第二章 平面力系和平面力偶系
第二章平面汇交力系及平面力偶系
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至
第
终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基
础
第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα
第
一
Fy=a’ b’= - Fcosα
章
静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)
平面力系和平面力偶系课件
弹性力学问题的能量方程
应变能
物体在外力作用下产生变形时,内部 储存的能量称为应变能,单位是焦耳 (J)。
应力
胡克定律
在弹性范围内,应力与应变之间成正 比,即σ=Eε。
物体内部单位截面积上所受的力称为 应力,单位是帕斯卡(Pa)。
典型例题解析
06
固定端约束反力的计算例题
总结词
该例题主要展示了如何利用固定端约束反力的计算方法。
力的性质
力具有物质性、相互性和矢量性。力不能离开物体单独存在, 有施力物体和受力物体;两个物体之间的作用总是相互的, 存在作用力和反作用力;力用矢量表示,可以计量大小和方向。
平面力系的分类和性质
平面力系的分类
平面力系可以分为平面汇交力系、平面平行力系和任意平面力系。
平面力系的性质
平面力系中,力的合成和平衡具有特定的性质。例如,平面汇交力系合成后合力为零,即力系平衡;平面平行力 系合成后合力与原力系等效,即力系平衡;对于任意平面力系,合成后如存在合力,则合力与原力系等效,即力 系平衡。
详细描述
杠杆是一种简单机械,它可以通过放大或缩 小力臂来改变力的作用效果。在杠杆的平衡 条件中,我们需要考虑物体的质量、重力以 及支点的位置。通过计算,我们可以得到支 点的反作用力以及杠杆的平衡条件。进一步
求解可以得到物体的平衡状态。
弹性力学问题的能量方程例题
要点一
总结词
要点二
详细描述
该例题介绍了弹性力学中能量方程的建立与应用。
课程目的和内容
内容 平面力系的定义、性质和计算方法
平面力偶系的定义、性质和计算方法
课程目的和内容
平面力系和力偶系的合成与平衡 典型例题的讲解和练习
平面力系的基本概念
力学基础第2章 平面汇交力系与平面力偶系
解方程得杆AB和BC所受的力:
FBA 0.366G 7.321 kN
x
FAB
FBC
B
F2
60
30
F1
FBC 1.366G 27.32 kN
§2.2 平面汇交力系的合成与平衡的解析法
例 题 2-6
梯长AB =l ,重G =100 N,重心假设在中点C,梯子的上 端A靠在光滑的端上,下端B放置在与水平面成40°角的光滑 斜坡上,求梯子在自身重力作用下平衡时,两端的约束力以 及梯子和水平面的夹角θ。
a
§2.2 平面汇交力系的合成与平衡的解析法
例 题 2-4
y
FBC
30°
解:
1.取滑轮 B 轴销作为研究对象。
x
B
30°
2.画出受力图。
FAB F G
3.列出平衡方程:
F F
联立求解得
x y
0, FBC cos30 FAB F sin30 0 0,
FBC cos60 G Fcos30 0
水平梁AB中点C作用着力F,其大小等于2 kN, 方向与梁的轴线成60º 角,支承情况如图a 所示,试求固 定铰链支座A和活动铰链支座B的约束力。梁的自重不 计。
A
B C
a a
30º
(a)
§2.1 平面汇交力系的合成与平衡的几何法
例 题 2-2
解:
1.取梁AB作为研究对象。
60º
2.画出受力图。
30º
B C A
lB lA
PA
R
PB
§2.3 平面力偶系
4.两个反向平行力的合成 两个大小不等的反向平行力可以合成为一个合 力,其大小等于两个分力的大小差,且与较大 的分力同向,合力的作用线在较大的分力的作 用线的外侧,且到分力作用线的距离与分力的 大小成反比。 R PB PA PB R PB PA
第2章 平面力系-平面力对点之矩及平面力偶
即
MO(F) F d
O点为力矩的中心,称为矩心; d 为O点到力F 作用线的垂直
距离,称为力臂。 力矩的正负号:力使物体绕逆时针方向转动时为正,反
之为负。
应注意: 在平面问题中,力对点之矩只取决于力矩的大小及其旋 转方向(力矩的正负),因此它是一个代数量。
力矩的单位: 国际制 N·m,kN·m 工程制 公斤力米(kgf·m)
偶矩的代数和等于零,即 ∑Mi=0
利用这个平衡条件,可以求解一个未知量。
例题
两力偶作用在板上,尺寸如图,已知 F1 = F2=1.5 kN , F3
=F4 = 1 kN, 求作用在板上的合力偶矩。
F 1 180mm
解:由式
F2
M = M1 + M2
F4
则
M =-F1 ·0.18 –F3 ·0.08
FBA
B
A
FAB
M1
FO
O
M2 D
FD
M1 - FABrcosq 0 - M 2 2FBArcosq 0
因为 FAB FBA
所以求得 M 2 2M1
思考题1 一力偶(F1,F1′)作用在Oxy平面内,另一力偶(F2 ,F2′)作用在
Oyz平面内,它们的力偶矩大小相等(如图)。试问此两力偶是否 等效,为什么?
F1
d1
F2 d2
F1′
=
F2′
M1 F1 d1 , M 2 -F2 d2
F22 d F11
F11′
=
F22′
d
FR
FR′
M1 F11 d , M 2 -F22 d
FR F11 - F22 , FR F11 - F22
第二章1平面汇交力系与平面力偶系
2.欲将碾子拉过障碍物,水平拉力 F 至少多大? F 3.力 F 沿什么方向拉动碾子最省力,及此时力 多大?
解:取碾子画受力图. 用几何法,按比例画封闭力四边形
R h θ arccos 30 R
F B sin θ F F A F B cosθ P
F 1 1 .4 k N A
由合力投影定理可得:
F F 2 0 0 0 4 3 3 0 0 N 6 3 3 0 N x x
F F 0 2500 3000 N 550 N y y
则合力的大小为:
2 x 2 y 2 2
FF F 6 3 3 0 5 5 0 0 N 8 3 8 6 N
F , X 0 F , Y 0 8 0 4 5 4 R R 0 D A 4 5 PR A
各力的汇交点
(4) 解得
R A 5 P 22 . 4 kN 2
R R D A
1 10 kN 5
力的值为负值,表示假设的指向与实际指向相反.
例4. 简易压榨机如图所示。已知P试求当连杆AB、AC与铅垂线成角时,托板给被压物 体的力。
O
tg
F Ry F Rx
F F
RY
RX
平面汇交力系平衡的必要和充分条 y 件是该力系的合力为零: F R 0
F F 0 Rx X
O
F F 0 Ry X
例2.如图所示吊环受到三条钢丝绳的拉力作用。已知F1=2000N, F2=5000N,F3=3000N。试求合力。
FR F23 F1 F12 F2
F4
FR
F4
F2 F4
FR
F3
平面汇交力系与平面力偶系_OK
5、力矩为零时表示力作用线通过矩心或力为零。
6、平面上一个力和一个力偶可以简化成一个 力。
7、如果某平面力系由多个力偶和一个力组成, 该力系一定不是平衡力系。
78
填空题:
1、同平面的两个力偶,只要 ________相同, 对刚体的外效应相同。
2、力偶________与一个力等效,也_______ 被一个力平衡。
75
图示结构中,构件AB为1/4圆弧形,其半径为r,
构件BDC为直角折杆,BD垂直于CD,其上作用
一力偶,该力偶的力偶矩数值为M,已知尺寸L
=2r。试:1. 画出两构件的受力图;2. 求铰A,C
的约束力。
B
n
Mi 0
i 1
FB FB B E
r
M
FA
A
C
M
D L
C D
M FBCE 应用合力矩定理:
第二章 平面汇交力系与平面力偶系
平面汇交力系是指作用于物体上的各力 的作用线位于同一平面内且汇交于一点 的力系。
30
2.1平面汇交力系
合成与平衡的几何法
F1
FR
(一) 两个共点力的合成
F2
力三角形的矢序规则:分力矢 F1 F2 沿三
角形某一边界的某一方向首尾相接,而合
力FR则沿相反方向,从起点指向最后一个 分力矢的末端。
以任意改变力偶中力与力偶的数值,而不改变它
对刚体的转动效应。
61
力偶性质
F
F´
F
F´
只要保持力偶矩不变,力偶可在作用面 内任意移动,其对刚体的作用效果不变 62
关于力偶性质的推论
F
F
F´
F´
第二章:平面汇交力系与平面力偶系
第二章平面汇交力系与平面力偶系一、要求1、掌握平面汇交力系合成(分解)的几何法。
能应用平衡的几何条件求解平面汇交力系的平衡问题。
2、能正确地将力沿坐标轴分解和求力在坐标轴上的投影。
对合力投影定理应有清晰的理解。
3、能熟练地运用平衡方程求解平面汇交力系的平衡问题。
4、对于力对点的矩应有清晰的理解,并能熟练地计算。
5、深入理解力偶和力偶矩的概念。
明确平面力偶的性质和平面力偶的等效条件。
6、掌握平面力偶系的合成方法,能应用平衡条件求解力偶系的平衡问题。
二、重点、难点1、 力在坐标轴上的投影,合力投影定理,平面汇交力系的平衡条件及求解平衡问题的解析法。
2、 力对点之矩的计算,力偶矩的概念,平面力偶性质和力偶等效条件。
三、学习指导平面汇交力系合成的结果是一个合力,合力作用线通过力系的汇交点,合力的大小和方向等于力系的矢量和,即∑==+⋅⋅⋅⋅⋅⋅++=ni i n F F F F R 121或简化为∑=F R上式是平面矢量方程,只可以求解两个未知数。
每一个力都有大小和方向两个要素(因为力的汇交点是已知的),因此,方程中只能有两个要素是未知的。
矢量方程的解法有:几何法和解析法。
只有力沿直角坐标轴分解的平行四边形才是矩形。
力在轴上投影的大小等于分力的大小,投影的正负表示分力沿坐标轴的方向。
平面汇交力系平衡的必要和充分条件是力系的合力为零。
即∑R=F这个平面的矢量方程可解两个未知数,解法有几何法和解析法。
(1)平衡的几何条件:平面汇交力系的力多边形封闭。
(2)平衡的解析条件:平面汇交力系的各分力在两个坐标轴上投影的代数和分别等于零即:∑=0YX;∑=0对于平衡方程,和平面汇交力系合成与分解的解析法一样,一般也选直角坐标系。
但在特殊情况下,有时选两个相交的相互不垂直的坐标轴,可使问题的求解简化。
这是因为平衡时合力恒等于零,合力在任一坐标轴的投影也恒等于零,所以,不一定局限在直角坐标系。
合力投影定理与合力矩定理是结构静力计算经常要用到的两个定理。
理论力学第二章平面汇交力系与平面力偶系
合力作用点:为该力系的汇交点
2-2 平面汇交力系合成与平衡的解析法
(2)平面汇交力系平衡的充要条件: 各力在两个坐标轴上投影的代数和分别等于零。 ——平面汇交力系的平衡方程
X0,
Y
i 1
n
i
0
只可求解两个未知量
[ 例1 ] 系统如图,不计杆、轮自重,忽略滑轮大小, 已知: P=20kN; 求:系统平衡时,杆AB、BC受力。
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图。 用解析法,建图示坐标系
Fix 0
FBA F1 cos 60 F2 cos 30 0
Fiy 0
FBC F1 cos 30 F2 cos 60 0
F1 F2 P
解得: FBC
27.32kN
②应用合力矩定理
mO ( F ) Fx l F y l ctg
m o (Q ) Q l
[例P28 2-4,习题P38 2-10]
[例2]水平梁AB受按三角型分布的载荷作用,如图所示。 载荷的最大值为q,梁长l ,试求合力作用线的位置。
解:在距A端x 的微段dx上, 作用力的大小为q’dx,其中 q’ 为该处的载荷强度。由图可知 ,q’=xq/l。,因此分布载荷合 力的大小为: l
2-2 平面汇交力系合成与平衡的解析法
二、平面汇交力系合成的解析法:
各分力在x轴和在y轴投影的代数 和 等于合力在对应轴上的投影。
FR x X 1 X 2 X 4
X
FR y Y1 Y2 Y3 Y4
Y
i
i
工程力学ppt 2平面汇交力系和平面力偶系
i 1
(2-1)
a
b 图2.1
c
● 2.1.2 平面汇交力系合成的几何法
由力多边形法则知,平面汇交力系的合成结果为一合力,显然, 平面汇交力系平衡的必要和充分条件是该力系的合力等于零。如 果用矢量形式表示,即
FR
F
i 1
n
i
0
(2-2)
由力的合成的几何法可知,平面汇交力系的合力是由力多边形 的封闭边来表示的。在平衡的情形下合力为零,也就是力多边形 中最后一力终点与第一个力的起点重合,此时的力多边形称为封 闭的力多边形。于是得到如下结论:平面汇交力系平衡的必要和 充分条件是力多边形自行封闭。这就是平面汇交力系平衡的几何 条件。 运用平面汇交力系平衡的几何条件求解问题时,需要首先按比 例画出封闭的力多边形,然后用尺和量角器在图上量得所要求的 未知量;也可根据图形的几何关系,用三角公式计算出所要求的 未知量,这种解题方法称为几何法。
FA 22.4kN,FC 28.3kN
根据作用力和反作用力的关系,作用于杆DC在端C的力FC与 FC 的大小相等,方向相反,由此可知杆DC是受压杆,如图2.3(b)所 示。
应该指出,封闭的力的多边形也可以根据三角几何关系,作成 如图2.3(d)所示的力三角形,同样可求得力 FA 和 FC ,且结果相 同。 通过以上例题,可知用几何法求解平衡问题的主要步骤如下: (1) 选取研究对象。根据题意,分析已知量与待求量,选取恰 当的平衡物体作为研究对象,并画出分离体简图。 (2) 分析研究对象的受力情况,正确地画出其相应的受力图。 在研究对象上,画出其所受的全部外力。若某个约束反力的作用 线不能根据约束特性直接确定,而物体又只受三个力作用时,则 可根据三力平衡汇交的条件来确定未知力的作用线方位。 (3) 作封闭的力多边形图,求解未知量。可以应用比例尺直接 量出待求的未知量,也可以根据几何三角关系计算出来。
静力学第二章平面汇交力系与力偶系
请思考:力矩和力偶矩的异同?
力偶矩:度量力偶对物体转动效应 的量。记作:M(F, F′)或M
A
F C d F′
M Fd
力偶矩正负号规定:
逆时针转动为正,反之为负
B
力偶矩正负号意义:表示力偶转向
请思考:平面(内)力偶等效的条件?
力偶矩大小相等、转动方向相同
平面力偶的性质
性质1 : 力偶无合力,即FR=0
第二章 平面汇交力系与平面力偶系
本章重点:
1、平面汇交力系(几何法、解析法)
2、力偶的概念
3、平面力偶系
§2-1 平面汇交力系
汇交力系:所有力的作用线
汇交于一点的力系。
共点力系:所有力的作用点为同一点的力系。
平面汇交力系合成—几何法
力多边形
平面汇交力系平衡—几何法
平衡几何条件:汇交力系的力多边形自行封闭。
平面力偶系的简化结果: Mo
平面力偶系的平衡条件:Mo = 0
平衡方程:
M
0
例5 图中M, r 均为已知, 且 l=2r, 各杆自重不计。
求:C 处的约束力。
解:取 BDC 为研究对象
作出受力图 由力偶理论,知 FB = FC M 0
2 2 FB r FB 2r M 0 2 2 注意:计算(FB,FC )的力偶矩
性质2 : 力偶作用效应只与力偶矩有关 性质3 : 力偶只能与力偶矩相等的另一力偶等效 性质4 : 力偶对其作用面上任一点的矩等于力偶矩
F
F´
F
F´
F
F´ F/2
(d)
F´/ 2
只要保持力偶矩不变,力偶必等效
F
F´
M
M
M
理论力学第二章平面汇交力系与平面力偶系思维导图
①掌握力偶、力偶矩的基本概念及其力偶的基本性质。
力沿坐标轴的分力是一矢量,其合力和分力之间应满足力的平行四边形规则。
一般情况下,力在坐标轴上投
影的大小不等于力沿坐标轴分解的分力的大小。
只有当α(由平行四边形面积表达式证出)平面力对点之矩简称力矩,是一代数量,其绝对值等于力的大小与力臂的乘
积,正负号表示力矩的转向,一般以逆时针转向为正,反之为负
平面力对点之矩还可应用合力矩定理求解。
特别是在力臂计算不方便时,若将其分解
为两个正交分力并用合力矩定理计算则较方便,注意表达中的负号。
由等值、反向、不共线的两个平行力组成的力系效应用力偶矩来度量。
力偶没有合力,力偶只能用力偶来平衡力偶力偶矩
在平面问题中,力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积
解析法根据合力投影定理求出合力在
合力的大小和方向余弦
平衡的几何条件:力多边形自行封闭
平衡的解析条件:力系中各分力在两个坐标轴上的投影的代数和分
别等于零
平面力偶系可合成为一个力偶,称为合力偶。
合力偶矩等于各分力偶矩的代数和
(注意区分转向,即正负号)
平面力偶系平衡的充分和必要条件是:所有各分力偶矩的代数和等于零。
化工原理第二章平面力系
如图所示,平面上作用一力 F ,在同平面内任取一点O, 点O称为矩心,点O到力的作用线的垂直距离h称为力臂。
力对点的矩:
力对点之矩是一个代数量, 它的绝对值恒等于力的大小与力臂的乘积, 它的正负可按下法确定:力使物体绕矩心逆时针转向转动 时为正,反之为负。 力 F 对于点O的矩
由右图容易看出,力F对点O的矩的大 小也可用三角形OAB面积的两倍表示, 即
(2)画受力图。
滑轮受到钢丝绳的拉力
=
=P;
由于滑轮的大小可忽略不计,故这些力可看作是汇交力系。
(3)列平衡方程 为使每个未知力只在一个轴上有投影, 在另一轴上的投影为零,坐标轴应尽量 取在与未知力作用线相垂直的方向。这 样在一个平衡方程中只有一个未知数, 不必解联立方程,故选取坐标轴如图所 示。 (a)
和
当Ox、Oy两轴不相垂直时,力沿两轴的分力 值上也不等于力在两轴上的投影X、Y。
、
在数
2.平面汇交力系合成的解析法
设由n个力组成的平面汇交力系作用 于一个刚体上。以汇交点O作为坐 标原点,建立直角坐标系Oxy 。
此汇交力系的合力
合矢量投影定理:合矢量在某一轴上的投影等于各分矢量在同 一轴上投影的代数和。 由此可得
例2—3 如图所示,重物P=20kN,用钢丝绳挂在支架的滑轮 B上,钢丝绳的另一端缠绕在铰车D上。杆AB与BC铰接,并 以铰链A、C与墙连接。如两杆和滑轮的自重不计,并忽略摩 擦和滑轮的大小,试求平衡时杆AB和BC所受的力。
解:(1)取滑轮B为研究对象。 AB、BC两杆都是二力杆,假 设杆AB受拉力、杆BC受压力;
平面汇交力系可简化为一合力.其合力的大小与方向等于各分 力的矢量和(几何和),合力的作用线通过汇交点。设平面汇交 力系包含n个力,以 表示它们的合力矢,则有
第二章 平面力系
第二章平面力系第1节平面汇交力系合成与平衡的几何法若作用在物体上的力,其作用线均分布在同一平面内,则该力系称为平面力系。
若作用在同一平面内的各力作用线均汇交于一点,则该力系称为平面汇交力系。
一、合成的几何法应用力多边形法则,合力矢即是力多边形的封闭边,合力作用线通过力系的汇交点。
如图2-1-1-1所示。
图2-1-1-1若有n个力,则合力矢可以表示为F R = F 1 + F 2 +⋯+ F n = ∑ i=1 n F i二、平衡的几何法平面汇交力系平衡的充要条件是:力多边形自行封闭。
如图2-1-1-2所示。
若矢量表示即为F R =0图2-1-1-2第2节平面汇交力系合成与平衡的解析法一、力在坐标轴上的投影力在坐标轴上的投影等于力的模乘以力与投影轴正向间夹角的余弦,如图2-2-1-1所示,它是一标量,即F x =Fcosθ; F y =Fcosβ力沿坐标轴的分力是一矢量,其合力与分力之间应满足力的平行四边形法则。
如图2-2-1-2所示。
当坐标轴为直角坐标轴时,力沿坐标轴分解的分力可以表示为F x = F x i; F y = F y i合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和,即F x = ∑ i=1 n F xi ; F y = ∑ i=1 n F yi当投影轴x与y垂直时,其合力的大小与方向为F R = F x 2 + F y 2 , cos( F R ,i)= F x F R ; cos( F R ,j)= F y F R二、合成的解析法当为直角坐标轴时,可按以下方法来合成F R = F x 2 + F y 2 = ( ∑ F xi ) 2 + ( ∑ F yi ) 2cos( F R ,i)= F x F R = ∑ F xi F R ; cos( F R ,j)= F y F R = ∑ F yi F R三、平衡的解析法力系中各力在两个坐标轴上投影的代数和分别等于零,即∑ F x =0; ∑ F y =0上式称为平面汇交力系的平衡方程。
第二章 平面汇交力系与平面力偶系
1
引 言
力系 平面力系
空间力系
平面力系 ①平面汇交力系 ②平面平行力系 ③平面一般力系/平面任意力系
平面汇交力系:各力的作用线都在同一平面内且 汇交于一点的力系。 平面平行力系: 各力的作用线都在同一平面内且相互平行的力系。 平面力偶系是其中的一种特殊情况。 平面一般力系:各力的作用线都在同一平面内但既不 汇交于一点 也 不相互平行的力系。
2
§2-1 平面汇交力系合成与平衡的几何法
一、合成的几何法 1.两个力的合成
力的平行四边形法
力的三角形法
3
2. 多个力的合成 F1+F2 =R12; F1+F2 +F3 =R12 +F3 =R123;
F1
F2 F1 o F4 R12 R R123
F1+F2 +F3 +F4 =R123 +F4 =R
即
n
mi 0
i 1
26
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径
的孔,每个钻头的力偶矩为
m 1 m 2 m 3 m 4 15 N m
求工件的总切削力偶矩和A 、B端水平反力? 解: 各力偶的合力偶距为
M m1 m 2 m 3 m 4 4 ( 15 ) 60 N m
m 2 F2 d 2
合力矩
M R A d ( P1 P2' ) d P1 d P2' d m 1 m 2
25
结论:
M m1 m 2 m n m i
i 1
n
平面力偶系合成结果还是一个力偶,其力偶矩为各力偶矩 的代数和。 平面力偶系平衡的充要条件是:所有各力偶矩的代数和 等于零。
第二章 平面基本力系
平衡方程
Fx 0 Fy 0
第一节 平面汇交力系
例2-1 圆筒形容器重量为G,置于托轮A、B
上,如图所示,试求托轮对容器的约束反力。
第一节 平面汇交力系
解:取容器为研究对象,画受力图 容器自重G
托轮对容器是光 滑面约束,其约束 反力为FNA和FNB
FNA
FNB G
第一节 平面汇交力系
B F
a C
Fx
O
Fx
x
Fx=±Fcosa
Fy=±Fsina
y
b1
C
Fy
a1 B
Fx
A
F a
Fy
O
Fx
x
F Fx2 Fy2
tana Fy / Fx
第一节 平面汇交力系
2.合力投影定理
ad=ab+bc-cd 即 Fx=F1x+F2x+F3x Fy=F1y+F2y+F3y
第一节 平面汇交力系
c) 只要保持力偶矩的大小和力偶的转向不变,可 以同时改变力偶中力的大小和力偶臂的长短, 而不改变力偶对刚体的作用。
d) 力偶对其作用面内任一点之矩恒为常数,且等 于力偶矩,与矩心的位置无关。
第三节 平面力偶系
二. 平面力偶系的合成和平衡条件
1.平面力偶系的合成 平面力偶系:作用在物体上同一平面内的若干力偶的总称。
M o (Fn ) Fn h Fn r cosa
2)合力矩定理 将力Fn分解为切向力Ft和法(径)向力Fr, 即
Fn Ft Fr
由合力矩定理得:
M o (Fn ) M o (Ft ) M o (Fr ) Ft r 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FRx X1 X 2 X 4 X
FRy Y1 Y2 Y3 Y4 Y
FRx X
FRy Y
第二节
1.几何法
平面汇交力系的合成与平衡
一、平面汇交力系的合成
1)两个共点力的合成
由余弦定理:
FR F1 F2 2F1F2 cos ( 180o )
问题:在应用平面力系二矩式平衡方程时,所选择的矩心A、 B,投影轴x为什么要满足附加条件? 如下图所示,一刚体只受一个力F作用(显然刚体不 平衡,二矩式平衡方程不能成立),若所选的矩心A、B和投 影轴x违背附加条件的要求,则二矩式平衡方程 成立,因此 就出现了错误。所以,在使用二矩式平衡方程时,选择矩心 和投影轴时必须满足附加条件 即:投影轴不能与矩心A、B两点的连线相垂直。
例2-4 如图所示的体系,已知P=150kN,AC=1.6m,BC=0.9m, CD=CE=1.2m ,AD=2m且AB水平,ED铅垂,BD垂直于斜面, 求FB和A支座反力。 解 (1)以体系整体为研究对象。 (2)画出受力图。 (3)选坐标列方程。
X
'
0, X A sin YA cos P sin 0
i 1
n
即平面力偶系合成结果还是一个力偶,其力偶矩为各力偶 矩的代数和。 平面力偶系平衡的充要条件是:所有各力偶矩的代数和等于零。
M
i 1
n
i
0
第四节
一、力线平移定理
力线的平移定理
作用在刚体上某点的力,可以平移至刚体上任意一点, 但同时必须增加一个附加力偶,该力偶的力偶矩等于原 力对该点之矩。
二、简化结果分析与合力矩定理
平面力系总可以简化为一个主矢和一个主矩,可能有以下几种情况:
(1) (2) (3) (4) ' FR 0 , LO 0 ' FR 0 , LO 0 ' FR 0 , LO 0 ' FR 0 , LO 0
称该力系平衡
该力系等效一个合力偶 该力系等效一个合力 仍然可以继续简化为一个合力,方法如下: FR FR d O O F R d
先作力多边形
c
b a d e
再将R 平移 至A点
平面汇交力系的合力等 于各分力的矢量和,合力 的作用线通过各力的汇交 点。
二、平面汇交力系平衡的几何条件 平面汇交力系平衡的充要条件是:
FR F 0
在上面几何法求力系的合力中,合力为 零意味着力多边形自行封闭。所以平面 汇交力系平衡的必要与充分的几何条件 是: 力多边形自行封闭或力系中各力的矢量 和等于零。
第五节
平面任意力系的简化
一、力系向平面内任意一点的简化 平面任意力系的简化主要依据是力线平移定理,简化的 实质是将一个平面任意力系分解为一个平面汇交力系和 一个平面力偶系,然后将这两个力系进行合成 。
主矢
主矩
FR ' F1 F2 F3 F
M 0 ( F1 ) M 0 ( F2 ) M 0 ( F3 ) M 0 ( F ) L0 M 1 M 2 M 3
RB 8 M P 5 q 4 2 0 得 RB 4.63kN 结果为正值,说明与假设方向一致。
由 得
Y 0
R A 4.37kN
R A RB P q 4 0
结果为正值,说明与假设方向一致。
第七节 静定与静不定问题及物系的平衡
一、静定与静不定问题 静定问题——未知力数目等于对应的独立平衡方程的 数目,因此可以由平衡方程求得所有的未知量,这一 类问题我们称之为静定问题。
/
FE 5.5kN
Y 0
FCy FD FE q 4 0
/
FD 4.5kN
(3) 取AB段为研究对象。
X 0
FAx FBx 0
/
/
FAx FBx 0
/
/
Y 0
M
A
FAy FBy q 4 0
静不定问题——未知力数目多于对应的独立平衡方程的 数目。静不定问题的求解必须借助变形协调方程 。
二、物系的平衡
物系——两个或两个以上的物体通过一定的联结(约束)方
式组合在一起的系统称为物系或物体系。
物系内部物体之间作用的力称为内力;物体外部作用于整个
物系的力称为外力。
一般情况下,研究物系的受力时不考虑内力,但当研究物系
2、合力矩定理
平面汇交力系的合力对平面内任意一点之矩等于力系 中所有各分力对同一点之矩的代数和,即
M O ( F ) M O ( Fi )
i 1 n
3、力矩与合力矩的解析表达式
M O ( F ) M O Fy M O Fx xF sin yF cos xFy yFx
由合力投影定理,将上式写成解析形式,得:
2 2 FR ' F R x F R ' y ( X ) ( Y ) 2 2
Y F Ry 1 tan tan F Rx X
1
设刚体受到力系Fi (i=1, 2,…,n)作用,诸作用点相 对固定点O的矢径依次为ri (i=1, 2,…,n)。力系Fi的 矢量和,称为力系的主矢。记为FR, 主矢仅取决 于力系中各力的大小和方向,而不涉及作用点, 是一个自由矢量。计算力系Fi对固定点O的力矩的 矢量和,称为力系对点O的主矩。记为MO 它不仅 取决于力系中各力的大小、方向和作用点,还取 决于矩心的选择。因此,主矩是定位矢量。
三、平面汇交力系的平衡方程 平面汇交力系平衡的充要条件是:
FR 0 FR FR x FR y 0
2
2
FR x X 0 FR y Y 0
注意:对力的方向判定不准的,一般用解析法。利用 平衡方程通过解析法解题时,力的方向可以任意假设, 如果求出负值,说明力的方向与假设相反。
X 0 m A ( F ) 0 m B ( F ) 0 限制A、B两点的连线AB不能垂直于x轴。
1、二矩式
为什么上述的平 衡方程也能满 足力系平衡的必 要和充分条件?
FR
A
B
x
这是因为,如果力系对点A的主矩等于零,
则这个力系不可能简化为一个力偶;但可能 有两种情形:这个力系或者是简化为经过A 的一个力,或者平衡,如果力系对另一点B 的主矩也同时为零,则这个力系或有一合力 沿A,B两点的连线,或者平衡。 如果再加上X=0,那么力系如有合力, 则此合力必与X轴垂直。附加条件(x轴不 得垂直连线AB) 完全排除了力系简化一个合力的可能性,故 所研究的力系必为平衡力系。
1 FCy 2 q 2 2 0 2
FCy 2kN
Y 0
FBy FCy q 2 0
FBy 2kN
X 0
FBx FCx 0
(2)再取CDE段为研究对象 。
X 0
FCx 0
/
/
FBx 0
M D (F ) 0
FCy 2 FE 2 M 0
YA AC (72) 1.6 FB 160kN 4 BCsin 0.9 5
例2-5 简支梁受力如图所示,已知:均布荷载q=1kN/m,集中力 F=5kN,力偶M=4kN· m,求支座反力。
解: (1)以AB梁为研究对象。 (2)画出受力图。 (3)选坐标列方程0
二、固定端约束
在工程实际中,有很多构件的一部分嵌固 于另一物体上而受到约束作用,这样的约 束称为固定端约束。 这种约束不但限制物体在约 束处沿任意方向的线位移, 也限制物体在约束处的角位 移,即物体在A端没有移动 和转动。
MA FAx A FA y
固定端约束:其约束反力在平面情况下,通常用两正交分 力和一个力偶表示;
B
M
(F ) 0,YA 2.5 P 1.2 0
AC 1.6 4 CD 1.2 3 ; cos AD 2 5 AD 2 5
而sin
解得 : X A 204KN; YA 72KN
(4)再研究 AB杆。
由 M C 0,
FB sinCB Y A AC 0
FR
O
MO
FR
O’
O’
只要满足:
LO FR FR , d FR
合力矩定理——平面任意力系的合力对作用面内任一点 之矩等于力系中各力对于同一点之矩的代数和。
M O ( FR) M O ( F )
第六节 平面任意力系的平衡方程及应用
物体在力系作用下,保持平衡的充分必要条件是:力系 的主矢与对任一点的主矩均为零 ,即:
第一节
力在坐标轴上的投影
研究平面汇交力系的前提是力在坐标轴上的投影
X=Fx=F cos=F sin Y=Fy=F cos = F sin
F X Y Fx Fy
2 2
2
2
X Fx cos F F
Y Fy cos F F
合力投影定理:
合力在任一轴上的投影,等于各分力在同一轴上投影的代数 和。
X 0 , Y 0 , M O
F 0
上式称为平衡方程一矩式,二矩式和三矩式分别为: M A F 0 X 0 或 Y 0 0 M A F M B F 0 M F 0 B M C F 0 条件是:AB两点的连线不能 与 x 轴或 y 轴垂直 条件是:ABC三点不 能共线
二、力偶 1、力偶及其性质 力偶:两力大小相等、作用线不重合的反向平行力叫力偶。 力偶使物体转动效应一般通过力偶 矩来衡量,力偶矩的大小为Fd, 方向由右手法则确定,平面力偶矩 也为代数量,用M(F,F′)来表 示,即 M(F,F′)=±2S△ABC