材料力学 圆轴扭转内力、应力
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学-扭转
扭转角( 扭转角(ϕ):任意两截面绕轴线相对转动的角度。又称为角 位移。通常用ϕ表示。ϕB − A表示B截面相对A截面转过的角度。 剪应变( 剪应变(γ): 剪应变又叫角应变或切应变,它是两个相互垂直方 向上的微小线段在变形后夹角的改变量(以弧度表示, 角度减小时为正) O ϕ B m
A m
γ
第二节 杆受扭时的内力计算
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面: 实心圆截面:
2
I p = ∫ ρ d A = ∫ ρ (2 πρ d ρ )
2
ρ
d O
dρ
A
d 2 0
= 2 π(
ρ
4
d /2
4
)
0
πd = 32
4
d A = 2 πρ d ρ
πd 3 Wp = = d / 2 16 Ip
空心圆截面: 空心圆截面:
T T = ρ max = IP IP T = WP
ρ max
Ip—截面的极惯性矩, 截面的极惯性矩,单位: 单位:m 4 , mm 4 Ip 3 3 WP —抗扭截面模量, WP = 抗扭截面模量,单位:m , mm .
ρ max
整个圆轴上——等直杆: 等直杆: τ max
Tmax = WP
三、公式的使用条件: 公式的使用条件: 1、等直的圆轴, 等直的圆轴, 2、弹性范围内工作。 弹性范围内工作。
Tmax Wp
πD 3 实心, 16 T max W = 2)设计截面尺寸: 设计截面尺寸:WP ≥ 3 P [τ ] πD (1 − α 4 ) 空心. 16 ≤ ⇒ m 3)确定外荷载: 确定外荷载: Tmax WP ⋅ [τ ]
≤
材力讲稿第3章扭转1-2
内外径之比
Wp =
Ip D/2
=
π
16
D 3 (1 − α 4 )
扭 转/圆轴扭转时的应力和变形
Tρ τ ρ = Gρθ = Ip
T
由两种不同材料组成的圆轴, 讨论 由两种不同材料组成的圆轴,里层和外层材 料的剪切弹性模量分别为G 料的剪切弹性模量分别为 1和G2,且G1=2G2。圆轴 尺寸如图中所示。 尺寸如图中所示。 圆轴受扭时, 外层之间无相对滑动。 圆轴受扭时,里、外层之间无相对滑动。关于 横截面上的切应力分布,有图中( 、 横截面上的切应力分布,有图中(A)、(B)、(C)、(D) 、 、 所示的四种结论,请判断哪一种是正确的。 所示的四种结论,请判断哪一种是正确的。
T
扭 转/圆轴扭转时的应力和变形 观察到的变形现象 (1)A ) B C D A B C ∴横截面上存在切应力! 横截面上存在切应力! D
(2)圆周线大小、位置、形状、间距保持不变,绕轴线产生相 圆周线大小、位置、形状、间距保持不变, 对转动。 对转动。 ∴横截面上不存在正应力! 横截面上不存在正应力!
薄壁圆轴的扭转 扭 转/薄壁圆轴的扭转
薄壁圆轴两端截面之间相对 转动的角位移, 转动的角位移,称为 相对扭
m
A B
γ
D C
m
ϕ
转角 ,用ϕ 表示。 表示。
薄壁圆轴表面上每个格子的直 角的改变量,称为 切应变。 角的改变量, 用 γ 表示 。
(c)
A D
横截面上没有正应力,只有切应力。 横截面上没有正应力,只有切应力。 且横截面上的切应力的方向是沿着 B 圆周的切线方向, 圆周的切线方向,并设沿壁厚方向 是均匀分布的(壁厚较小 。 是均匀分布的 壁厚较小)。 壁厚较小
材料力学-第4章圆轴扭转时的强度与刚度计算
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
材料力学 圆轴扭转内力、应力
T
IP
27
§ 3.4 圆轴扭转时横截面上的应力
Mechanic of Materials
T
Ip
—横截面上距圆心为处任一点切应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线 弹性材料,在小变形时的 等圆截面直杆。
τ
O
② 式中: —该点到圆心的距离。
T—横截面上的扭矩,由截面法通过外力偶矩求得。 IP—极惯性矩,纯几何量,无物理意义。
重点:扭转内力、应力。 难点:切应力互等定理的证明。 学时安排:2
Mechanic of Materials
第八讲内容目录 第三章 扭 转
§ 3.1 扭转的概念和实例和实例 § 3.2 外力偶的计算 扭矩与扭矩图 § 3.3 纯剪切 § 3.4 圆轴扭转时横截面上的应力
目录
§ 3.1 扭转的概念和实例
§3-4 圆轴扭转时横截面上的应力
约为80GPa。
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三
个常数。对各向同性材料,这三个弹性常数之间存在下列关系:
G
E 2(1
)
22
Mechanic of Materials
§ 3.4 圆轴扭转时横截面上的应力
一、圆轴扭转时横截面上的应力公式推导思路 (一)几何方面:
扭转时,圆轴的表面 变形和薄壁圆筒表面变形 相似。实验现象:
M
A
9549
36 300
1146N.m
MB
MC
9549
11 300
350N.m
MD
9549
材料力学 扭转(2)
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n
圆轴扭转时的应力(材料力学)
p
q
Me
圆轴扭转的平面假设:
p q
Me
p
x
q
圆轴扭转变形前原为平 面的横截面,变形后仍 保持为平面,形状和大 小不变,半径仍保持为 直线;且相邻两截面间 的距离不变。
p d c p
q a
p d
q a e
d
O
d
a' b
b′
c
R
q
O a ' e′ b
p
b′
R
q
dx
边缘上a点的错动距离:
dx
T Wt
(单位:m3)
公式适用条件:
1)圆杆
2)
max p
I p与 Wt 的计算
在实心轴的情况下:
I p 2dA
A
其中D为圆截面直径
2
0
R
0
3dd
R 4
2
D 4
32
Wt
Ip R
R3
2
D3
16
在空心轴的情况下:
I p dA
材料力学第五版刘鸿文主编1变形几何关系圆轴扭转变形前原为平面的横截面变形后仍保持为平面形状和大小不变半径仍保持为直线
圆轴扭转时的应力
材料力学(第五版) 刘鸿文 主编
1、变形几何关系
Me
p q
Me
圆周线长度形状不变,各圆周线 间距离不变,只是绕轴线转了一个 微小角度;纵向平行线仍然保持为 直线且相互平行,只是倾斜了一个 微小角度。
满足强度要求
2 A
2
0
D
2
d
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
第4章 材料力学基础
4 π π D I p (D4 d 4 ) (1 4 ) 32 32
(4-32)
3 Ip π π D Wt ( D4 d 4 ) (1 4 ) (4-33) r 16D 16
4.4 梁的弯曲
4.4.1 梁的弯曲内力
图4-12 剪切
4.2.2 挤压与挤压应力
图4-13 剪切与挤压
图4-14 挤压应力的分布
4.2.3 剪切与挤压的强度
1.剪切强度计算
由于受剪构件的变形及受力比较复 杂,剪切面上的应力分布规律很难用理 论方法确定,因而工程上一般采用实用 计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪 切面内是均匀分布的。 若以A表示销钉横截面面积,则应 力为 FQ (4-19)
图4-11 应力集中现象
4.2 剪切和挤压
4.2.1 剪切与剪应力
在工程实际中,经常遇到剪切和挤压 的问题。 剪切变形的主要受力特点是构件受到 与其轴线相垂直的大小相等、方向相反、 作用线相距很近的一对外力的作用,如图 4-12(a)所示。
构件的变形主要表现为沿着与外力 作用线平行的剪切面( m-n面)发生相 对错动,如图4-12(b)所示。
第4章 材料力学基础
4.1
轴向拉伸与压缩
4.2
剪切和挤压
4.3
圆轴扭转
4.4
梁的弯曲
4.5
组合变形的强度计算
【学习目标】 1.掌握受拉压杆件的强度及变形量的计 算方法 2.理解剪切与挤压的特点和实用计算 3.理解受扭转杆件的应力特点
4.理解受纯弯曲梁的内力及应力特点, 掌握弯矩图的作法 5.理解组合变形的类型及特点,了解强 度理论的涵义及应用特点
材料力学:第四章 扭转
回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题
理工类专业课复习资料-材料力学基本概念和公式
第一章 绪论第一节 材料力学的任务1、组成机械与结构的各组成部分,统称为构件。
2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。
3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。
第二节 材料力学的基本假设1、连续性假设:材料无空隙地充满整个构件。
2、均匀性假设:构件内每一处的力学性能都相同3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。
木材是各向异性材料。
第三节 内力1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。
2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。
3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。
4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M第四节 应力1、一点的应力: 一点处内力的集(中程)度。
全应力0limA Fp A∆→∆=∆;正应力σ;切应力τ;p =2、应力单位:Pa (1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa )第五节 变形与应变1、变形:构件尺寸与形状的变化称为变形。
除特别声明的以外,材料力学所研究的对象均为变形体。
2、弹性变形:外力解除后能消失的变形成为弹性变形。
3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。
4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。
对构件进行受力分析时可忽略其变形。
5、线应变:ll ∆=ε。
线应变是无量纲量,在同一点不同方向线应变一般不同。
6、切应变:tan γγ≈。
切应变为无量纲量,切应变单位为rad 。
第六节 杆件变形的基本形式1、材料力学的研究对象:等截面直杆。
材料力学-第9章 扭转
其中, 为该轴的角速度 (rad s) , 2 则 M e 9549
Pk n
n 。若 Pk 的单位为千瓦 (kw ) , 60
(9 1)
( N m)
若 Pk 的单位为马力 (1hp 735.5 W) ,则
M e 7024 Pk n
( N m)
(9 2 )
r l
(a)
利用上述薄壁圆筒的扭转,可以实现纯切实验。实验结果表明,当切应力不
超过材料的剪切比例极限 p 时, 扭转角 与扭转力偶矩 M e 成正比。 由式 (9 3) 和 式 (a ) 可以看出, 与 只相差一个比例常数,而 M e 与 也只差一个比例常数。 所以上述实验结果表明:当切应力不超过材料的剪切比例极限 p 时,切应变 与 切应力 成正比(图 9-9) 。这就是材料的剪切虎克定律,可以写成
图 9-8 在纯剪切情况下,单元体的相对两侧面将发生微小的相对错动,图 9-7 (e) , 原来相互垂直的两个棱边的夹角, 改变了一个微量 , 这就是切应变。 由图 9-7 (b) 可以看出,若 为薄壁圆筒两端截面的相对转角, l 为圆筒的长度,则切应变应 为
式中 r 为薄壁圆筒的平均半径。
动轮 A 输入功率 PA 50hp ,从动轮
B 、 C 、 D 输出功率分别为 PB PC 15hp , PD 20hp ,轴的转
速为 n 300 r min ,试画出轴的扭矩 图。 解 按公式 (9 2) 计算出作用于
各轮上的外力偶矩。
M eA 7024 M eB M eD
T2 M eC M eB 0
T2 M eC M eB 702 N m
材料力学教案 第3章 扭转
第3章扭转教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:3.1 扭转的概念和实例工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图3-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图3-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
圆轴扭转时的强度与刚度计算材料力学
•
度条件为
max
Mn Wp
maxG MnIp •180
返回 下一张 上一张 小结
精品课件!
精品课件!
• (五)用强度,刚度条件解决实际部题的步骤
•
1)求出轴上外力偶矩;
•
2)计算扭矩和作出扭矩图;
•
3)分析危险截面;
•
4)列出危险截面的强度、刚度条件并进行计算。
返回 下一张 上一张 小结
返回 下一张 上一张 小结
• 二 剪应力计算:
• 1 几何关系: • • 2 物理关系:
P G
• • 3 静力关系:
Mnl d
G Ip
Mn d GIp d
• 扭转剪应力公式:
p
M n Ip
max
Mn Wp
返回 下一张 上一张 小结
•三
• •
截面极惯性矩 ;抗扭截面模量
ax
•
故求得直径为
4010
D3
16Mnmax3
1
6
628.467
0 .03 m 332 .2 3 mm
返回 下一张 上一张 小结
• (4)由刚度条件,得
maxM G nm pIax180G M nm D a4x 18 G n m 2a•x 18038 2 0 216 80 . 46 7 21 180
m ax0 .5 WM Pn 0 .6
0 .8 1 .0
• 2 强度计算的三个方面:
•
a 强度校核
•
b 截面选择
•
c 许可荷载确定
返回 下一张 上一张 小结
• 例1 如图为一钢圆轴,两端受外力偶m的作用,已知m=2.5
• KN.m,直径d=60m,许用应力为60MPa。试校核该轴的强度。
材料力学课件:第3章 圆轴扭转时的应力变形分析与强度刚度计算计算
脆性材料:不耐拉,最大拉应力所处截面是”最短木板”! 破坏方式是被拉断!
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
与拉伸强度设计相类似,扭转强度设计时,首先需要根 据扭矩图和横截面的尺寸判断可能的危险截面;然后根据 危险截面上的应力分布确定危险点(即最大剪应力作用 点);最后利用试验结果直接建立扭转时的强度设计准则。
承受扭转时圆轴的强度设计 与刚度设计
扭转实验与扭转破坏现象
韧性材料与脆性材料扭 转破坏时,其试样断口有着 明显的区别。韧性材料试样 最后沿横截面剪断,断口比 较光滑、平整。
铸铁试样扭转破坏时沿 45°螺旋面断开,断口呈细 小颗粒状。
经济学术语中的“木桶效应”,是说对于一个沿口 不齐的木桶而言,它盛水的多少并不在于木桶上那 块最长的木板,而在于木桶上最短的那块木板。
已知:钢制空心圆轴的外直径D=100 mm,内直径d=50 mm。若要求轴在2 m长度内的最大相对扭转角不超过1.5(),材 料的切变模量G=80.4 GPa。
试: 1. 求该轴所能承受的最大扭矩; 2. 确定此时轴内最大剪应力。
解: 1.确定轴所能承受的最大扭矩 根据刚度设计准则,有
承受扭转时圆轴的强度设计 与刚度设计
=
max
Mx WP
=16M x πd13
=16
1.5kN πd13
m
103
=50.9
106
Pa
据此,实心轴的直径
d1=3
16 1.5kN m 103=53.1103 m=53.1mm π 50.9 106 Pa
工程力学-材料力学部分
A 代入上式,得: Aa cos a
pa s cos a 斜截面上总应力:
斜截面上总应力: pa s cos a 分解: pa
k
F F
sa pa cosa s cos a
2
k
F
a
k
a
sa
Pa
t a pa sin a s cos a sin a
s
2
sin 2a
a
工程力学材料力学部分:
主要研究作用在物体上的力及变形规律。研究构件在相应 承载能力的条件下,以最经济的代价为构件确定合理的形状和 尺寸,选择适当的材料,为构件的设计提供必要的理论基础和 计算方法。
主要内容:
1、内力、应力的概念; 2、轴向拉伸与压缩; 3、剪切和挤压; 4、圆轴扭转; 5、梁的弯曲。
截面面积A成反比,这一比例关系称为胡克定律。即
FN l l = EA
E 为材料的弹性模量,取值与材料有关,由实验测定, 单位常用GPa。 胡克定律的另一表达式:
s E
32
胡克定律表明:当 FN 和 l 不变时, EA 值越大,绝对 变形量越小。说明EA是杆件抵抗拉压变形能力的度量。
例5.3
并求与横截面夹角30°的斜截面上的正应力和切应力。 解:拉压杆斜截面上的应力,直接由公式求之:
s0
F 4 10000 127 .4MPa 2 A 3.14 10
τ max σ 0 /2 127.4/2 63.7MPa
3 s a s 0 cos a 127 .4 95.5MPa 4
m
F F
m
(a)
以作用力FN替代弃去部分对研究对象的作用。
材料力学课件第3章扭转
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
§ 3.1
Mechanic of Materials
扭转的概念和实例
请判断哪一杆件 将发生扭转? 连接汽轮 机和发电机的 传动轴将产生 扭转。
7
§ 3.1
Mechanic of Materials
扭转的概念和实例
请判断哪一部件 将发生扭转?
唱机的心轴将产生扭转。
8
§ 3.1
Mechanic of Materials
T Ip
圆轴扭转时横截面上的应力
Mechanic of Materials
—横截面上距圆心为处任一点切应力计算公式。
τ
4. 公式讨论: ① 仅适用于各向同性、线 弹性材料,在小变形时的 等圆截面直杆。 ② 式中: —该点到圆心的距离。
O
T—横截面上的扭矩,由截面法通过外力偶矩求得。 IP—极惯性矩,纯几何量,无物理意义。 GIP—扭转刚度;
扭转的概念和实例
§ 3.1
Mechanic of Materials
扭转的概念和实例
受力特征:在杆的两端垂直于杆轴的平面内,作用 着一对力偶,其力偶矩相等、转向相反。 变形特征:杆件的各横截面环绕轴线发生相对 的转动。 扭转角:任意两横截面间相对转过的角度。 受扭转变形杆件通常为轴类零件,其横截面 大都是圆形的。所以本章主要介绍圆轴扭转。
§ 3.4 圆轴扭转时横截面上的应力
一、圆轴扭转时横截面上的应力公式推导思路 (一)几何方面: 扭转时,圆轴的表面 变形和薄壁圆筒表面变形 相似。实验现象:
1、变形后,横截面大小、 形状均不改变,半径仍为直 线。(应力垂直半径) 2、变形后相邻横截面间的距离不变。(无正应力) 3、平面假定:圆轴受扭发生变形后,横截面仍保持平面, 两相邻横截面刚性地相互转过一角度。
d G dx
dA
Mechanic of Materials
O
d A G dA dx d G A 2dA dx
2
d dx G
令
I P A dA
2
d T GI P dx
d T dx GI P
T IP
27
§ 3.4
、 τ
G
d G dx
与到圆心
的距离成正比。 25
§ 3.4 Mechanic of Materials
圆轴扭转时横截面上的应力
d G dx
26
§ 3.4
3. 静力学方程:
圆轴扭转时横截面上的应力
物理关系式 τρ
T A dFS
A dA
23
Mechanic of Materials
§ 3.4
圆轴扭转时横截面上的应力
MT O
(二)物理方面(线弹性范围内)
Mechanic of Materials
(a)
m
l
G
m
φ
O1
ρ
τ ρ
dA
(e)
γ
GIP
d dx
d dx
O2
§3.2 Mechanic of Materials
外力偶的计算 扭矩与扭矩图
一.外力偶矩
1、直接计算
§3.2
外力偶的计算 扭矩与扭矩图
W P 1000(N m)
外力偶m使轴以n (r/min) m 转动, m每秒作功: n W m 2
60 P 1000 P m 9549 [N m] 2 n n
外力偶的计算 扭矩与扭矩图
例3-2 主动轮A的输入功率PA=36kW,从动轮B、C、D输出功率 分别为PB=PC=11kW,PD=14kW,轴的转速n=300r/min.试画 出传动轴的扭矩图
M A 9549 36 1146 N .m 300 11 M B M C 9549 350 N .m 300 14 M D 9549 446 N .m 300 T1 M B 350 N .m
第八讲的内容、要求、重难点
教学内容:
扭转的概念,扭转内力,薄壁圆筒的扭转,剪切虎克定律, 圆 轴扭转时横截面上的应力。
Mechanic of Materials
教学要求:
1、 理解扭转的概念;薄壁圆筒横截面上的内力、应力; 2、 掌握扭转内力——扭矩与扭矩图; 3、 掌握切应力互等定理、剪切胡克定律; 4、 掌握圆轴扭转时横截面上的应力
D
4
O
D
32
d
对于空心圆截面:
I p A dA
2
d O
2 2 d
D
D 2 d 2
32 D 4 d (1 4 ) 32 D
(D4 d 4 )
29
§ 3.4
④ 应力分布
圆轴扭转时横截面上的应力
T Ip
Mechanic of Materials
重点:扭转内力、应力。 难点:切应力互等定理的证明。 学时安排:2
第八讲内容目录 第三章 扭 转
§ 3.1
§ 3.2 § 3.3 § 3.4
目录
Mechanic of Materials
扭转的概念和实例和实例
外力偶的计算 扭矩与扭矩图 纯剪切 圆轴扭转时横截面上的应力
扭转的概念和实例
§ 3.1
Mechanic of Materials
外力偶的计算 扭矩与扭矩图 例题3-1
圆轴受有四个绕轴线转动的外加力偶,各 力偶的力偶矩的大小和方向均示于图中,其中力 偶矩的单位为N· m,尺寸单位为mm。 试 :画出圆轴的扭矩图。
§3.2 Mechanic of Materials
T
(—) 315
外力偶的计算 扭矩与扭矩图
解:1.确定控制面
外加力偶处截面A、B、C、D均为控制面
§3.2
外力偶的计算 扭矩与扭矩图
二、扭矩T:当杆件受到外力偶作用发生扭转变形时,在杆 横截面上产生的内力,称为扭矩T,单位为kN· m或N· m
m T
Mechanic of Materials
m T=m
m m TT
m T=-m
m
扭矩正负规定:
右手四指与扭矩转向一致, 拇指指向外法线方向为 正 (+),反之为 负(-)
T
指向或共同背离该交线 单元体的四个侧面上只有切应力而无正应力作用,这种应力状 态称为纯剪切应力状态。
四、剪切虎克定律: T=m
§ 3.3 纯剪切
T 2A 0 t
R
L
Mechanic of Materials
φ
剪切虎克定律:当切应力不超过材料的剪切比例极限时 .2 A0t . L ),切应力与切应变成正比关系: (τ ≤τp G R
a
dy z
b ´
dx
z
´
d t
c
点右截面 τ
点左截面
0 ( t dy )dx ( t dx)dy 故
m
上式称为切应力互等定理。 τ T 该定理表明:在单元体相互垂直的两个平面上,切应力必然成对 出现,且数值相等,两者都垂直于两平面的交线,其方向则共同
486
(+)
(kN.m)
建立T-x坐标系,其中x轴平行于圆 轴的轴线,T轴垂直于圆轴的轴线。将所 求得的各段的扭矩值,标在Mx-x坐标系 x 中,得到相应的点,过这些点作x轴的平行 线,即得到所需要的扭矩图。
630
§3.2 Mechanic of Materials Mechanic of Materials
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
30
§ 3.4
圆轴扭转时横截面上的应力
知:当
⑤ 确定最大切应力:
28
§ 3.4
I p A dA
2
圆轴扭转时横截面上的应力
单位:mm4,m4。
d
Mechanic of Materials
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆, 只是Ip值不同。
对于实心圆截面:
I p A 2dA
2 d
2 D 2 0
汽车传动轴
§ 3.1
Mechanic of Materials
扭转的概念和实例
汽车方向盘操纵杆
§ 3.1
Mechanic of Materials
扭转的概念和实例
请判断哪一杆件 将发生扭转? 拧紧螺母的工具 杆不仅产生扭转, 而且产生剪切。
5
§ 3.1
扭转的概念和实例
Mechanic of Materials
315
2.截面法求各段扭矩
T1
315
315
T2 T3
486
M 0 T 315 0 T 315 M 0 T 315 315 0 T 630
x 1 1 x 2 2
M
x
0 T3 486 0 T3 486
3.建立T-x坐标系,画出扭矩图
φ r
Mechanic of Materials
T
横截面上同一圆周上各点的切 应力都是相等的 切应力沿圆周的切线方向,即垂直 于半径方向,与扭矩转向一致
l r
.r l
19
§ 3.3 纯剪切
二、薄壁圆筒切应力 大小:
Mechanic计算 电机输入功率为P(KW),每秒作功: