][1,01,01C C→的定义为)(3)(2))((t x dtt dx t Tx +=,则T 是 .3. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=i i i A 010010,则1A = ,∞A = ,2A = ,F A = .4. 设20100103i A i i -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则 A (m )= . 5. 设X 是赋范线性空间,则3(,)B X R 是 .6. 设Y X ,是赋范线性空间,若Y 是有限维的,则),(Y X B 是 .7. 设X 是任意赋范线性空间,则X 到n C 的所有线性算子构成的赋范线性空间(,)n B X C 是 .8. 设X 是任意赋范线性空间,则),(p l X B 是 . 9. 设{}n u 是Hilbert 空间的完全正交系,∀X x ∈,则2x = . 10. 设 A În ´n是Hermite 矩阵, r (A )=2,则 A 的谱范数为 .11. 若有界线性算子T:][][2,02,0c c →的定义为(Tx)(t)=][[)]2,0,2,0()(0∈∈⎰t c x ds s x t,则T = .12. 设n n C U ⨯∈是酉矩阵,则其谱范数=2U.13. 设),(⋅n R 是赋范线性空间,设)(),,,1(121N k R x n T n k k k ∈∈= ,则}{k x 按范数收敛于 .14. 设X 是赋范线性空间,X y x ∈,,若f X *∀∈, 都有0)(=x f , 则=x .四、证明题1. 对任意nn j i C a A ⨯∈=)(,定义 11max()nij i nj A a ∞≤≤==∑,则∞⋅是nn C ⨯上的方阵范数,0,≠∈ββn C ,定义Hxx ββ∞=,nCx ∈. 证明 β⋅是nC 上与方阵范数∞⋅相容的向量范数.2. 对任意nn j i Ca A ⨯∈=)(,定义 111max()nij j ni A a ≤≤==∑,则1⋅是n n C ⨯上的方阵 范数. 对任意n C β∈ 且0β≠,定义1H x x ββ=,nC x ∈. 证明β⋅是nC 上 的范数且与方阵范数1⋅相容.3. 设∙.是n n C ⨯上的方阵范数,D 是n 阶可逆方阵. 对任意n n C A ⨯∈,定义1-*=DAD A ,证明*∙是n n C ⨯上的方阵范数.4. 设⋅是n n C ⨯上的方阵范数,D 、n n C C ⨯∈是可逆矩阵且11D -<,11C -<.对任意nn j i Ca A ⨯∈=)(,定义 A DAC *=,证明*⋅是n n C ⨯上的方阵范数.5. 设C[0,1]上的范数为)(max 10t x x t ≤≤= ([0,1])x C ∈定义算子:[0,1][0,1]T C C → 为0()()()(0)tau Tx t e x u du a =>⎰ ([0,1],[0,1])x C t ∈∈.试证:T 是有界线性算子,并求T .6. 设C[0,1]上的范数为)(max 10t x x t ≤≤= ])1,0[(C x ∈定义算子]1,0[]1,0[:C C T →为udu u x t Tx tcos )())((0⎰= ])1,0[],1,0[(∈∈t C x .试证:T 是有界线性算子并求T . 7. 设 T :l p ®l p (1£p <¥)定义如下:T (x 1,x 2,,x n ,),=(x 2,,x n ,),其中(x 1,x 2,,x n ,)Îl p .(1)判断 T 是否为有界线性算子;(2)若 T 为有界线性算子,则求 T 的算子范数.8. 设}{ ,1n a l X =为有界数列,||sup n Nn a M ∈=,定义映射T 如下:).}{( },,,,{)(2211X x a a a x T n n n ∈=∀=ξξξξ证明:T 为X 到X 的有界线性算子,且M T =.9. 设算子∞∞→l l T : 定义为}){( },{})({1n n n n x T ξξξ=∀=. 证明:T 为有界线性算子.10. (1)设X 和Y 是赋范线性空间,Y X T →:是有界线性算子,试证:若A是X 中的列紧集,则T(A)是Y 中的列紧集;(2)若,A B 是X 中的紧集,则A B 仍是X 中的紧集.11. 设X 和Y 是赋范线性空间,Y X T →:是连续映射,试证:若A 是X 中的列紧集,则T(A)是Y 中的列紧集,并且紧空间的有限维子空间是紧的. 12. (1)设X 是赋范线性空间,:f X R →是有界线性泛函,试证:若A 是X中的紧集,则()f A 是R 中的紧集;(2)若,A B 是X 中的紧集,则A B 仍是X 中的紧集.13. 设n R R T →:是连续的向量值函数,若],[b a A =,试证:T(A)是n R 中的紧集. 14. 设 E ,F 为算子赋范线性空间, T :E ®F 为连续算子. 证明:当A 在 E 中稠密 时, T (A )在 T (E )中稠密. 15. 设A m În ´n(m =0,1,2,)且lim m ®¥A m =A 0. 证明: lim m ®¥A H m=A H0. 16. 设 x n {}, y n {}为赋范线性空间 X 的两个Cauchy 列. 证明 x n -y n {}必收敛.17. 设X 是赋范线性空间,证明:任意的*X f ∈,其零空间)(f N 均为X 的闭线性子空间.18. 设21,Y Y 为赋范线性空间X 的线性子空间. 证明:21Y Y 也是X 的线性子空间.。

第三章有界线性算子

第三章有界线性算子

第三章有界线性算子第三章有界线性算子一有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。

称)(T D 是T 的定义域。

特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。

如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。

此外取算子范数作为空间中的范数。

定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。

定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。

2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。

在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。

此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。

由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。

在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。

事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。

如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。

泛函分析第3章 连续线性算子与连续线性泛函

泛函分析第3章  连续线性算子与连续线性泛函

第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。

他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。

3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。

同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。

把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。

撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。

本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。

[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。

若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。

对线性算子,我们自然要求()T D 是X 的子空间。

特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。

例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。

例3.2 [],x C a b ∀∈,定义()()ta Tx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。

3.2有界线性算子

3.2有界线性算子

D(T ) 上是连续的(即在一点连续,则在定
义域上处处连续) 。
定理 3. 2. 4(连续性与有界性) 设 X , Y 是赋范空间, T : D(T ) X Y 是线性算 子,则 T 为连续的充分必要条件为 T 是有界 的。 证明(不要) 。
3.2.3 线性算子空间
定理 3.2.6(线性算子空间) 设 X , Y 是数域 K 上的赋范空 间, B( X , Y ) 是定义在全空间 X 上、值域在 Y 中的有界线性算 子的全体,若在 B( X , Y ) 上定义如下的代数运算:
举例:
1、恒等算子
2、零算子
微分算子
4、积分算子 5、矩阵
定理 3. 2. 2 (有限维空间上线性算子的有界性) 如果赋范空间 X 是有穷维的,则 X 上的每一个线性算子均是有界的。
定理 3. 2. 3(算子的连续性) 设 X , Y 是赋 范空间, T : D(T ) X Y 是线性算子, 若 T 在 某 一 点 x0 D(T ) 连 续 , 则 T 在
3.2 有界线性算子
3. 2. 1 有界线性算子 定义 3. 2. 1(有界线性算子) 设 X , Y 为同一数域 K 上的 赋范线性空间, T : D(T ) X Y 是线性算子。如果存在常数
C 0 ,使得对一切 x D(T ) 有
Tx
Y
C x
X
那么就称 T 为有界线性算子,否则称为无界的。
T B( X , Y )
则 B( X , Y ) 构成一赋范线性空间。
(T1 T2 ) x T1 x T2 x , T1 , T2 B( X , Y ), x X
(T ) x Tx , K , T B( X , Y ), x X

第三节线性算子

第三节线性算子

当X = Y时,称T 是线性变换,当Y = K时,称T 是线性泛函。 相关概念:核空间ker T、线性同构。 称T 在x点连续,是指对任意点列{xn }, 若xn → x, 则Txn → Tx; 若T 在X 的每一点都连续,则称T 在X 上连续。 定理1.设X , Y 是赋范线性空间,T : X → Y 是线性算子,则 (a)T 在X 上连续当且仅当T 在X 中的某点x0处连续;特别的 等价于若xn → θ ( X 中零元),则Txn → θ (Y中零元). (b)当X 的维数有限时,T 在X 上是连续的。
fx0有界线性算子空间110111supsupsup1sup0002supsupxxxxxxtxtbxyttxtxxttxttbxyttxtxt????????????????????????算子的范数验证算子算子范数满足以下条件
赋范线性空间
内积空间
三个空间的关系
赋范线性空间都是距离空间:ρ(x,y )= || x y ||; 反之,要求距离满足条件 : ρ (ax, θ ) =| a | ρ ( x, θ ), 范数定义 || x ||= ρ ( x, θ )。 内积空间都是赋范线性空间 :|| x ||= ( x, x) 2 ;反之, 范数满足中线公式: x + y ||2 + || x y ||2 = 2 || x ||2 +2 || y ||2 , || 内积定义 1 (x,y )= (|| x + y ||2 || x y ||2 +i || x + yi ||2 i || x + yi ||2 ) 4
因为任何n维赋范线性空间都与n维欧式空间线性同构,所 以有限维的赋范线性空间是线性同构的当且仅当它们的维 数相等。 绝大多数的泛函分析课程都是讲述特殊的线性空间和线性 算子的性质,而自然界中的现象更多是非线性的,非线性 问题是更广阔更具有挑战性的领域,有着多样性和复杂性。 人们在处理这类问题的方法: 一、推广线性情形时的有关理论的想法和方法; 二、化整为零,在局部范围内运用线性方法,将非线性问 题转化为线性问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 有界线性算子
一 有界线性算子与有界线性泛函 1 定义与例
设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α
,)(Ty Tx Y x T +=+Tx x T αα=)(
称T 是X 中到1X 中的线性算子。

称)(T D 是T 的定义域。

特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。

如果一个线性泛函
f 是有界的,即
)( |||||)(|M x x M x f ∈≤
称为
f 有界线性泛函。

此外取算子范数作为空间中的范数。

定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0
连续,则T 是连续的。

定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。

2 有界线性算子空间
设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。

在),(1X X β中可以自然地定义线性运算,即对
于任意∈B A ,),(1X X β及K ∈α
,定义
Bx Ax x B A +=+))((
Ax x A αα=))((
不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。

此个取算子范数作为空间),(1X X β的范数,具体见
)(77P 。

由此可知,),(1X X β是一个赋范线性空间,如果1X X =,
把),(1X X β简记为)(X β。

在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。

事实上,设∈n
A A ,),(1X X β,...)2,1(=n 及
}1||:||{=∈=X X x S 。

如果)(∞→→n A A n ,则对任意
0>ε,存在N ,当N n >时,对于每一个S x ∈
≤-||||Ax x A n
1
||||sup =x ||||Ax x A n -=||||A A n
-ε<。

即}{n A 在S 上一致收敛于A 。

反之,如果}{n A 在S 上一致收敛于A ,则对任意0>ε
,存在
N ,当N n >时,对于每一个S x ∈:
||||Ax x A n -ε<
于是:||||
A A n -=1
||||sup =x ||||Ax x A n -ε≤。

即}{n A 在上一致收敛于A 。

定理1.3 设X 是赋范空间,1X 是anach B 空间,则),(1X X β是anach B 空间。

在空间
)
,(1
X X β中还有另一种收敛方式。


∈n T T ,),(1X X β,...)2,1(=n ,如果对于每一X x ∈
Tx X T n → )(∞→n
称}{n T 逐点收敛于T 或}{n T 强收敛于T 。

二 Steinhaus Banach -定理及其某些应用
定理 2.1(
Steinhaus Banach -) 设}{αT (I ∈α)是
Banach 空间X 上到赋范空间1X 中的有界线性算子族,如果对于
每一X x ∈
,||||sup x T I
αα∈<∞,则||}{||x T α)(I ∈α是有界集。

定理2.2 设}{n T 是赋范空间X 上到Banach 空间1X 中的有界线性算子列。

如果
1) ||}{||n
T 有界;
2) 对于一个稠密子集G 中的元x ,}{x T n 收敛,则}{n T 强收敛于一个有界线性算子T ,并且
||||lim ||||_
n n T T ∞
→≤。

定理 2.3 设
1,X X 是Banach 空间,则有界线性算子空间
),(1
X X β在强收敛意义下完备。

例子就见第82页例1、例2。

三 开映射定理与闭图像定理 1 逆算子
设21,,X X X 是赋范空间,∈1T ),(1X X β,∈2T ),(21X X β。

这时可以定义算子的乘法12T T T
=,
)(12x T T Tx = )(X x ∈
由于
))(()(12y x T T y x T +=+=)(112y T x T T +=)()(1212y T T x T T +=
Ty Tx +=
类似地
Tx x T αα=)(

≤=||)(||||||12x T T Tx ≤||||||||12X T T )( ||||||||||||12X x x T T ∈
所以T 是有界线性算子,∈T
),(2X X β并且
≤=||||||||12T T T ||||||||12T T 。

(1)
不难证明,算子乘法满足结合律和分配律,但是注意算子乘法不满足交换律。

设T 是从线性空间X 上映到线性空间1X 中的恒等算子。

如果存在一个1X 上到X 中的线性算子1T ,使得
X I T T =1,1
1X I TT = (2)
则称算子T 有逆算子。

X I ,1
X I 分别为空间X 及1X 中的恒等算子。

算子1T 称为T 的逆算子,并记为11
-=T T 。

定理 3.1 设T 是赋范空间X 上到赋范空间1X 上的线性算子且存在常数0>m
,使得
||||||||x m Tx > )(X x ∈ (4)
则T 有有界逆算子1
-T
定理 3.2 设X 是Banach 空间中,如果)(X T β∈,如果
1||||<T ,则算子T I -有有界逆算子,并且
||)(||1
--T I ||
||11
T -≤。

2 线性算子的谱
定义 设T 是Banach 空间X 上的有界线性算子,如果算子
1)(--I T λ存在且定义在全空间X 上,则称数λ为算子的正则值,
此时称1)(--=I T R λλ
为算子T 的预解式。

称所有其他的λ值为算
子T 的谱点,算子T 的谱点全体算子的谱,记为)(T δ。

定理 3.3 设X 是Banach 空间,)(X T β∈。

则)(T δ是有界闭集。

3 开映射定理
定理 3.4(开映射定理) 设T 是Banach 空间X 上到Banach 空间1X 上的有界线性算子,则T 是一个开映射。

定理 3.5 (Banach 逆算子定理) 设T 是Banach 空间X 上到
Banach 空间1X 上的一对一的有界线性算子,则T 的逆算子1-T 是
有界算子。

4 闭图像定理
设1,X X 是赋范空间,T 是X 中到1X 中的线性算子,乘积赋范空间1X X ⨯,记
)}(:),{()(1T D x X X Tx x T G ∈⨯∈=
称)(T G 为算子T 的图像。

如果)(T G 是乘积赋范空间1X X ⨯中的闭集,则称T 是闭算子。

定理 3.6 设1,X X 是赋范空间,T 是X 中到1X 中的线性算子,则T 是闭算子,当且仅当,对任意)(}{T D x n ⊂
,x x n →及
y Tx n →(∞→n ),这里X x ∈,1X y ∈。

此时必有)
(T D x ∈并且y Tx
=。

定理3.7(闭图像定理) 设T 是Banach 空间X 上到Banach 空间1X 中的闭线性算子,则T 是有界线性算子。

相关文档
最新文档