数字集成电路复习总结
数字集成电路考试心得体会
数字集成电路考试心得体会数字集成电路考试心得体会数字集成电路考试是电子信息类专业的一门重要课程,对于学生来说,取得好的成绩对于以后的学习和就业都具有重要的意义。
我在参加数字集成电路考试后,对此课程有了更深入的了解,同时也收获了一些心得体会。
首先,备考是考试成功的关键。
数字集成电路是一门理论与实践相结合的课程,要取得好的成绩,首先需要充分理解课程内容。
在备考过程中,我充分利用教材、课堂笔记和参考书籍,对每个知识点进行了逐一梳理和理解。
同时,在理论学习的基础上,我也注重实践操作,通过实验课和实验报告的完成,加深对于数字集成电路的理解和掌握。
其次,答题技巧的运用也非常重要。
数字集成电路考试中有不少计算题和分析题,我通过反复练习和总结,总结了一些答题技巧。
在计算题中,注意对问题的分析,掌握计算的方法和公式,合理利用公式和计算器,避免因计算错误而导致答案错误。
在分析题中,要注重图形的分析和电路原理的运用,理清思路,逐步推导,准确回答问题。
此外,注意答题时的表达也是重要的一环,清晰明了的语言和结构化的回答有利于解题者表达思路和理解深度。
同时,在考试中掌握时间的分配也是必不可少的。
数字集成电路考试时间较为紧张,需要在有限的时间内完成大量的题目,因此良好的时间管理能力是成功的关键。
在答题前,我会先浏览一遍试卷,对各个题目的难度和所需时间心里有个底。
然后,根据题目难易程度和自己擅长的知识点,合理安排时间。
在答题时,我会尽量按照时间分配进行,避免在某一题上卡住过多的时间而导致后续题目完成不了。
掌握好时间分配,有助于提高整体答题效率,不会因为时间不够而影响成绩。
最后,对错题的总结和复习也是很有帮助的。
在考试后,我会针对自己的错题进行总结和分析,找出自己的错误原因,并及时补充知识漏洞。
同时,我会对整个考试过程进行回顾和思考,总结自己在备考和考试过程中的不足和经验,为下一次考试做好准备。
通过数字集成电路的考试,我更加深入地了解了这门课程,并积累了一些备考和应试上的经验。
数字集成电路考试 知识点
数字集成电路考试知识点一、数字逻辑基础。
1. 数制与编码。
- 二进制、十进制、十六进制的相互转换。
例如,将十进制数转换为二进制数可以使用除2取余法;将二进制数转换为十六进制数,可以每4位二进制数转换为1位十六进制数。
- 常用编码,如BCD码(8421码、余3码等)。
BCD码是用4位二进制数来表示1位十进制数,8421码是一种有权码,各位的权值分别为8、4、2、1。
2. 逻辑代数基础。
- 基本逻辑运算(与、或、非)及其符号表示、真值表和逻辑表达式。
例如,与运算只有当所有输入为1时,输出才为1;或运算只要有一个输入为1,输出就为1;非运算则是输入和输出相反。
- 复合逻辑运算(与非、或非、异或、同或)。
异或运算的特点是当两个输入不同时输出为1,相同时输出为0;同或则相反。
- 逻辑代数的基本定理和规则,如代入规则、反演规则、对偶规则。
利用这些规则可以对逻辑表达式进行化简和变换。
- 逻辑函数的化简,包括公式化简法和卡诺图化简法。
卡诺图化简法是将逻辑函数以最小项的形式表示在卡诺图上,通过合并相邻的最小项来化简逻辑函数。
二、门电路。
1. 基本门电路。
- 与门、或门、非门的电路结构(以CMOS和TTL电路为例)、电气特性(如输入输出电平、噪声容限等)。
CMOS门电路具有功耗低、集成度高的优点;TTL门电路速度较快。
- 门电路的传输延迟时间,它反映了门电路的工作速度,从输入信号变化到输出信号稳定所需要的时间。
2. 复合门电路。
- 与非门、或非门、异或门等复合门电路的逻辑功能和实现方式。
这些复合门电路可以由基本门电路组合而成,也有专门的集成电路芯片实现其功能。
三、组合逻辑电路。
1. 组合逻辑电路的分析与设计。
- 组合逻辑电路的分析方法:根据给定的逻辑电路写出逻辑表达式,化简表达式,列出真值表,分析逻辑功能。
- 组合逻辑电路的设计方法:根据逻辑功能要求列出真值表,写出逻辑表达式,化简表达式,画出逻辑电路图。
2. 常用组合逻辑电路。
数字集成电路知识点整理
Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统第一章引论1、数字IC芯片制造步骤设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计)制版:根据版图制作加工用的光刻版制造:划片:将圆片切割成一个一个的管芯(划片槽)封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连测试:测试芯片的工作情况2、数字IC的设计方法分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用 Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的)NRE (Non-Recurrent Engineering) 成本设计时间和投入,掩膜生产,样品生产一次性成本Recurrent 成本工艺制造(silicon processing),封装(packaging),测试(test)正比于产量综合可以相互转化加了功耗信息一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数功耗:emmmm自己算4、EDA设计流程IP设计系统设计(SystemC)模块设计(verilog)版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys):.db(不可读) .lib(可读).sdb .slib第二章器件基础1、保护IC的输入器件以抗静电荷(ESD保护)2、长沟道器件电压和电流的关系:3、短沟道器件电压和电流关系速度饱和:当沿着沟道的电场达到临界值ξC时,载流子的速度由于散射效应(载流子之间的碰撞)而趋于饱和。
数字集成电路总结
数字集成电路基础学习总结第一章数字电子技术概念1.1 数字电子技术和模拟电子技术的区别模拟信号:在时间上和数值上均作连续变化的电路信号。
数字信号:表示数字量的信号,一般来说数字信号是在两个稳定状态之间作阶跃式变化的信号,它有电位型和脉冲型两种表达形式:用高低不同的电位信号表示数字“1”和“0”是电位型表示法;拥有无脉冲表示数字“1”和“0”是脉冲型表示法。
数字电路包括:脉冲电路、数字逻辑电路。
数字电路的特点:1)小、轻、功耗低2)抗干扰力强3)精度高按电路组成的结构可分立元件电路集成电路数数字电路分类小规模按集成度的大小来分中规模大规模超大规模双极型电路按构成电路的半导体器件来分单极型电路组合逻辑电路按电路有记忆功能来分1.21.3 三极管:是一种三极(发射极E、基极B(发射结、集电结)半导体器件,他有NPN和PNP两种,可工作在截止、放大、饱和三种工作状态。
电流公式:I(E)=I(B)+I(C)放大状态:I(C)=βI(B) 饱和状态:I(C)< βI(B)1.4 数制,两要素基数权二进制,十进制,十六进制之间的转换:二进制转换成十进制:二进制可按权相加法转化成十进制。
十进制转换成二进制:任何十进制数正数的整数部分均可用除2取余法转换成二进制数。
二进制转化成八进制:三位一组分组转换。
二进制转换成十六进制:四位一组分组转换。
八进制转换成十六进制:以二进制为桥梁进行转换。
1.5 码制十进制数的代码表示法常用以下几种:8421BCD码、5421BCD码、余3BCD码。
8421BCD码+0011=5421BCD码第二章逻辑代数基础及基本逻辑门电路2.1 “与”逻辑及“与”门若决定某一时间的所有条件都成立,这个事件就发生,否则这个事件就不发生,这样的逻辑关系成为逻辑与或者逻辑乘。
逻辑与真值表:逻辑功能:有0出0,全1出1. 逻辑式:L=A •B 符号:2.2“或”逻辑及“或”门决定某一事件的条件中只要有一个或一个以上成立,这事件就发生,否则就不发生没这样的逻辑关系称为逻辑或或称为逻辑加。
数字集成电路复习必备知识点总结
1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。
2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。
等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。
3.摩尔定律”其主要内容如下:集成电路的集成度每18个月翻一番/每三年翻两番。
摩尔分析了集成电路迅速发展的原因,他指出集成度的提高主要是三方面的贡献:(1)特征尺寸不断缩小,大约每3年缩小 1.41倍;(2)芯片面积不断增大,大约每3年增大 1.5倍;(3)器件和电路结构的改进。
4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。
5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。
直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。
6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平7. 单位增益点.在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dVout/dVin=1的点8. “闩锁”现象在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因此它处于截止状态。
但在一定的外界因素触发下,例如由电源或输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就会出现很大的导通电流。
只要外部信号源或者Vdd和Vss能够提供大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象9. 延迟时间:T pdo ——晶体管本征延迟时间;UL ——最大逻辑摆幅,即最大电源电压;Cg ——扇出栅电容(负载电容);Cw ——内连线电容;Ip ——晶体管峰值电流。
数字集成电路复习要点
数字集成电路复习要点⼀、简答题1.集成电路发展的特点:速度变快,I/O增多,⼯作电压下降……A,特征尺⼨越来越⼩,B,单个芯⽚晶体管数⽬越来越多,速度越来越快,电压越来越⼩,层数越来越多,端⼝越来越多,功耗越来越低2.P181⼤扇⼊的“设计技术”。
A,调整晶体管尺⼨B,逐级加⼤晶体管尺⼨C,重新安排输⼊D,重组逻辑结构(把光键路径上的晶体管靠近门的输出端)3.简述集成电路⼯艺中典型的光刻步骤及其相互关系。
(P28)氧化层,涂光刻胶,光刻机曝光,光刻胶的显影和烘⼲,酸刻蚀,旋转清洗和⼲燥,各种⼯艺加⼯步骤,去除光刻胶4.什么是多晶⾃对准⼯艺,有哪些优点?(P32)在掺杂之前形成图形的多晶硅栅实际确定了沟道区的确切位置,从⽽也确定了源区和漏区的位置。
它使源和漏这两个区域相对于栅具有⾮常精确的位置,有助于减⼩晶体管中的寄⽣电容。
5.CMOS逻辑门特性:(全摆幅,⽆⽐性,低输出阻抗,⾼输⼊阻抗,⽆静态功耗。
)A,电压摆幅等于电源电压,噪声容很⼤,B,逻辑电平与器件的相对尺⼨⽆关,⽆⽐逻辑,C,具有低输出阻抗,⾼输⼊阻抗,D,不消耗任何静态功率6.伪NCMOS门逻辑的特点A,减少晶体管的数⽬,由2N减到N+1,B,速度快缺点:⼩的噪声容限和⼤的静态功耗6.传输管逻辑的优点是什么?有哪些缺点,解决的办法是什么?优点:结构简单,阀值损失⼩,硬件开销⼩缺点:延时⾼,仅含NMOS的传输管将引起静态功耗并减⼩噪声容限解决办法:避免开关长串联以减⼩延时,增加电平恢复晶体管以消除静态功耗7.什么是时钟馈通,有何危害?(P215)原理:电容耦合的特殊情况,由在预充电器件的时钟输⼊和动态输出节点之间电容耦合引起的效应,当下拉⽹络不导通时,这⼀电容耦合会在时钟由低⾄⾼翻转时,引起的动态节点输出上升到VDD以上;⽽快速上升和下降时时钟边沿会耦合到信号节点上。
特点:a)可能使预充电管正常情况下反偏结⼆极管变为正向偏置,使电⼦注⼊到衬底中,被附近处于⾼电平的⾼阻节点收集,导致出错。
数字集成电路复习总结
第二章 制作工艺
不同工艺层的作用 自对准工艺 设计规则:
设计规则
版图设计工程师和工艺工程师之间的接口 指导构造工艺掩模板 单位尺寸:最小线宽(版图中使用的单位) 可按比例变化的规则:lambda (λ)参数 绝对尺寸:微米规则
第三章 器件
MOS晶体管
加法器
十一章 设计运算功能块
超前进位加法器
点运算公式 11.4 加法树(对应点运算的公式) 基2-(基4-)GP点运算的电路实现(4位加法器的 进位逻辑表达式),图11.21 11.23 11.24 定义:阵列乘法器,部分积 波兹编码乘法器 保留进位乘法器 Wallace树乘法器
逻辑努力:F=GBH
第六章 CMOS组合逻辑门:其他门电 路
有比逻辑:
电阻负载: 伪NMOS:VM VIH、VIL、NMH、NML的计算 差分级联电压开关逻辑(逻辑电路设计和识别) 阈值电压损失及解决方法 互补传输管逻辑:电路设计
传输晶体管逻辑(电路设计)
动态CMOS门电路
Lcrit >> tpgate/0.38rc
导线的rc延时只有在输入信号的上升(下降)时间 小于RC时才予以考虑,即trise < RC
如果不满足上式,信号的变化将慢于导线带来的延迟, 因此采用集总电容模型就够了
© MJIrwin, PSU, 2000
第五章 CMOS反相器
电压转移特性(VTC):不同区域pmos、 nmos工作状态
反向门阈值(中点)电压VM的近似计算 VIH、VIL的计算 NMH、NML的计算
数字集成电路--电路、系统与设计(第二版)复习资料
第一章 数字集成电路介绍第一个晶体管,Bell 实验室,1947第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。
(随时间呈指数增长)抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。
这一模型含有用来在下一层次上处理这一模块所需要的所有信息。
固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。
可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。
每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。
可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。
一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。
为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。
NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。
一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。
理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。
传播延时、上升和下降时间的定义传播延时tp 定义了它对输入端信号变化的响应有多快。
它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。
上升和下降时间定义为在波形的10%和90%之间。
对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。
数字电路期末总复习知识点归纳详细
数字电路期末总复习知识点归纳详细一、简述亲爱的小伙伴们,又是一年一度的期末复习时刻来临了,这次复习的主角是数字电路知识。
让我们一起来看看哪些内容是重点,助力你的复习之旅吧!数字电路虽然听起来高大上,但其实与我们日常生活息息相关。
手机、电视、电脑等电子产品都离不开它。
因此掌握好数字电路知识,不仅对学习有帮助,还能更好地理解生活中的科技应用。
首先你得清楚数字电路的基本概念,比如什么是数字信号、什么是模拟信号。
这可是基础中的基础,得打好基础才能建起高楼大厦。
接下来是数字电路的逻辑门和逻辑代数,这些看似复杂的名词其实背后都有简单的逻辑原理,只要理解了就容易掌握。
别忘了组合逻辑和时序逻辑电路,它们是数字电路的核心部分,考试中的大题往往围绕它们展开。
此外数制与编码也不可忽视,它们在数字电路中有着举足轻重的作用。
1. 回顾本学期数字电路课程的重要性这个学期数字电路课程真是收获满满啊!时间过得飞快,转眼就要期末考试了,大家是不是觉得有必要好好复习一下呢?确实数字电路课程在电子信息技术领域可是非常关键的,这门课程就像打开了一扇神奇的大门,让我们了解了电子设备背后的秘密。
咱们学习的内容都是电子工程师必备的基础知识,对咱们未来无论是从事相关职业还是日常生活都很有帮助。
所以啊同学们,一定要重视这次的复习,为期末考试做好准备!这个段落力求简洁明了,使用口语化的表达方式,易于读者理解和接受。
同时加入了情感化的语气,增强了文章的人情味。
2. 复习目的与意义期末临近是时候开始我们的复习计划了,说到复习数字电路,可不是简单地过一遍课本,而是为了更好地掌握这门课的知识和技能,帮助大家在即将到来的期末考试中取得好成绩。
所以今天就来一起梳理下复习目的和意义,让大家明白为什么要这么认真地对待这次复习。
首先复习数字电路是为了巩固我们学过的知识,毕竟课本上的内容那么多,不可能一下子全记住。
通过复习我们可以再次梳理知识脉络,加深理解确保学过的内容都能牢牢掌握。
数字集成电路--电路、系统与设计(第二版)复习资料
第一章 数字集成电路介绍第一个晶体管,Bell 实验室,1947第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。
(随时间呈指数增长)抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。
这一模型含有用来在下一层次上处理这一模块所需要的所有信息。
固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。
可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。
每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。
可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。
一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。
为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。
NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。
一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。
理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。
传播延时、上升和下降时间的定义传播延时tp 定义了它对输入端信号变化的响应有多快。
它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。
上升和下降时间定义为在波形的10%和90%之间。
对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。
数字集成电路知识点整理
Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统第一章引论1、数字IC芯片制造步骤设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计)制版:根据版图制作加工用的光刻版制造:划片:将圆片切割成一个一个的管芯(划片槽)封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连测试:测试芯片的工作情况2、数字IC的设计方法分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的)NRE (Non-Recurrent Engineering) 成本设计时间和投入,掩膜生产,样品生产一次性成本Recurrent 成本工艺制造(silicon processing),封装(packaging),测试(test)正比于产量一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数功耗:emmmm自己算4、EDA设计流程IP设计系统设计(SystemC)模块设计(verilog)综合版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys版权):可以相互转化.db(不可读).lib(可读)加了功耗信息.sdb .slib第二章器件基础1、保护IC的输入器件以抗静电荷(ESD保护)2、长沟道器件电压和电流的关系:3、短沟道器件电压和电流关系速度饱和:当沿着沟道的电场达到临界值ξC时,载流子的速度由于散射效应(载流子之间的碰撞)而趋于饱和。
数字电路知识整理总结
数字电路知识整理总结数字电路是电子信息类专业的重要基础课程,它在现代电子技术中扮演着至关重要的角色。
数字电路以数字信号为研究对象,通过对数字信号的处理和传输,实现各种复杂的逻辑功能。
一、数字电路的基本概念数字电路中的信号只有两种取值,通常用 0 和 1 来表示。
这与模拟电路中的连续信号不同。
数字信号具有精度高、抗干扰能力强等优点。
在数字电路中,常用的逻辑门包括与门、或门、非门、与非门、或非门和异或门等。
这些逻辑门是构建数字电路的基本单元。
二、数制与编码数制是数字电路中表示数量的方式,常见的数制有二进制、八进制、十进制和十六进制。
二进制是数字电路中最常用的数制,因为其只有 0 和 1 两个数字,便于电路的实现和处理。
编码则是将信息用特定的数字组合表示。
例如,BCD 码是用四位二进制数表示一位十进制数;格雷码在相邻的两个编码之间只有一位数字不同,常用于减少误差。
三、组合逻辑电路组合逻辑电路的输出仅取决于当前的输入,没有记忆功能。
常见的组合逻辑电路有加法器、编码器、译码器、数据选择器和数据分配器等。
加法器是实现加法运算的电路,半加器和全加器是其基本组成单元。
编码器将输入的信号转换为特定的编码输出。
译码器则是将编码转换为对应的输出信号。
数据选择器从多个输入数据中选择一个输出,数据分配器则将输入数据分配到多个输出端。
四、时序逻辑电路时序逻辑电路的输出不仅取决于当前的输入,还与电路之前的状态有关,具有记忆功能。
触发器是时序逻辑电路的基本存储单元,常见的触发器有 SR 触发器、JK 触发器、D 触发器和 T 触发器。
计数器用于计数脉冲信号的个数,可分为同步计数器和异步计数器。
寄存器用于存储一组二进制数据。
五、数字电路的分析与设计数字电路的分析是根据给定的电路,求出其输出与输入之间的逻辑关系。
常用的分析方法有逻辑代数法和卡诺图法。
逻辑代数法通过运用逻辑运算规则来化简逻辑表达式。
卡诺图法则通过图形化的方式来简化逻辑函数。
数电期末知识点总结
数电期末知识点总结一、数字逻辑1. 数字系统数字系统是一种表示数值和计算的方式。
常见的数字系统有二进制、八进制、十进制和十六进制。
二进制是计算机内部用的数字系统,十六进制则是计算机系统常见的数字系统。
2. 基本逻辑门基本逻辑门包括与门、或门、非门、异或门、同或门等。
这些逻辑门可以用来构建各种数字逻辑系统。
3. 逻辑函数逻辑函数可以表示为逻辑表达式或者真值表。
逻辑函数的不同表示方式可以用来进行数字逻辑系统的设计和分析。
4. 布尔代数布尔代数是逻辑函数的数学理论基础。
在数字逻辑系统的设计和分析中,布尔代数是非常重要的基础知识。
5. 组合逻辑电路组合逻辑电路是由逻辑门直接连接而成的数字逻辑系统。
组合逻辑电路的设计和分析是数字逻辑课程的重点内容之一。
6. 时序逻辑电路时序逻辑电路是由组合逻辑电路和时钟信号组成的数字逻辑系统。
时序逻辑电路的设计和分析是数字逻辑课程的另一个重要内容。
二、数字电路1. 数字集成电路数字集成电路是由大量的逻辑门和触发器等数字元件组成的电路芯片。
数字集成电路是数字逻辑系统的基础。
2. 二极管逻辑电路二极管逻辑电路是由二极管直接连接而成的数字逻辑系统。
二极管逻辑电路在数字逻辑发展的早期有重要的应用。
3. TTLTTL是一种重要的数字电路技术标准。
TTL技术具有高速、稳定、可靠等特点,是数字集成电路的主要技术之一。
4. CMOSCMOS是另一种重要的数字电路技术标准。
CMOS技术具有低功耗、高密度等特点,是数字集成电路的主要技术之一。
5. FPGAFPGA是一种灵活可编程的数字逻辑芯片。
FPGA具有很高的可编程性和并行性,可以实现各种复杂的数字逻辑系统。
6. ASICASIC是一种专门定制的数字逻辑芯片。
ASIC可以根据特定的应用需求进行设计和制造,具有很高的性能和可靠性。
三、数字信号处理1. 采样采样是将连续信号转换为离散信号的过程。
在数字信号处理中,采样是非常重要的步骤。
2. 量化量化是将连续信号的幅度值转换为离散值的过程。
集成电路复习总结
集成电路复习总结第一篇:集成电路复习总结1、中英名词解释(1)IC(Integrated Circuit):集成电路,是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容、电感等无源器件,按照一定的电路互联,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。
(2)摩尔定律(Moore's Law):芯片上晶体管数目每隔18个月翻一番或每三年翻两番,性能也会增加一倍。
(3)SOC(system on chip):在一个微电子芯片上将信息的采集、传输、存储、处理等功能集成在一起而构成系统芯片。
(4)EDA(Electronic-System Design Automation):电子设计自动化(5)能带:能量越高的能级,分裂的能级越多,分裂的能级也就相邻越近,这些邻近的能级看起来就像连续分布,这样的多条相邻近的能级被称为能带(6)本征半导体:是一种完全纯净的、结构完整的半导体晶体。
(经过一定的工艺过程将纯净的半导体制成的单晶体称为本征半导体。
导带中的自由电子与价带中的空穴都能参与导电。
)(7)肖特基接触:金属与半导体接触并且金属的费米能级低于N 型半导体或高于P型半导体的费米能级,这种接触为肖特基接触。
(8)MESFET:(Metal-Semiconductor Filed Effect Transistor),即金属-半导体场效应晶体管(9)Spice(Simulation Program with Integrated Circuit Emphasis):集成电路仿真程序,主要用来在电路硬件实现之前读电路进行仿真分析。
(10)FPGA(Filed Programmable Gate Array):现场可编程门阵列。
(又称逻辑单元阵列,Logic Cell A)(11)IP(Intellectual Property):知识产权。
成信大数字集成电路考试总结
成信大数字集成电路考试总结一简答题1与非门和或非门哪个好?为什么?NAND好Kp=unCox(W/L) , up < un, 与非门主要是电子参与导电,故导电快2有比逻辑与无比逻辑有比逻辑:有比逻辑试图减少实现一个给定逻辑功能说需要的晶体管数目,但它经常以降低稳定性和付出额外功耗为代价。
这样的门是由一个实现逻辑功能的NMOS下拉网络和一个简单的负载器件组成。
逻辑电平是由组成逻辑的晶体管的相对尺寸决定的无比逻辑:逻辑电平与器件的相对尺寸无关,这样的门采用有源上拉网络和下拉网络组合3克服电容串扰的方法(1)尽量避免浮空节点(2)敏感节点应很好的与全摆幅信号隔离(3)在满足时序约束的范围内尽可能加大上升(下降)时间(4)在敏感的低摆幅布线网络中采用差分信号传输方法(5)为了使串扰减小,不要使两条信号线之间的电容太大(6)必要时可在两个信号线之间增加一条屏蔽线-GND或Vdd(7)不同层上信号之间的线间电容可通过增加额外的布线层来进一步减小4高扇入时,提高组合逻辑电路性能的设计方法?设计者在设计时可采用多种技术来降低高扇入电路的延时1调整晶体管尺寸2逐级加大晶体管的尺寸3重新安排输入4重组逻辑结构5动态CMOS逻辑电路的特性(缺点)1逻辑功能由NMOS下拉网络实现,构成PDN的过程与静态CMOS完全一样2晶体管的数目(对于)明显少于静态情况,为N+2而不是2N3是无比逻辑门4动态逻辑门具有动态功耗5动态逻辑门具有较快的开关速度电容耦合:输出节点相对阻抗较高会使电路对串扰很敏感,一条导线布在一个动态节点上或邻近时,可能会产生电容耦合而破环这个浮空节点状态电荷泄露:一个动态门的工作取决于输出值在电容上的动态存储,由于存在漏电流,预充电状态的电荷将逐级泄露掉,最终使门的工作出错电荷分享:由于中间节点电容的存在,使得电荷重新分配,从而输出电压有所下降,这一下降不能恢复时钟馈通:在输出out时和输入时钟clk之间(预充电管),由于电容耦合导致输出电压超出Vdd,时钟的快速上升沿和下降沿,耦合到输出out6.传输晶体管的优缺点,解决方法?优点:1通过允许原始驱动栅端和源漏端来减少和实现逻辑所需要的的晶体管数目,即需要较少的晶体管来实现给定的功能。
数字集成电路复习笔记
数集复习笔记By 潇然2018.6.29名词解释专项摩尔定律:一个芯片上的晶体管数目大约每十八个月增长一倍。
传播延时:一个门的传播延时t p定义了它对输入端信号变化的响应有多快。
它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。
由于一个门对上升和下降输入波形的响应时间不同,所以需定义两个传播延时。
t pLH定义为这个门的输出由低至高翻转的响应时间,而t pHL则为输出由高至低翻转的响应时间。
传播延时t p定义为这两个时间的平均值:t p=(t pLH+t pHL)/2。
设计规则:设计规则是指导版图掩膜设计的对几何尺寸的一组规定。
它们包括图形允许的最小宽度以及在同一层和不同层上图形之间最小间距的限制与要求。
定义设计规则的目的是为了能够很容易地把一个电路概念转换成硅上的几何图形。
设计规则的作用就是电路设计者和工艺工程师之间的接口,或者说是他们之间的协议。
速度饱和效应:对于长沟MOS管,载流子满足公式:υ = -μξ(x)。
公式表明载流子的速度正比于电场,且这一关系与电场强度值的大小无关。
换言之,载流子的迁移率是一个常数。
然而在(水平方向)电场强度很高的情况下,载流子不再符合这一线性模型。
当沿沟道的电场达到某一临界值ξc时,载流子的速度将由于散射效应(即载流子间的碰撞)而趋于饱和。
时钟抖动:在芯片的某一个给定点上时钟周期发生暂时的变化,即时钟周期在每个不同的周期上可以缩短或加长。
逻辑综合:逻辑综合的任务是产生一个逻辑级模型的结构描述。
这一模型可以用许多不同的方式来说明,如状态转移图、状态图、电路图、布尔表达式、真值表或HDL 描述。
噪声容限:为了使一个门的稳定性较好并且对噪声干扰不敏感,应当使“0”和“1”的区间越大越好。
一个门对噪声的灵敏度是由低电平噪声容限NM L 和高电平噪声容限NM H来度量的,它们分别量化了合法的“0”和“1”的范围,并确定了噪声的最大固定阈值:NM L =V IL - V OLNM H =V OH - V IH沟道长度调制:在理想情况下,处于饱和区的晶体管的漏端与源端的电流是恒定的,并且独立于在这两个端口上外加的电压。
数字集成电路知识点整理
Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统第一章引论1、数字IC芯片制造步骤设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计)制版:根据版图制作加工用的光刻版制造:划片:将圆片切割成一个一个的管芯(划片槽)封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连测试:测试芯片的工作情况2、数字IC的设计方法分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的)NRE (Non-Recurrent Engineering) 成本设计时间和投入,掩膜生产,样品生产一次性成本Recurrent 成本工艺制造(silicon processing),封装(packaging),测试(test)正比于产量一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数功耗:emmmm 自己算4、EDA 设计流程IP 设计SystemC 模块设计(verilog )版图设计电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys 版权):.db .lib (可读).sdb .slib第2章 器件基础1、保护IC 的输入器件以抗静电荷(ESD 保护)2、长沟道器件电压和电流的关系:3、短沟道器件电压和电流关系速度饱和:当沿着沟道的电场达到临界值ξC时,载流子的速度由于散射效应(载流子之间的碰撞)而趋于饱和。
ξC取决于掺杂浓度和外加的垂直电场强度器件在V DS达到V GS --V T 之前就已经进入饱和状态,所以与相应的长沟道器件相比,短沟道器件饱和区范围更大反面整理P63 3.3.2 静态状态下的MOS晶体管相关参数以及公式(尤其是速度饱和)4、MOS管二阶效应阈值变化:随着器件尺寸的缩小,阈值电压变成与L、W、V DS有关短沟效应(漏端感应势垒降低(DIBL)):电压控制耗尽区宽度,V DS提高将会导致势垒降低,甚至过高的V DS将会导致源漏短路,称为源漏穿流窄沟效应:沟道耗尽区并不立即在晶体管边沿终止,而是会向绝缘场氧下面延伸一些,栅电压必须维持这一额外的耗尽电荷才能建立一条导电沟道,在W值较小时将会引起阈值电压升高亚阈值导通:在V GS接近甚至略小于V T时,I D仍然存在热载流子效应:原因:小尺寸器件中的强电场引起高能热电子与晶格碰撞产生电子空穴对,引起衬底电流;电子在强总校电厂的作用下穿过栅氧,引起栅电流。
数字集成电路设计复习提纲
数字集成电路设计复习提纲(1-7章)2021-121. 数字集成电路的本钱包括哪几局部?●NRE (non-recurrent engineering) costs固定本钱●design time and effort, mask generation●one-time cost factor●Recurrent costs重复性费用或可变本钱●silicon processing, packaging, test●proportional to volume●proportional to chip area2. 数字门的传播延时是如何定义的?一个门的传播延时tp定义了它对输入端信号变化的响应有多快。
3. 集成电路的设计规则(design rule)有什么作用?❑Interface between designer and process engineer❑Guidelines for constructing process masks❑Unit dimension: Minimum line width▪scalable design rules: lambda parameter (可伸缩设计规则,其缺乏:只能在有限的尺寸范围内进展。
)▪absolute dimensions (micron rules,用绝对尺寸来表示。
)4. 什么是MOS晶体管的体效应?5. 写出一个NMOS晶体管处于截止区、线性区、饱和区的判断条件,以及各工作区的源漏电流表达式〔考虑短沟效应即沟道长度调制效应,不考虑速度饱和效应〕注:NMOS晶体管的栅、源、漏、衬底分别用G、S、D、B表示。
6. MOS晶体管的本征电容有哪些来源?7. 对于一个CMOS反相器的电压传输特性,请标出A、B、C三点处NMOS管和PMOS管各自处于什么工作区?Out InV DDPMOSNMOS8. 在CMOS 反相器中,NMOS 管的平均导通电阻为R eqn ,PMOS 管的平均导通电阻为R eqp ,请写出该反相器的总传播延时定义。
数字集成电路知识点
t /
Vin
out
p
1
数字集成电路知识点总结-by tong li
一、按存储单元状态变化分类:同步时序电路和异 b.采用本地时钟网络(而不是树形布线)可以减少 步时序电路 时钟偏差,但增加了电容负载和功耗 二、按输出信号的特点分类:米里(Mealy)型和 c.如果数据沿,可以消除竞争,以牺牲性能为代价 摩尔(Moore)型 一个方向流动, 可使数据和时钟按相反的方向布线 14.锁存器和寄存器 d.把电源线(VDD 或 GND)放在时钟线的旁边可 Latch: 电平触发 以减少或避免与相邻信号网络的耦合 Register: 边沿触发 e.电源供电不稳是引起抖动的重要原因,通过加入 15.如何实现存储功能:双稳态原理 片上去耦电容可以减少影响,但增大了面积 16.亚稳态状态切换的条件: 1. 切断反馈环路; 2. 触 21.加法器 发强度超过反馈环 逐位进位加法器:tadder = (N-1)tcarry + tsum 17.存储类型:静态(基于正反馈) ;动态(基于电 镜像加法器:进位产生电路只有 2 个晶体管,提高 容) 了性能 18.互连寄生现象的影响 传输门加法器:24 个晶体管 降低电路可靠性 进 位 旁 路 加 法 器 : tadder = tsetup + Mtcarry + 影响性能:增大延时\增加功耗 (N/M-1)tbypass + (M-1)tcarry + tsum 寄生效应类型:电容(串扰)、电阻(欧姆电压降、电 进位选择加法器:线性进位选择加法器、平方根进 迁移)、电感(Ldi/dt 电压降、传输线效应) 位选择加法器 19.时钟的非理想化 超 前 进 位 加 法 器 : (1)包括: CO,K=f(AK,BK,CO,K-1)=GK+PKCO,K-1 时钟偏差:时钟沿到达不同空间的时间差别;各个 加法器性能比较: 周期的偏差相同;不造成时钟周期的变化,只有相 50 位的偏移;衡量时钟分布好坏的指标; Ripple adder 时钟抖动: 给定空间上时钟周期的变化; 可正可负, 40 平均值为 0 的随机量;需要严格限定抖动的范围; 30 衡量时钟本身好坏的指标; Linear select 20 (2) 产 生 原 因 : a.clock generation- 时 钟 生 成 ; b.devices-设备; c.interconnect-互连; d.power supply10 Square root select 电源;e.temperature-温度;f.capacitive load-电容性 0 0 20 40 60 负载;g.coupling to adjacent lines-耦合到相邻线路。 N (3)影响:a.正偏差增加了时钟周期的有效长度,提 升了电路的性能。b.负偏差缩短了时钟周期的有效 22.存储器结构:译码器,阵列,层次化,按内容寻 长度,降低了电路的性能。 址 偏差的影响:Minimum cycle time:T + = tc-q + tlogic+ 23. 非 易 失 性 存 储 器 : EPROM 、 EEPROM tsu (E2PROM)、FLASH 抖动的影响:TCLK-2tjitter>=tc-q+tlogic+tsu 分析题 (4)解决方法:沿触发系统 1.反相器的电压传输特性曲线(VTC) T =tclk-q + tlogic + Tsu - d + 2 Tjitter 20. 时钟网络设计 (1)目的:使时钟偏差和抖动最小化;时钟网络功耗 最小 (2)设计自由度: 基本拓扑和层次;导线材料的类型; 导线和缓冲器的尺寸;上升和下降时间;负载电容的 划分 (3)设计方法: a.采用 H 树结构或更为一般的布线匹配的树结构, 使从中央时钟分配源到单个钟控元件的时钟路径 均衡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑努力:F=GBH
第六章 CMOS组合逻辑门:其他门电 路
有比逻辑:
电阻负载: 伪NMOS:VM VIH、VIL、NMH、NML的计算 差分级联电压开关逻辑(逻辑电路设计和识别) 阈值电压损失及解决方法 互补传输管逻辑:电路设计
传输晶体管逻辑(电路设计)
动态CMOS门电路
加法器
十一章 设计运算功能块
超前进位加法器
点运算公式 11.4 加法树(对应点运算的公式) 基2-(基4-)GP点运算的电路实现(4位加法器的 进位逻辑表达式),图11.21 11.23 11.24 定义:阵列乘法器,部分积 波兹编码乘法器 保留进位乘法器 Wallace树乘法器
反向门阈值(中点)电压VM的近似计算 VIH、VIL的计算 NMH、NML的计算
一阶动态分析模型
等效电阻、负载电容
第六章 CMOS组合逻辑门
CMOS组合逻辑门设计
上拉网络,下拉网络 静态特性:VM VIH、VIL、NMH、NML的计算 根据参考反相器,确定每个MOS管宽度(电阻等效 匹配) 动态特性:Elmore公式 路径努力 每级努力
电路结构和基本原理及特点 电路设计(使用上拉网络和下拉网络) 存在的问题及解决方法 为什么不能直接级联 Domino逻辑 np-CMOS逻辑
动态CMOS门电路的级联
十一章 设计运算功能块
二进制加法器:
半加器 Generate Propagate Delete信号的电路) 全加器,镜像加法器 逐位加法器 曼切斯特进位链加法器例子11.2 进位旁路加法器 线性进位选择加法器 超前进位加法器
nmos,pmos 晶体管工作区,电流公式 等效电阻,电容计算 闩锁效应 相关的参数和公式
第四章 互连线
互连线的模型:
集总电容,集总RC(电阻-电容),分布rc模型 平板 侧面 方块(薄层)电阻
寄生电容:
电阻:
Elmore 公式
关于导线延迟的两个设计规则
导线的rc延时只有在近似或者超过驱动门的tpgate, 即tpRC >> tpgate时才予以考虑,此规则定义了一个 临界长度
乘法器:
十一章 设计运算功能块
பைடு நூலகம்
移位器
基本结构:传输管 图11.36 桶形移位器:图11.37 对数移位器:图11.38
复习总结
第二章 制作工艺
不同工艺层的作用 自对准工艺 设计规则:
设计规则
版图设计工程师和工艺工程师之间的接口 指导构造工艺掩模板 单位尺寸:最小线宽(版图中使用的单位) 可按比例变化的规则:lambda (λ)参数 绝对尺寸:微米规则
第三章 器件
MOS晶体管
Lcrit >> tpgate/0.38rc
导线的rc延时只有在输入信号的上升(下降)时间 小于RC时才予以考虑,即trise < RC
如果不满足上式,信号的变化将慢于导线带来的延迟, 因此采用集总电容模型就够了
© MJIrwin, PSU, 2000
第五章 CMOS反相器
电压转移特性(VTC):不同区域pmos、 nmos工作状态