高中数学函数练习题(完整版).doc
高中函数测试题及答案
高中函数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=2时的值为:A. 5B. 7C. 9D. 112. 函数y = |x|的图像是:A. 一条直线B. 一个V形C. 一个倒V形D. 一个S形3. 若f(x) = x^2 + 1,求f(-1)的值:A. 0B. 1C. 2D. 34. 函数y = 1/x的图像在第一象限和第三象限是:A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数5. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 06. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π7. 若f(x) = x^3 - 3x^2 + 2x,求f'(x)的值:A. 3x^2 - 6x + 2B. x^2 - 2x + 1C. 3x^2 - 6xD. x^2 - 2x8. 函数y = cos(x)的图像在x = π/2时的值为:A. 1B. 0C. -1D. 不确定9. 若f(x) = 2^x,求f'(x)的值:A. 2^xB. ln(2) * 2^xC. 1D. 2^(x-1)10. 函数y = x^3的图像是:A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 都不是答案:1. B2. B3. C4. B5. A6. B7. A8. B9. B10. A二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 6x^2 + 9x + 2,求f(3)的值。
答案:-112. 若函数g(x) = √x,求g(16)的值。
答案:413. 若函数h(x) = 2^x,求h(-1)的值。
答案:1/214. 函数y = 3x - 5的斜率是:答案:315. 若函数k(x) = log10(x) + 1,求k(100)的值。
高中函数试题及答案
高中函数试题及答案一、选择题(每题4分,共20分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. 1B. -1C. 5D. -5答案:D2. 函数y = 3x^2 - 2x + 1的对称轴是:A. x = 1/3B. x = -1/3C. x = 1D. x = -1答案:A3. 函数y = |x| + 1在x = 0处的导数是:A. 0B. 1C. 2D. 不存在答案:B4. 若函数f(x) = x^3 + 2x^2 - 5x + 6,求f'(x):A. 3x^2 + 4x - 5B. 3x^2 + 2x - 5C. 3x^2 + 4x + 5D. 3x^2 - 4x + 5答案:A5. 函数y = sin(x) + cos(x)的值域是:A. [-2, 2]B. [-1, 1]C. [-√2, √2]D. [0, 2]答案:C二、填空题(每题4分,共20分)6. 函数y = x^2 - 4x + 4的最小值是______。
答案:07. 函数y = 2x^3 - 6x^2 + 3x + 1的极值点是______。
答案:x = 1/2, x = 38. 若f(x) = x^2 - 6x + 9,则f(3) = ______。
答案:09. 函数y = ln(x)的定义域是______。
答案:(0, +∞)10. 函数y = x^3 - 3x^2 + 4x + 1的拐点是______。
答案:x = 1三、解答题(每题10分,共60分)11. 求函数y = x^3 - 3x^2 + 4x - 1在x = 2处的切线方程。
解:首先求导数y' = 3x^2 - 6x + 4,然后计算y'(2) = 4,同时计算y(2) = 3。
因此,切线方程为y - 3 = 4(x - 2),即y = 4x - 5。
12. 已知函数f(x) = x^2 - 4x + 4,求证:f(x) ≥ 0。
(word完整版)高一数学函数经典习题及答案
函 数 练 习 题班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高中数学必修一练习题(4)函数(含详细答案)
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
高一函数测试题及答案
高一函数测试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+m的图象与x轴有两个交点,则实数m 的取值范围是()。
A. m>4B. m<4C. m≥4D. m≤42. 函数y=x^3-3x的单调递增区间是()。
A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-1, +∞)3. 函数y=x^2-6x+10的最小值是()。
A. 4C. 6D. 74. 若函数f(x)=x^2-4x+3,则f(1)的值为()。
A. 0B. 1C. 2D. 35. 函数y=x^2-6x+8的图象的对称轴是()。
A. x=-3B. x=3C. x=-2D. x=26. 函数y=x^3-3x的零点个数是()。
A. 1C. 3D. 47. 函数y=x^2-4x+4的值域是()。
A. [0, +∞)B. [1, +∞)C. [2, +∞)D. [3, +∞)8. 函数y=x^2-6x+10的顶点坐标是()。
A. (3, 1)B. (3, -1)C. (2, 4)D. (2, 5)9. 若函数f(x)=2x-3,则f(2)的值为()。
A. 1C. 3D. 410. 函数y=x^2-4x+3的图象与y轴的交点坐标是()。
A. (0, 3)B. (0, -1)C. (0, 1)D. (0, 4)二、填空题(每题4分,共20分)11. 函数y=x^2-4x+3的顶点坐标是______。
12. 函数y=x^3-3x的导数为______。
13. 函数y=x^2-6x+10与x轴的交点坐标是______。
14. 函数y=x^2-4x+4的对称轴是______。
15. 函数y=x^2-6x+8的最小值是______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^2-4x+3,求f(-1)的值。
17. 已知函数f(x)=x^2-6x+10,求函数的单调递减区间。
18. 已知函数f(x)=x^2-4x+4,求函数的零点。
高中数学必修一函数练习题及答案
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是() A.f(x)=x B.f(x)=|x| C.f(x)=-x2D.f(x)=1 x2.函数f(x)=x2+x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为() A.5 B.10 C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是() A.f(-1)<f(3) B.f(2)<f(3) C.f(-3)<f(5)D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=1x2在区间[12,2]上的最大值是()A. 14B.-1 C.4 D.-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎨⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.(2011·合肥高一检测)函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =__________,b =________.7.画出函数f (x )=⎩⎨⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是( ) A .a 13·a 32=a B .a12-·a 12=0 C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 25.计算:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=________.6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12;(2)(a 23·b -1)12-·a12-·b136a ·b 5.幂函数1.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( ) 4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( )A .α>1B .0<α<1C .α>0D .α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x 53,②y=x34,③y=x-13,④y=x23,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和3.152-;(2)-878-和-(19)78;(3)(-23)23-和(-π6)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b =0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3. 答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即b1+02=0,∴b =0, 又f (12)=12a 1+14=25,∴a =1,∴f (x )=x 1+x 2. 8.解:由f(x)在R 上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a 2+a +1=2(a +14)2+78>0,2a 2-2a +3=2(a -12)2+52>0,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23.函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C 设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.5.解析:设f(x)=ax +b ,易知a≠0. 当a>0时,f(x)单调递增,则有⎩⎨⎧f (2)=3f (-1)=1,∴⎩⎨⎧2a +b =3-a +b =1,即⎩⎪⎨⎪⎧a =23b =53,∴f (x )=23x +53;当a <0时,f (x )单调递减,则有⎩⎨⎧f (2)=1,f (-1)=3,∴⎩⎨⎧2a +b =1-a +b =3,即⎩⎪⎨⎪⎧a =-23b =73, ∴f (x )=-23x +73. 综上,y =f (x )的解析式为f (x )=23x +53或f (x )=-23x+73. 答案:f (x )=23x +53或f (x )=-23x +736.解析:∵y =-(x +2)2+5,∴函数图象对称轴是x =-2. 故在[-2,+∞)上是减函数.又∵b >a >-2,∴y =-x 2-4x +1在[a ,b ]上单调递减.∴f (a )=4,f (b )=-4.由f (a )=4,得-a 2-4a +1=4,∴a 2+4a +3=0,即(a +1)(a +3)=0.∴a =-1或a =-3(舍去),∴a =-1. 由f (b )=-4,得-b 2-4b +1=-4,b =1或b =-5(舍去),∴b =1. 答案:-1 1 7.解:f(x)的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.8.解:(1)当a =-1时,f(x)=x2-2x +2=(x -1)2+1,x ∈[-5,5],当x =1时,有f (x )min =1,当x =-5时,有f (x )max =37.(2)∵函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ,f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.✍✍指数与指数幂的运算1.选D a 13·a 32=a 1332+=a 116;a 12-·a 12=a0=1;(a3)2=a6;a 12÷a 13=a1123-=a 16,故D 正确.2.选B 要使原式有意义,应满足⎩⎨⎧a -2≥0a -4≠0,得a≥2且a≠4.3.选D 原式=1-(1-4)÷3(278)2=1+3×49=73. 4.选C 将a 12-a 12-=m 平方得(a 12-a 12-)2=m2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2?a 2+1a=m 2+2.5.解析:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=1+122×⎝ ⎛⎭⎪⎫9412=1+14×32=118. 答案:1186.解析:由102x =25得:(10x)2=25,∴10x 是25的平方根.由于10x>0,∴10x=5,∴10-x=110x =15. 答案:157.解:∵x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y ,把x =12,y =13代入得,原式=412×1312-13=4 6.8.解:(1)原式=(310)3×23×(-32)×13+(8114+3235-2100×100)12=103+912=193. (2)原式=a 13-·b 12·a12-·b13a 16·b56=a111326---·b115236+-=1a. 幂函数1.选A 当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点. 2.选B y =x 12不是偶函数;y =x -2不过(0,0);y =x 13是奇函数. 3.选D 幂函数y =x 23是偶函数,图象关于y 轴对称.4.选C 因为x>1时x α>1=1α,所以y =x α单调递增,故α>0. 5.解析:令2m -1=1得m =1,该函数为y =x. 答案:16.解析:函数①④⑥的定义域为R ,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}. 答案:①④⑥ 7.解:(1)函数y =x52-在(0,+∞)上为减函数,因为3<3.1,所以352->3.152-.(2)-878-=-(18)78,函数y =x 78在(0,+∞)上为增函数,因为18>19,则(18)78>(19)78, 从而-8-78<-(19)78.(3)(-23)23-=(23)23-,(-π6)23-=(π6)23-,函数y =x 23-在(0,+∞)上为减函数,因为23>π6,所以(23)23-<(π6)23-,即(-23)23-<(-π6)23-.8.解:∵函数在(0,+∞)上递减,∴3m -9<0,解得m<3.又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 即幂函数y =x 3m -9的解析式为y =x -6.。
(完整版)高一数学函数试题及答案
(完整版)高一数学函数试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高一数学函数试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高一数学函数试题及答案(word版可编辑修改)的全部内容。
(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴,;3)5)(3(1+-+=x x x y 52-=x y ⑵,;111-+=x x y )1)(1(2-+=x x y ⑶,;x x f =)(2)(x x g =⑷()f x =()F x =⑸,。
21)(x f 52)(2-=x x f A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸2.函数的图象与直线的公共点数目是( )()y f x =1x =A . B . C .或 D .或1001123.已知集合,且{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B∈∈∈使中元素和中的元素对应,则的值分别为( )B 31y x =+A x ,a k A . B . C . D .2,33,43,52,54.已知,若,则的值是( )22(1)()(12)2(2)x x f xx x x x +≤-⎧⎪=-<<⎨⎪≥⎩()3f x =x A . B .或 C .,或11321325.为了得到函数的图象,可以把函数的图象适当平移,(2)y f x =-(12)y f x =-这个平移是( )A .沿轴向右平移个单位B .沿轴向右平移个单位x 1x 12C .沿轴向左平移个单位 D .沿轴向左平移个单位x 1x 126.设则的值为( )⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f )5(f A . B . C . D .10111213二、填空题1.设函数则实数的取值范围是 ..)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若a 2.函数的定义域 。
高一数学函数经典练习题(含答案详细)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
高中数学函数练习题(完整版)
高中数学函数练习题(完整版).doc1、在A、B、C、D四个函数中,只有函数y=1/(x+1)的值域是(0,+∞),因此答案为A。
2、由题意可得:f(-2)=f(2)=3,即2a+12a+a=3,解得a=-1/2.在闭区间[-2,2]上,f(x)的最小值是f(0)=-a=1/2,因此答案为A。
3、对于函数y=x-2x^2+3,在[0,m]上有最大值3,最小值2,因此其开口向下,且顶点在[0,m]上。
由于开口向下,顶点为最大值,因此m=1,即答案为A。
4、设函数f(x)=log_a(x),则f(a)=1,f(2a)=log_a(2a)=1+log_a2,由题意可得:f(2a)=3f(a),即1+log_a2=3,解得a=1/4,因此答案为B。
5、在区间[0,1]上,f(x)的最大值为a+log_a2,最小值为a+log_a1=a,因此有:a+log_a2+a=2a,解得a=2,因此答案为D。
6、由题意可得:y-2xy/(x-1)^3的最小值为-1/3,1/(x-1)的最大值为正无穷,因此答案为正无穷和-1/3.7、由于XXX(ax+2x+1)的值域为R,因此ax+2x+1>0,解得a>-1/2.又因为XXX(ax+2x+1)=lg(a)+lg(x+2x+1/a)>0,解得a>0.因此a的取值范围为(0,1/2)。
8、将x=y=1代入f(x+y)=f(x)+f(y)+2xy,得f(2)=f(1)+f(1)+2=4.又因为f(1)=2,因此f(0)=f(1)+f(-1)+2(1)(-1)=0.9、将x=0代入f(x+1)=(1/3)(1/(x^2-1)),得f(1)=(1/3)(1/2)=1/6.因此f(x)=f(x+1-1)=f(x+1)-2(x+1-1)=f(x+1)-2x-2,代入f(x+1)=(1/3)(1/(x^2-1)),得f(x)=(1/3)(1/[(x-1)(x+1)])-2x-2,因此函数f(x)的值域为R。
高中函数考试题及答案
高中函数考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个2. 若函数f(x) = x^3 - 2x^2 + x + 2在R上单调递增,则x的取值范围是:A. x > 2B. x < 2C. x ≥ 2D. x ≤ 23. 已知函数f(x) = |x - 1| + |x + 2|,当x = -1时,f(x)的值为:A. 4B. 2C. 1D. 04. 函数y = log_2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)5. 函数y = √(x - 1)的值域是:A. (0, +∞)B. [0, +∞)C. (-∞, 0]D. (-∞, +∞)6. 若函数f(x) = 3x - 2与g(x) = 2x + 1的图象有交点,则交点的个数是:A. 0个B. 1个C. 2个D. 3个7. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 18. 函数f(x) = 1 / (x^2 + 1)的图像关于:A. x轴对称B. y轴对称C. 原点对称D. 都不是9. 若函数f(x) = x^2 + bx + c的顶点坐标为(-1, -2),则b的值为:A. 0B. -1C. 2D. -210. 函数y = x^3 - 6x^2 + 9x + 2的极值点个数是:A. 0个B. 1个C. 2个D. 3个答案:1-5 CADBA 6-10 BCCDB二、填空题(每题2分,共20分)11. 函数y = 3x + 5的斜率是______。
12. 函数f(x) = x^2 - 4x + 4的最小值是______。
13. 函数y = sin(x)的对称轴方程是______。
14. 函数y = 2^x的反函数是______。
(完整版)高中数学三角函数习题及答案
第一章 三角函数一、选择题 1.已知为第三象限角,则2α所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34C .43D .346.已知sin >sin ,那么下列命题成立的是( ). A .若,是第一象限角,则cos >cosB .若,是第二象限角,则tan >tanC .若,是第三象限角,则cos >cosD .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆CC .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos (+)=1,sin =31,则sin 的值是( ). A .31B .-31C .322D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ).A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5,π B .⎪⎭⎫ ⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫⎝⎛23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫ ⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tanx 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin =552,2π≤≤π,则tan = . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cosx |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题: ①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ; ②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限. 3.A解析:原式=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433.4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos =21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin +cos =±2.5.B解析:由 得25cos 2x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0. 若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34. 6.D解析:若 ,是第四象限角,且sin >sin ,如图,利用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. ⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x (第6题`)8.B解析:∵ cos (+)=1,∴ +=2k π,k ∈Z . ∴=2k π-.∴ sin =sin(2k π-)=sin(-)=-sin=-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415. 解析:f (x )=sin 2x +3tanx 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415.12.-2. 解析:由sin =552,2π≤≤πcos =-55,所以tan =-2.13.53.解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos =53,∴ sin ⎪⎭⎫ ⎝⎛α - 2π=cos=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数 y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21.15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cosx |=⎩⎨⎧)<()(x x x x x x cos sin sin cos ≥sin cos即 f (x )等价于min{sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx =4cos ⎪⎭⎫ ⎝⎛+-6π2x =4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π. ③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. ∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π]. 二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. (第15题)(第17题)18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=αcos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z .又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0, ∴ k (cos x -1)≥0, 又 sin 2x ≥0,∴ 当 cos x =1,即x =2k(k ∈Z )时,f (x )=sin 2x +k (cos x -1)有最小值f (x )min =0.。
高中数学函数试题及答案
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
高中数学函数测试题(含答案)
高中数学函数测试题(含答案)高中数学函数测试题一、选择题(共10题,每题4分,共40分)请将正确答案填在括号内。
1. 下列函数中,是奇函数的是()A. y = x^2 + 1B. y = sin(x)C. y = 3^xD. y = tan(x)2. 已知二次函数f(x) = ax^2 + bx + c的顶点为(1, 4),则a + b + c的值为()A. 6B. 4C. 3D. 23. 函数y = 3e^x中,x的取值范围是()A. (-∞, ∞)B. (-∞, 0)C. [0, ∞)D. (0, ∞)4. 已知函数y = f(x)的图像经过点(2, 3),则f(2)的值为()A. 5B. 3C. 2D. 15. 下列函数中,是奇函数的是()A. y = x^3 + xB. y = ln(x)C. y = 1/xD. y = sqrt(x)6. 函数y = log_2(x)的定义域是()A. [0, ∞)B. (-∞, 0)C. (0, ∞)D. (-∞, ∞)7. 经过点(1, 4)且垂直于直线y = 2x的直线方程是()A. y = x + 3B. y = -x + 5C. y + 2x = 6D. y - 2x = 28. 函数y = arctan(x)的值域是()A. (-∞, ∞)B. [-π/2, π/2]C. [0, π/2]D. [0, ∞)9. 函数y = 2^x上的点(0, 1)是该函数的()A. 零点B. 对称轴C. 顶点D. 切点10. 已知函数y = f(x)的图像是抛物线,且过点(1, -2),则f(1)的值为()A. -2B. -1C. 0D. 2二、填空题(共5题,每题4分,共20分)1. 已知函数y = f(x)的图像经过点(1, 3),则f(1)的值为 _______。
2. 函数y = 2^x的对称轴方程为 _______。
3. 函数y = log_a(1/a)的解集为 _______。
高中函数练习题及答案
高中函数练习题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 3x^2 - 2x + 1的图像关于哪条直线对称?A. x = 1/3B. x = 1C. x = 2/3D. x = 02. 若f(x) = x^3 - 2x^2 - 3x + 1,求f(-1)的值。
A. -3B. 3C. 5D. 73. 函数y = 2x + 3与直线y = 5x - 1的交点坐标是?A. (1, 2)B. (2, 5)C. (3, 8)D. (4, 11)4. 函数y = |x - 1|的图像在x轴上的截距为?A. 1B. 0C. 2D. -15. 若f(x) = x^2 + bx + c,且f(0) = 0,f(1) = 1,求b和c的值。
A. b = 1, c = 0B. b = -1, c = 1C. b = 0, c = 0D. b = 1, c = 1二、填空题(每题2分,共10分)6. 若函数f(x) = kx + b的斜率为-1,则k的值为______。
7. 函数y = x^2 + 2x - 3的顶点坐标为(-1, ______)。
8. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1的极小值点为x = 1,则f(1) = ______。
9. 若函数f(x) = √x在区间[1, 4]上是增函数,则f(4) - f(1) =______。
10. 若函数f(x) = sin(x) + cos(x)的最大值为√2,则x = ______。
三、解答题(每题25分,共75分)11. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求导数f'(x),并找出函数的极值点。
12. 已知函数g(x) = 3x^2 + 2x - 5,求其在区间[-2, 1]上的最大值和最小值。
13. 已知函数h(x) = √x + 1/x,求其在区间[1, 9]上是否存在单调区间,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数练习题1、下列函数中,值域是(0,+∞)的函数是 A .151+=-x y B .xy 21-= C .1)21(-=x y D .x y -=1)31( 2、已知32()26f x x x a =-+(a 是常数),在[]2,2-上有最大值3,那么在[]2,2-上的最小值是A .5-B .11- C.29- D .37-3、已知函数322+-=x x y 在区间[0,m]上有最大值3,最小值2,则m 的取值范围是 A 、[ 1,+∞) B 、[0,2] C 、(-∞,2] D 、[1,2]4、若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B. 22 C. 41 D. 215、函数()log (1)[0,1]xa f x a x =++在上的最大值与最小值之和为a,则a 的值为(A )41 (B )21(C )2 (D )46、若122=+y x ,则12--x y 的最小值是__________43y x +的最大值是______________7、已知函数)12lg(2++=x ax y 的值域为R ,则实数a 的取值范围是_____________ 8、定义在R 上的函数()f x 满足()()()2(,),(1)2f x y f x f y xy x y R f +=++∈=,则(0)f = ,(2)f -= 。
9、若211(1)3x f x -⎛⎫+= ⎪⎝⎭,则()f x = ,函数()f x 的值域为 。
10、对任意的x,y 有()()2()()f x y f x y f x f y ++-=⋅,且(0)0f >,则(0)f = ,(1)(1)f f --= 。
11、函数21()()f x x x -=+的值域为 。
12、二次函数(]247,0,3y x x x =-+-∈的值域为 。
13、已知函数1)6g x =+,则()g x 的最小值是 。
14、函数y =的值域是 。
15、函数2y x =+的值域是 。
16、求下列函数的值域(1)11+-=ee xx y (2) xxy 2225.0-=(3)33x x y -= (4)231,(10)1x x y x x +-=+>+ (5) 125x y x -=+ (6) 1(12)25xy x x -=<≤+(7) 222312x x y x x --=+- (8) cos 2sin xy x=+(9)17、已知2214x y +=,求23y x -+的最大值和最小值. 18、设函数()y f x =是定义在(0,)+∞上的减函数,并满足1()()(),() 1.3f xy f x f y f =+=(1)求(1)f 的值;(2)若存在实数m ,使得()2f m =,求m 的值; (3)如果()(2)2f x f x +-<,求x 的取值范围。
19、若()f x 是定义在(0,)+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭。
(1)求(1)f 的值;(2)解不等式:(1)0f x -<;(3)若(2)1f =,解不等式1(3)()2f x f x+-<20、二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =。
(1)求()f x 的解析式;(2)设函数()2g x x m =+,若()()f x g x >在R 上恒成立,求实数m 的取值范围。
1.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 2.已知函数定义域是,则的定义域是( )A . B. C.D.3.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
4.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或5.函数()f x =的值域是 。
6.已知[0,1]x ∈,则函数y =的值域是 .7.若集合{}|32,S y y x x R ==+∈,{}2|1,T y y x x R ==-∈,则ST 是( )A .SB . TC . φD .有限集 8.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。
9.设函数21y ax a =++,当11x -≤≤时,y 的值有正有负,则实数a 的范围 。
10.已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值。
11.12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域。
12.已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++则求b a -5的值。
13.当]1,0[∈x 时,求函数223)62()(a x a x x f +-+=的最小值。
1.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A . 1 B . 2 C . 3 D . 45设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数。
3.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞4.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) 1y x =+和y =表示相等函数。
其中正确命题的个数是( )A .0B .1C .2D .35.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = .6.若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 7.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈8.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或9.若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 。
10.函数4()([3,6])2f x x x =∈-的值域为____________。
函数的奇偶性和周期性 一、选择题1.下列函数中,不具有奇偶性的函数是( )A .y =e x -e -xB .y =lg 1+x 1-xC .y =cos2xD .y =sin x +cos x 答案 D2.(2011·山东临沂)设f (x )是R 上的任意函数,则下列叙述正确的是( ) A .f (x )f (-x )是奇函数 B .f (x )|f (-x )|是奇函数 C .f (x )-f (-x )是偶函数 D .f (x )+f (-x )是偶函数 答案 D3.已知f (x )为奇函数,当x >0,f (x )=x (1+x ),那么x <0,f (x )等于( ) A .-x (1-x ) B .x (1-x ) C .-x (1+x ) D .x (1+x ) 答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ).4.若f (x )=ax 2+bx +c (a ≠0)是偶函数,则g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数C .非奇非偶函数D .既奇又偶函数 答案 A解析 由f (x )是偶函数知b =0,∴g (x )=ax 3+cx 是奇函数.5.(2010·山东卷)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3 答案 D解析 令x ≤0,则-x ≥0,所以f (-x )=2-x-2x +b ,又因为f (x )在R 上是奇函数,所以f (-x )=-f (x )且f (0)=0,即b =-1,f (x )=-2-x+2x +1,所以f (-1)=-2-2+1=-3,故选D.6.(2011·北京海淀区)定义在R 上的函数f (x )为奇函数,且f (x +5)=f (x ),若f (2)>1,f (3)=a ,则( )A .a <-3B .a >3C .a <-1D .a >1 答案 C解析 ∵f (x +5)=f (x ),∴f (3)=f (-2+5)=f (-2),又∵f (x )为奇函数,∴f (-2)=-f (2),又f (2)>1,∴a <-1,选择C.7.(2010·新课标全国卷)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 答案 B解析 当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8, 又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧x -23-8,x ≥0-x -23-8,x <0,⎩⎪⎨⎪⎧x ≥0x -23-8>0或⎩⎪⎨⎪⎧x <0-x -23-8>0,解得x >4或x <0.故选B. 二、填空题8.设函数f (x )=(x +1)(x +a )为偶函数,则a =________. 答案 -1解析 f (x )=x 2+(a +1)x +a .∵f (x )为偶函数,∴a +1=0,∴a =-1.9.设f (x )=ax 5+bx 3+cx +7(其中a ,b ,c 为常数,x ∈R),若f (-2011)=-17,则f (2011)=________.答案 31解析 f (2011)=a ·20115+b ·20113+c ·2011+7 f (-2011)=a (-2011)5+b (-2011)3+c (-2011)+7 ∴f (2011)+f (-2011)=14,∴f (2011)=14+17=31.10.函数f (x )=x 3+sin x +1的图象关于________点对称. 答案(0,1)解析 f (x )的图象是由y =x 3+sin x 的图象向上平移一个单位得到的.11.已知f (x )是定义在R 上的偶函数,且对任意的x ∈R ,总有f (x +2)=-f (x )成立,则f (19)=________.答案 0解析 依题意得f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的函数,因此有f (19)=f (4×5-1)=f (-1)=f (1),且f (-1+2)=-f (-1),即f (1)=-f (1),f (1)=0,因此f (19)=0.12.定义在(-∞,+∞)上的函数y =f (x )在(-∞,2)上是增函数,且函数y =f (x +2)为偶函数,则f (-1),f (4),f (512)的大小关系是__________.答案 f (512)<f (-1)<f (4)解析 ∵y =f (x +2)为偶函数 ∴y =f (x )关于x =2对称又y =f (x )在(-∞,2)上为增函数∴y =f (x )在(2,+∞)上为减函数,而f (-1)=f (5)∴f (512)<f (-1)<f (4).13.(2011·山东潍坊)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上是减函数; ⑤f (2)=f (0),其中正确的序号是________. 答案 ①②⑤解析 由f (x +1)=-f (x )得 f (x +2)=-f (x +1)=f (x ),∴f (x )是周期为2的函数,①正确, f (x )关于直线x =1对称,②正确,f (x )为偶函数,在[-1,0]上是增函数, ∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③、④错误,⑤正确.综上,①②⑤正确. 三、解答题14.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x )、g (x )的解析式.答案 f (x )=x 2-2,g (x )=x解析 ∵f (x )+g (x )=x 2+x -2.①∴f (-x )+g (-x )=(-x )2+(-x )-2. 又∵f (x )为偶函数,g (x )为奇函数,∴f (x )-g (x )=x 2-x -2.②由①②解得f (x )=x 2-2,g (x )=x .15.已知f (x )是定义在R 上的奇函数,且函数f (x )在[0,1)上单调递减,并满足f (2-x )=f (x ),若方程f (x )=-1在[0,1)上有实数根,求该方程在区间[-1,3]上的所有实根之和.答案 2解析 由f (2-x )=f (x )可知函数f (x )的图象关于直线x =1对称,又因为函数f (x )是奇函数,则f (x )在(-1,1)上单调递减,根据函数f (x )的单调性,方程f (x )=-1在(-1,1)上有唯一的实根,根据函数f (x )的对称性,方程f (x )=-1在(1,3)上有唯一的实根,这两个实根关于直线x =1对称,故两根之和等于2.16.已知定义域为R 的函数f (x )=-2x+b2x +1+a是奇函数.(Ⅰ)求a ,b 的值;(Ⅱ)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案 (1)a =2,b =1 (2)k <-13解析 (Ⅰ)因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1∴f (x )=1-2xa +2x +1又由f (1)=-f (-1)知1-2a +4=-1-12a +1⇒a =2.(Ⅱ)解法一 由(Ⅰ)知f (x )=1-2x2+2x +1,易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得: t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13解法二 由(Ⅰ)知f (x )=1-2x2+2x +1.又由题设条件得:1-2t 2-2t 2+2t 2-2t +1+1-22t 2-k2+22t 2-k +1<0, 即:(22t 2-k +1+2)(1-2t 2-2t )+(2t 2-2t +1+2)(1-22t 2-k )<0,整理得23t 2-2t -k >1,因底数2>1,故:3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0⇒k <-131.(2010·上海春季高考)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________. 答案 02.(2010·江苏卷)设函数f (x )=x (e x +ae -x)(x ∈R)是偶函数,则实数a 的值为________.答案 -1解析 令g (x )=x ,h (x )=e x +ae -x,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +ae -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.3.(2011·《高考调研》原创题)已知f (x )是定义在R 上的奇函数,且{x |f (x )>0}={x |1<x <3},则f (π)+f (-2)与0的大小关系是( )A .f (π)+f (-2)>0B .f (π)+f (-2)=0C .f (π)+f (-2)<0D .不确定 答案 C解析 由已知得f (π)<0,f (-2)=-f (2)<0,因此f (π)+f (-2)<0.4.如果奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么f (x )在区间[-7,-3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5 答案 B解析 先考查函数f (x )在[-7,-3]上的最值,由已知,当3≤x ≤7时,f (x )≥5,则当-7≤x ≤-3时,f (-x )=-f (x )≤-5即f (x )在[-7,-3]上最大值为-5.再考查函数f (x )在[-7,-3]上的单调性,设-7≤x 1<x 2≤-3.则3≤-x 2<-x 1≤7,由已知-f (x 2)=f (-x 2)<f (-x 1)=-f (x 1),从而f (x 2)>f (x 1),即f (x )在[-7,-3]上是单调递增的.5.(08·全国卷Ⅰ)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -xx<0的解集为________.答案 (-1,0)∪(0,1)解析 由f (x )为奇函数,则不等式化为xf (x )<0法一:(图象法)由,可得-1<x <0或0<x <1时,x ·f (x )<0.法二:(特值法)取f (x )=x -1x,则x 2-1<0且x ≠0,解得-1<x <1,且x ≠0.6.定义在R 上的函数f (x )满足f (x +1)=-f (x ),且f (x )=⎩⎪⎨⎪⎧1-1<x ≤0-1 0<x ≤1,则f (3)=________.解析 ∵f (x +1)=-f (x ),则f (x )=-f (x +1)=-[-f (x +2)]=f (x +2),则f (x )的周期为2,f (3)=f (1)=-1.7.(2011·深圳)设f (x )=1+x1-x,又记f 1(x )=f (x ),f k +1(x )=f (f k (x )),k =1,2,…,则f 2011(x )=( )A .-1xB .xC.x -1x +1 D.1+x1-x答案 C解析 由题得f 2(x )=f (1+x 1-x )=-1x ,f 3(x )=f (-1x )=x -1x +1,f 4(x )=f (x -1x +1)=x ,f 5(x )=1+x 1-x =f 1(x ),其周期为4,所以f 2011(x )=f 3(x )=x -1x +1.1.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0.(1)证明函数f (x )为周期函数;(2)试求方程f (x )=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.解析 (1)由⎩⎪⎨⎪⎧f2-x =f 2+x f 7-x =f 7+x⇒⎩⎪⎨⎪⎧f x =f 4-xfx =f 14-x ⇒f (4-x )=f (14-x ) ⇒f (x )=f (x +10)∴f (x )为周期函数,T =10.(2)∵f (3)=f (1)=0, f (11)=f (13)=f (-7)=f (-9)=0 故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2005]上有402个解, 在[-2005,0]上有400个解,所以函数y =f (x )在[-2005,2005]上有802个解.[基础训练A 组] 一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷343()f x x x =-3()1F x x =-⑸21)52()(-=x x f ,52)(2-=x x f 。