学生用五年级下数学思维训练教材

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲立体图形及展开例题选讲

例1:图1所示的是一个正方体纸盒拆开后平摊在桌面上的形状。如果将这个展开图恢复成原来的正方体,图中的点F、点G分别与哪个点重合?

例2:一只小虫从图l所示的长方体上的A点出发,沿长方体的表面爬行,依次经过前面、上面、后面、底面,最后到达P点。请你为它设计一条最短的爬行路线。

练习与思考

1.如图所示的是一个正方体纸盒拆开后平摊在桌面上的形状。

如果将这个展开图恢复成原来的正方体,图中的点B、点D分别

与哪个点重合?

2.如图所示的是一个棱长3厘米的正方体木块,一只蚂蚁从A点沿表面爬向B点。请画出蚂蚁爬行的最短路线。问:这样的路线共有几条?

3.将一张长方形硬纸片,剪去多余部分后,折叠成一个棱长为l厘米的正方体。这张长方形硬纸片的面积最小是多少平方厘米?

4.一块长方形的铁皮,长28厘米,在这块铁皮的四角各剪下一个边长为4厘米的小正方形,然后通过折叠、焊接做成一个无盖的长方体盒子。已知这个

盒子的容积是960立方厘米,求原来长方形铁皮的面积。

5.如图所示的是一个正方体木块的表面展开图,若在正方体

的各面填上数,使其对面两数之和为7,则A、B、c处填的数各是多少?

6.如图所示的10个展开图中,哪些可以做成完整的正方体?

7.如图所示的是一个长方体,四边形APQC、是长方体的一个截面(即过长方体上4点A、P、Q、C的平面与长方体相交所得到的图形),P、Q分别为棱A1B1、B1C1,

的中点,请在此长方体的平面展开图上,标出线段AC、cQ、QP、PA。

第二讲长方体和正方体的表面积

例题选讲

例1:一个长方体,前面和上面的面积之和是88平方厘米,这个长方体的长、宽、高是以厘米为单位的数,且都是质数,求这个长方体的表面积。

例2:如图,将3个表面积都是24平方米的正方体木块粘成一

个长方体,求这个长方体的表面积。

例3:如图所示的是用19个棱长为1厘米的正方体堆起来的

立体图形,其中有一些正方体看不见,那么这个立体图形的表面积是多少?

练习与思考

1.有一个长方体,前面和上面两个面面积和为209平方厘米,并且长、宽、高都是以厘米为单位的数,且都是质数,求这个长方体的表面积。

2.将两个长都是8厘米,6厘米,高都是5厘米的长方体拼成一个大长方体,那么这个大长方

体表面积最大是多少平方厘米?

3.如图所示的是由17个边长是1厘米的小正方体拼成的立体图形,求它的表面积。

4.有一个长方体,长是8厘米,宽是4 厘米,高是6厘米,把它截成棱长是2厘米的若干个小正方体,这些小正方体表面积之和比原来长方体的表面积增加了多少平方厘米?

5.如图,正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时表面积增加多少平方分米?

6.如图,有一个边长是5厘米的立方体,如果它的左上方截去一个边长分别是5厘米,3厘米2厘米的长方体。那么,它的表面积减少多少平方厘米?

7.如图,有一个长4厘米:宽和高都是3厘米的长方体,以A为底打一个上下直穿的长方体洞,以B为底打一个前后直穿的长方体洞,以C为底打一个左右穿通的

长方体洞,所得立体图形的表面积是多少?

8.如图,有一个棱长是1米的正方体木块。沿水平方向锯2次,竖

直锯3次,再横着锯4次,共得到大大小小的长方体小木块60块,求这60块长方体表面积的和。

9.用10个长7厘米,宽5厘米,高3厘米的长方体木块拼成一个大长方体,拼成的大长方体表面积最小是多少?

第三讲长方体和正方体的体积

例题选讲

例1:如图,一个长方体木块,从上部和下部分别截去高2厘米和3厘米的长

方体后,便成为一个正方体,表面积减少了100平方厘米,原来长方体的体

积是多少立方厘米?

例2:将两块棱长相等的正方体木块拼成一个长方体,已知长方体棱长总和是96厘米,每块正方体木块的体积是多少立方厘米?

例3:如图,正方体的棱长为4厘米,分别在前后、左右、上下各面中

心凿开一个边长1厘米的正方形小孔直至对面,求它的体积。

练习与思考

1.把一个长方体的长平均分成4段,每段长6厘米,表面积增加24平方厘米,

求原长方体的体积。

2.用大小相等的两个正方体积木拼成一个长方体,这个长方体的棱长总和是

80厘米,每个正方体的体积是多少立方厘米?

3.如图,在一个棱长为20厘米的正方体木块的前面、上面、右面中心位置,分别凿一个边长为4厘米的正方形小孔直至对面,做成玩具,求这个玩具的体积。

4.一个表面积是360平方厘米的长方体,它恰好可以切成两个相同的正方体,每

个小正方体的体积是多少立方厘米?

5.一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于

底面的平面将它截成两个长方体,则两个长方体的表面积之和是240平方厘米,求原来长方体的体积。

6.一个长方体的前面、上面、右面的面积分别为10、15、6平方厘米,求这个长方体的体积。(40、60、24)

7.现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度忽略不计,容积越大越好)。请问:你做的铁皮盒的容积是多少立方厘米?画一画,算一算。

8.一个长、宽、高分别是2l厘米、15厘米、12厘米的长方体,现从它上面尽可能大地切下一个正方体,然后再从剩余部分尽可能大地切下一个正方体,最后再从第二次剩余的部分尽可能大地切下一个正方体,这时剩下的体积是多少立方厘米?

第四讲水面高度变化和等积变换

例题选讲

例1:在一个长25分米,宽20分米的长方体容器中,有15分米深的水。如果在水中沉入一个棱长是50厘米的正方体铁块,那么容器中水深多少分米?

例2:一个长方体水箱,底面是一个边长为50厘米的正方形。水箱里直立着一个高10分米,底面边长是25厘米的长方体铁块,这时水箱里的水深6分米。现在把铁块轻轻地向上提起20厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?

例3:把一个长9厘米,宽7厘米,高3厘米的长方体铁块和一个棱长5厘米的正方体铁块熔铸成一个底面积是20平方厘米的长方体,求这个长方体的高。

相关文档
最新文档