一特征值与特征向量的概念(0002)
特征值和特征向量

特征值和特征向量特征值和特征向量是线性代数中非常重要的概念,在数学和工程领域中广泛应用。
它们与矩阵与向量的关系密切相关,可以用于解决许多实际问题。
一、特征值与特征向量的定义特征值和特征向量是矩阵的固有性质,它们描述了矩阵在线性变换下的特殊性质。
特征值(eigenvalue)是一个数,表示矩阵变换后的向量与原向量方向相等或反向。
特征向量(eigenvector)则是与特征值对应的向量。
对于一个n维矩阵A和一个n维向量x,如果满足以下等式:Ax = λx其中λ为标量,称为特征值,x称为特征向量。
我们可以将这个等式分解为(A-λI)x=0,其中I为单位矩阵,如果矩阵A存在一个非零向量x使得等式成立,则说明λ为矩阵A的特征值,x为对应的特征向量。
特征值和特征向量总是成对出现,一个特征值可能对应多个特征向量。
二、特征值与特征向量的求解为了求解矩阵的特征值与特征向量,我们可以使用特征值问题的基本公式:det(A-λI) = 0其中,det表示行列式求值。
解这个方程可以得到矩阵A的特征值λ。
然后,我们将每个特征值代入方程(A-λI)x = 0,求解得到对应的特征向量x。
三、特征值与特征向量的意义特征值和特征向量在许多应用中起着重要的作用,它们可以帮助我们理解矩阵的几何性质和变换规律。
在线性代数中,特征值和特征向量有以下几个重要意义:1. 几何意义:特征向量表示了矩阵变换后不改变方向的向量。
特征值表示了特征向量在变换中的缩放因子。
通过分析特征向量和特征值,我们可以了解变换对向量空间的拉伸、压缩、旋转等操作。
2. 矩阵对角化:如果矩阵A有n个线性无关的特征向量,我们可以将这些特征向量组成一个矩阵P,并将其逆矩阵P^{-1}乘以A和AP^{-1},就可以得到一个对角矩阵D,D的对角线上的元素就是矩阵A的特征值。
这个过程称为矩阵的对角化,可以简化矩阵的运算和分析。
3. 矩阵的奇异值分解:特征值和特征向量也与矩阵的奇异值分解密切相关。
特征值与特征向量

特征值与特征向量在数学中,特征值和特征向量是矩阵与线性变换的重要概念。
特征值可以帮助我们理解线性变换对向量运动的影响,而特征向量则描述了这种影响的方向。
本文将介绍特征值与特征向量的定义、性质以及它们在实际问题中的应用。
一、特征值与特征向量的定义对于一个n维向量空间中的线性变换T,如果存在一个非零向量v使得T(v) = λv 成立,其中λ为一个标量,那么我们称λ为T的特征值,v为T对应于特征值λ的特征向量。
特征值和特征向量可以通过求解线性方程组来获得。
设A是一个n×n的矩阵,并且v是一个非零向量,则有Av = λv 成立。
这是一个齐次线性方程组。
解该方程组即可得到特征值和特征向量。
二、特征值与特征向量的性质1. 特征值与特征向量的存在性和唯一性对于一个n×n的矩阵A,它的特征值存在和特征向量存在的条件是相同的。
一个矩阵最多有n个不同的特征值,每个特征值对应的特征向量也可以有多个。
但是特征向量一定是线性相关的。
2. 特征值与特征向量的性质(1)特征值的和等于矩阵的迹如果A是一个n×n的矩阵,λ₁、λ₂、...、λₙ是其特征值,则有λ₁+λ₂+...+λₙ = tr(A),其中tr(A)表示矩阵A的迹。
(2)特征值的乘积等于矩阵的行列式如果A是一个n×n的矩阵,则特征值的乘积等于矩阵的行列式,即λ₁*λ₂*...*λₙ = det(A),其中det(A)表示矩阵A的行列式。
(3)特征值的倒数等于矩阵的逆矩阵的特征值如果A是一个可逆矩阵,λ₁、λ₂、...、λₙ是其特征值,则A的逆矩阵的特征值为λ₁⁻¹、λ₂⁻¹、...、λₙ⁻¹。
三、特征值与特征向量的应用特征值和特征向量在实际问题中有广泛的应用。
下面列举了其中的几个应用领域:1. 特征值分解特征值分解是将一个矩阵分解为特征值和特征向量的形式。
特征值分解在许多领域中都有广泛的应用,如信号处理、图像压缩和降维等。
一特征值与特征向量的概念

一特征值与特征向量的概念
特征值和特征向量是矩阵分析中非常重要的概念,它们是一种表示矩阵变换特性的方法。
特征值是指矩阵能量的极值,而特征向量则是指矩阵的解决方案。
特征值是一个实数,用来描述矩阵变换的行为。
对于方阵,特征值就是矩阵的特征根。
所有特征值都是矩阵A的根。
特征值定义了矩阵变换的属性,可以用来描述矩阵的秩和特征。
特征向量是矩阵分析的另一个重要概念,它是可以满足特征值方程的向量。
如果矩阵A的特征值是λ,那么特征向量就是向量x使A*x=λ*x 成立的向量x。
特征向量提供了实际的解决方案,可以用来求解矩阵上的最小值。
特征值和特征向量也常用于图像处理、信号处理等领域。
图像处理中特征值和特征向量可以用来识别对象,提取特征,从而更好地分析图像。
例如,在图像检索中,可以使用特征值和特征向量来提取有用的特征,然后将图像分解成不同的基础元素,并使用这些基础元素来识别目标对象。
特征值和特征向量还有助于改善信号处理中的信号品质。
特征值和特征向量可以用来分析信号的频率谱,以便更好地识别噪声和其他干扰。
另外,特征值和特征向量也用于凸优化问题的求解。
一特征值与特征向量

设 A Pnn , f ( ) E A 为A的特征多项式, 则
f ( A) An (a a a )An1 (1)n A E 0.
11
22
nn
证: 设 B( )是 E A 的伴随矩阵,则
零矩阵
B( )( E A) E A E f ( )E 又B( )的元素是 E A 的各个代数余子式,它们
a a ... a
11
12
1n
E A
a 21 ...
a ... 22 ...
a 2n
fA( )
a a ... a
n1
n2
nn
称为A的特征多项式.
( fA( )是数域P上的一个n次多项式)
注:① 若矩阵A是线性变换 A 关于V的一组基的矩阵,
而0是 A 的一个特征值,则0是特征多项式 fA( ) 的根,即 f A(0 ) 0.
A
在基
1
,
2
,
3
下的矩阵是
1 2 2
A
2 2
1 2
2 1
,
求 A 特征值与特征向量.
解:A的特征多项式
1 2 2 E A 2 1 2 ( 1)2( 5)
2 2 1
故 A 的特征值为: 1 1(二重), 2 5
把 1 代入齐次方程组 ( E A)X 0, 得
2 2
(1) kA (k P) 必有一个特征值为 k ;
(2) Am (m Z ) 必有一个特征值为 m ;
(3)A可逆时,A1必有一个特征值为 (4)A可逆时,A* 必有一个特征值为
1 ;
A
.
(5) f ( x) P[ x], 则 f ( A)必有一个特征值为 f ( ) .
一特征值与特征向量的概念

一特征值与特征向量的概念特征值与特征向量是矩阵与线性变换理论中的重要概念。
它们有助于我们理解矩阵的性质、矩阵的相似性以及线性变换的本质。
在本文中,我将详细介绍特征值和特征向量的概念、计算方法以及它们的应用。
一、特征值与特征向量的定义对于一个n阶矩阵A,如果存在一个非零向量x使得Ax=kx,其中k为一个数,则k称为矩阵A的一个特征值,x称为对应于特征值k的特征向量。
特征值与特征向量的存在是基于以下原理:矩阵A作为一个线性变换,将一个向量x变换成另一个向量Ax。
如果存在一个向量x使得变换后的向量与原向量方向相同或相反,那么这个向量就是一个特征向量,对应的特征值就是这个变换的比例因子。
特征值与特征向量是配对存在的,一个特征向量可以对应多个特征值,一个特征值也可以对应多个特征向量。
二、特征值与特征向量的计算方法要计算矩阵的特征值与特征向量,可通过以下步骤进行:1. 在方程Ax=kx中,对于给定的特征值k,求解齐次线性方程组(A-kI)x=0,其中I为单位矩阵,x即为对应特征值k的特征向量。
2.将齐次线性方程组(A-kI)x=0化为(A-kI)x的行阶梯形式,并求得零空间的基础解系,即特征向量。
对于n阶矩阵A,通常会有n个特征值,但特征值可以有重复。
若特征值的重复次数大于对应特征向量的个数,则称该特征值为特征值的几何重数。
若特征值的重复次数等于对应特征向量的个数,则称该特征值为特征值的代数重数。
三、特征值与特征向量的应用特征值与特征向量在数学和工程领域具有广泛的应用,以下介绍几个重要的应用场景:1.特征值分解特征值分解是将一个矩阵分解为特征值和特征向量的形式,可以用于简化计算、求逆矩阵以及进行数值计算。
特征值分解在信号处理、机器学习中有着重要的应用,例如主成分分析(PCA)和矩阵奇异值分解(SVD)等。
2.矩阵相似性如果两个矩阵具有相同的特征值和对应的特征向量,它们就是相似矩阵。
特征值和特征向量可以帮助我们判断矩阵之间的相似性,进而分析矩阵的性质。
4.1 特征值与特征向量的概念

(3)当 |A| ≠ 0 时,A与A-1的特征值互为倒数。
(4)当 是A的特征值时, 2,3,… ,k就分别是A2, A3,… ,Ak的特征值。 (5) A与AT的特征值相同。 例5(补充) 设三阶矩阵 A 的特征值为1, 设矩阵
1, 2 ,
B A 5A ,
3 2
试求: (1) B 的特征值;
(2) | B |.
答案: (1) f(A)=B=A3-5A2, f(1)=-4, f(-1)=-6, f(2)= -12 (2) | B |=-288
例6:如ATA=I,证明:则A的特征值的绝对值为1。 证明:设λ 是A的一个特征值,则存在非零向量X有
特征值为重根1的时候对应的齐次方程有两个自由变量, 才 能够得到两个线性无关的特征向量.
因为待定数为x,因此齐次方程就用y1,y2,y3来作变元, 则特征值为1对应的齐次方程组(λ Ι -A)Y=0为
r1( 1) 1 0 1 r1( x ) r2 1 0 1 r3 x 0 0 r1( 1) 0 0 x 对系数矩阵行初等变换 1 0 1 0 0 0
第四章
第一节
矩阵的特征值
矩阵的特征值与特征向量
一. 特征值与特征向量的基本概念 1. 定义: 设A为n阶方阵,如存在一个数λ以及一个非零n维列 向量X,使得 AX=λX (1) 则称λ是A的特征值,向量X称为A的属于λ的特征向量. ∵ λX – AX = λI X – AX = (λI – A)X ∴(1)式等价于方程组 (λI – A)X = 0 | λI – A| = 0 (2) (3) 所以 λ 是特征值, 即方程组(2)有非0解, 即有
特征值与特征向量

特征值与特征向量特征值与特征向量是线性代数中的重要概念,广泛应用于数学、物理学、工程学等领域。
它们在矩阵理论和特征分析中有着重要的地位和作用。
本文将介绍特征值与特征向量的定义、性质以及它们在实际问题中的应用。
一、特征值与特征向量的定义特征值与特征向量是矩阵理论中的两个重要概念。
给定一个n阶方阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个常数,则称λ为矩阵A的特征值,称x为矩阵A对应于特征值λ的特征向量。
特征值与特征向量通常以特定的顺序排列。
特征值和特征向量的求解是一个典型的特征值问题,可通过求解矩阵的特征多项式来获得。
具体方法包括对矩阵进行特征分解、通过特征子空间进行求解等。
二、特征值与特征向量的性质1. 特征值和特征向量的性质特征值与特征向量的性质包括:(1)特征值和特征向量的存在性:对于n阶方阵A,一般情况下存在n个特征值和n个特征向量。
(2)特征值的重数:特征多项式在λ=k处有重根,且k是特征值的充要条件是一阶Jordan块的个数等于λ=k的代数重数。
(3)若矩阵A是对称矩阵,则特征值都是实数。
2. 特征值与特征向量的关系特征值与特征向量之间存在着密切的关系:(1)特征值的求解可以得到特征向量,同时特征向量可以确定对应的特征值。
(2)特征值和特征向量是成对出现的,特征值λ对应的特征向量x组成一个特征对。
(3)特征向量可以通过相似变换保持不变。
三、特征值与特征向量的应用特征值与特征向量在很多领域都有广泛的应用,如物理学、工程学、计算机科学等。
1. 物理学中的应用特征值与特征向量在量子力学、振动理论、电路分析等物理问题中具有重要意义。
在量子力学中,波函数满足薛定谔方程,特征值和特征向量可以描述量子态及其能量。
在振动理论中,物体的振动与其特征值和特征向量相关,可以通过特征值和特征向量来分析和描述振动的特性。
2. 工程学中的应用特征值与特征向量在工程学中的应用广泛。
例如,在结构动力学中,可以通过特征值和特征向量来分析结构体的振动特性,对于工程结构的优化设计起到重要作用。
4-1 特征值与特征向量

kI A k A
k k -
A ③ 若A可逆,则 是 A*的一个特征值; l
A A A A
A A A I
A I= A
A A A
A
A可逆 0. 假设 =0, I - A =0 - A =0, 与A可逆矛盾. 0 A \ 是 A* 的一个特征值; l
一特征值与特征向量的概念一特征值与特征向量的概念定义定义11a为n阶方阵如果存在数和n维非零向量使得则称为a的特征值称为a的对应于特征值的特征向量
一、特征值与特征向量的概念 定义1 A为n阶方阵,如果存在数λ和n维非零 向量α,使得 A
则λ称为A的特征值, 称为A的对应于特征值 λ的特征向量. Ax y 线性变换 A
0, 是方程的非零解, I A 0.
特征值:方程 I A 0 的根. 特征向量: 齐次线性方程组 I A x 0 非零解向量.
定义2 称 I A 为A的特征矩阵. a11 a12 a1n a21 a22 a2 n I A
1 例3 设矩阵 轾 - 1 0 犏 已知矩阵A有特征值1 1, 2 2, A= 犏 x 0 2 犏 犏 2 1 求x,及A的另一个特征值. 4 臌 3 3 x 2 解:1 2 3 1 x 1 1 - 1 0 123 A 2 x 0 = x + 2 23 x 2 4
1 2 n
n
I A 1 2 n
n 1
1 12 n
n
令 0, 0I A = A (-1)n A 1 12 n
特征值与特征向量的概念

4
1
3 λ
1 2 λ = (2 λ) = (2 λ)(λ2 λ 2) 3λ 4 = (λ + 1)(λ 2)2 , 所以 的特征值为 1 = 1, λ2 = λ3 = 2. A λ
上页 下页 返回
( 当λ1 = 1 , 解方程 A+ E)x = 0. 时 由 1 1 1 1 0 1 A+ E = 0 3 0~ 0 1 0 . 4 1 4 0 0 0 1 p 得基础解系 1 = 0, 1 λ k 所以对应于 1 = 1 的全部特征向量为p1(k ≠ 0).
§2 方阵的特征值与特征向量
★特征值与特征向量的概念 ★特征值与特征向量的求法
在工程技术中的一些问题常可归纳为求一 个方阵的特征值及特征向量, 个方阵的特征值及特征向量,本节将介绍相应 的特征值理论. 的特征值理论.
下页 关闭
特征值与特征向量的概念
定义6 设A是 n 阶方阵,如果数 λ 和 n 维非零 定义 是 阶方阵, 列向量 x 使关系式 Ax = λ x (1) 成立,那么, 称为方阵A 成立,那么,这样的数 λ 称为方阵 的特征值 ,非零 称为A 特征向量. 向量 x 称为 的对应于特征值 λ 的特征向量. (1) 式也可以写成如下形式: 式也可以写成如下形式: ( A- λ E ) x = 0 - (2)
1 所以特征向量可取: 所以特征向量可取: p1 = . 1
则对应于特征值 1 = 2 的全部特征向量为 λ k1 p1(k1 ≠ 0).
上页 下页 返回
当λ2 = 4时, 解方程组 3 4 1 x1 0 ( A λ2 E)x = 1 3 4 x = 0, 2
上页 下页 返回
, ( λ 当 2 = λ3 = 2时 解方程 A 2E)x = 0. 由 1 4 1 1 1 4 A 2E = 0 0 0~ 0 0 4 1 1 0 0 1 1 4 4 p 得基础解系 2 = 1 , p3 = 0 . 0 1 1 4 0 , 0
特征值与特征向量_

特征值与特征向量_一、特征值与特征向量的定义在线性代数中,对于一个nxn的矩阵A,如果存在一个非零向量v,使得Av=λv,其中λ是一个常数,则称λ为矩阵A的特征值,v为对应的特征向量。
特征向量是指矩阵在一些方向上的不发生变化的向量,而特征值则表示该方向上的缩放比例。
矩阵乘以特征向量v等于用特征值λ来放缩这个向量。
二、特征值与特征向量的性质1.特征值和特征向量总是成对出现,即一个特征向量对应一个特征值,可能有多个特征向量对应同一个特征值。
2.特征值可以为复数,但如果A是实对称矩阵,则特征值一定是实数。
3.矩阵的特征值可以通过求解方程,A-λI,=0得到,其中I是单位矩阵。
4.特征向量可以通过求解方程(A-λI)v=0得到,其中0是全零向量。
5.特征值的和等于矩阵的迹(所有主对角线上的元素之和),特征值的乘积等于矩阵的行列式。
三、特征值与特征向量的应用1.特征值分解特征值分解是矩阵分析中非常重要的一种分解方法,对于一个nxn的矩阵A,其特征值分解为A=VΛV^(-1),其中V是由特征向量构成的矩阵,Λ是由特征值构成的对角矩阵。
特征值分解可以用于求解线性方程组、矩阵的幂次计算、矩阵的逆等问题,也可以用于降维和数据压缩等领域。
2.特征值与特征向量的几何意义特征向量可以表示矩阵的一些方向上的不变性,通过求解矩阵的特征向量,可以了解矩阵对于不同方向上的变化情况。
例如,在计算机图形学中,可以通过矩阵的特征向量来描述形状的变化、旋转、缩放等操作。
3.矩阵的谱分析通过分析矩阵的特征值和特征向量,可以了解矩阵的性质和结构。
例如,对于对角矩阵,其特征值就是主对角线上的元素,特征向量为标准基向量。
四、总结特征值与特征向量是线性代数中的重要概念,具有广泛的应用。
特征值与特征向量可以用于矩阵分解、线性方程组求解、数据压缩和图形变换等问题,对于理解和分析矩阵的性质和结构有着重要的意义。
深入理解特征值与特征向量的概念和性质,对于掌握线性代数和应用数学具有重要的作用。
特征值与特征向量

例2
求矩阵A
1 4
1 3
00 的特征值和特征向量.
1 0 2
解 A的特征多项式为
1 1 A E 4 3
0
0 (2 )(1 )2 ,
1
0 2
所以A的特征值为1 2, 2 3 1.
当1 2时,解方程( A 2E )x 0.由
3 A 2E 4
1 1
0 0
§6.1 特征值与特征向量
一、特征值与特征向量的概念
定义1 设A是n阶矩阵,如果数和n维非零列向量x
使关系式
Ax x 成 立,那 末, 这样的数称为方阵A的特征值, 非 零 向 量x称为A的对应于特征值的特征向量.
说明 1. 特征向量x 0, 特征值问题是对方阵而言的.
2. n阶方阵A的特征值,就是使齐次线性方程组
所以k p2 (k 0)是对应于 2 3 1的全部特征值.
例3
设A
2 0
1 2
1 0
,求A的特征值与特征向量.
4 1 3
解
2 1
1
A E 0 2 0
4 1 3
( 1) 22 , 令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程A E x 0.由
n
aii tr( A) i 1
称为矩阵A的迹。(主对角元素之和)
n
2)
i 12 L n= A
i 1
性质2: 矩阵 A 和 AT 的特征值相同。
性质3: 若 A 的特征值是 , x 是 A 的对应于
的特征向量,则
(1) kA的特征值是 k. (k 是任意常数)
(2) Am 的特征值是 m . (m是正整数)
一、特征值与特征向量的概念

判断一个方阵A是否可对角化?
1. 求出A的所有特征值:1, ,s.
2. 对于i 1, s,求齐次线性方程组
(iE A)X =0
的基础解系的向量个数n1, ,ns.
s
若 ni =n, 则A可对角化; 否则不可对角化. i 1
四、小结
1.相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有: (1)A与B相似,则det( A) det(B); ( 2)若A与B相似, 且A可逆, 则B也可逆, 且A 1与 B 1相似; (3)A与B相似,则kA与kB相似, k为常数;
二、相似变换的性质
1. 相似变换是等价关系 (1)自 反 性 A与A本身相似. (2)对 称 性 若A与B相似,则B与A相似. (3)传 递 性 若A与B相似, B与C相似, 则A与C相似.
三、利用对角矩阵计算矩阵多项式
若A相似于某对角矩阵,则存在可逆矩阵P使得P1AP .
则 Ak Pk P1,
(2) 设1, ,s为不同的特征值. 对于i 1, s, 求
齐次线性方程组将(i E A) X 0的基础解系
{i1, , iri },
ri
ri
则 kijij ,其中ki1, ,kiri不全为零(足以保证 kijij 0),
i=1
i=1
即为矩阵A对应i的全部特征向量.
四、特征值和特征向量的性质
性质(总结):
A 为正交矩阵的充要条件是下列条件之一成立:
1 A1 AT ; 2 AAT E;
3 A的列向量是两两正交的单位向量;
4 A的行向量是两两正交的单位向量.
二、实对称矩阵的性质
说明:本节所提到的对称矩阵,除非特别说明, 均指实对称矩阵.
一特征值与特征向量概念

(1) 反身性: A∽A; (2) 对称性: A∽B,则B∽A;
(3) 传递性: A∽B,B∽C,则A∽C;
(4)A∽B,则 R A = R B
(5)A∽B,则 A B
(6)A∽B,且A可逆,则 A1 ∽ B1
定理
若n阶矩阵A与B相似,则A与B有相同的特征 多项式,从而A与B有相同的特征值.
故有 E A n a11 a22 L ann n1 L
比较①,有 1 2 L n a11 a22 L ann .
定义 方阵A的主对角线上的元素之和称为方阵A的迹.
记为 tr A aii i .
二、特征值和特征向量的性质
推论1 n阶方阵A可逆A的n个特征值全不为零. 若数λ为可逆阵的A的特征值,
0或1.
3、三阶方阵A的三个特征值为1、2、0,则
2E 3A2 ( )
4、求下列方阵的特征值与特征向量
2 1 1
A
0 4
2 1
0 3
3 1 1
B
7 6
5 6
1 2
四、特征向量的性质 定理 互不相等的特征值所对应的特征向量线性无关。 定理 互不相等的特征值对应的各自线性无关的特征
向量并在一块,所得的向量组仍然线性无关。
而对对角阵 有
1k
k
2k
(1)
,()
(2 )
,
O
O
nk
(n
)
这样可以方便地计算A的多项式 ( A).
三、相似对角化
对n阶方阵A,若能寻得相似变换矩阵P使
P1AP
称之为把方阵A对角化.
定理的推论说明,如果n阶矩阵A与对角矩阵Λ相
似,则Λ的主对角线上的元素就是A的全部特征值. 那么,使得 P1AP 的矩阵P又是怎样构成的呢?
特征值与特征向量

特征值与特征向量特征值与特征向量是矩阵理论中的重要概念,在许多领域中有着广泛的应用。
它们的求解和分析在线性代数、物理学、工程学以及数据分析领域中扮演着重要角色。
本文将详细介绍特征值与特征向量的定义、性质及其在实际问题中的应用。
一、特征值与特征向量的定义在矩阵A中,如果存在非零向量x,使得Ax=λx,其中λ为标量,则称λ为矩阵A的特征值,x为对应于特征值λ的特征向量。
特征向量表示了在矩阵变换下只发生比例缩放而不改变方向的向量。
二、求解特征值与特征向量的方法要求解特征值与特征向量,可以使用特征方程的方法。
对于一个n阶矩阵A,其特征方程为|A-λI|=0,其中I为单位矩阵,λ为特征值。
解特征方程可以得到矩阵A所有的特征值。
将每个特征值带入特征方程,可以求解对应的特征向量。
三、特征值与特征向量的性质1. 矩阵的特征值个数等于其阶数,即n阶矩阵有n个特征值。
2. 特征值与特征向量是成对出现的,特征值有多少个,对应的特征向量就有多少个。
3. 特征值可以是实数,也可以是复数。
4. 如果矩阵A是对称矩阵,则其特征向量是正交的。
5. 特征值的和等于矩阵的迹(主对角线上元素的和),特征值的积等于矩阵的行列式。
四、特征值与特征向量的应用领域1. 特征值与特征向量在物理学中的应用非常广泛。
例如,在量子力学中,特征向量对应着粒子的状态,特征值则是测量粒子所得到的数值结果。
2. 在工程学领域,特征值与特征向量可以用于解决振动问题、结构强度分析等。
通过求解特征方程可以得到物体的固有振动频率和振型。
3. 在数据分析中,特征值与特征向量可以用于降维、聚类、图像处理等。
通过分析特征向量的特征值大小,可以选择最重要的特征进行数据分析和模型建立。
总结:特征值与特征向量是矩阵理论中的重要概念,它们在矩阵的变换与分析中具有重要作用。
通过求解特征方程可以得到矩阵的特征值,进而求解对应的特征向量。
特征值与特征向量的性质和应用也使其在各个领域中得到广泛的应用。
特征值与特征向量

特征值与特征向量在数学和物理学中,特征值和特征向量是非常重要的概念。
它们经常出现在线性代数、矩阵论和量子力学等领域中。
特征值和特征向量也被广泛应用于机器学习和计算机视觉等领域。
一、什么是特征值和特征向量?在矩阵中,如果存在一个向量,使得它被矩阵作用后,只改变了它的伸缩程度而不改变它的方向,那么这个向量被称为矩阵的特征向量。
而它被伸缩的比例就是特征值。
特征值和特征向量的定义可以通过下面的矩阵乘法式子来表达:A * v = λ * v其中 A 是一个 n*n 的矩阵,v 是一个 n 维向量,λ 是一个标量。
特征向量 v 是非零向量,特征值λ 是一个常数,通常不能为零。
特征向量可以是任意比例,但特征值只能是唯一的。
二、特征值和特征向量的性质特征向量和特征值有着一些重要的性质。
其中最重要的性质是,特征向量在矩阵作用下只伸缩不旋转。
这种性质在机器学习和计算机视觉领域是非常重要的。
例如,在图像处理中,可以利用图像的特征向量来描述它的纹理、形状和颜色等特征。
另一个重要的性质是,矩阵的特征值和行列式、迹等矩阵的性质有很大的关联。
例如,如果一个矩阵的行列式为 0,则它至少有一个特征值为 0。
特征值和特征向量还有很多其他的重要性质,这里无法一一列举。
三、如何计算特征值和特征向量矩阵的特征值和特征向量可以通过求解矩阵的特征方程来计算。
特征方程的形式是:det(A - λI) = 0其中 det 表示行列式,I 是 n*n 的单位矩阵,λ 是特征值,A 是n*n 的矩阵。
特征方程有 n 个解,每个解对应一个特征值。
一旦求得了特征值,就可以通过代入矩阵方程组求解特征向量。
例如,对于某个特征值λ,求解向量 v 满足下面的方程:(A - λI) * v = 0通过高斯消元或其他数值方法可以解出 v 的值。
当然,我们需要注意的是,情况可能有多个特征向量和同一个特征值相对应。
四、特征值和特征向量在机器学习中的应用特征值和特征向量是机器学习中非常有用的工具。
线性代数中的特征值和特征向量

线性代数中的特征值和特征向量线性代数是数学的一个分支,它主要研究向量空间、线性变换和矩阵等代数结构及其性质。
特征值和特征向量是线性代数中一个很重要的概念,广泛应用于诸多领域中,如物理、工程、计算机科学等。
一、特征值和特征向量的定义在线性代数中,如果一个向量空间 V 上的线性变换 A 对某个非零向量 v 作用后,得到的向量依旧在同一条线上,即存在一个标量λ,使得Av = λv,v ≠ 0其中λ 称为该线性变换的特征值,v 称为该线性变换的特征向量。
需要注意的是,特征向量不为零向量,否则,特征值会等于零,特征向量也就没有意义。
二、特征值和特征向量的意义特征值和特征向量在矩阵和线性变换中都有很重要的意义。
1. 矩阵的特征值和特征向量考虑一个 n 维方阵 A,其特征值和特征向量的意义如下:(1) 特征向量表示在变换矩阵 A 的作用下仍朝着原来的方向进行变化;(2) 特征值表示变换的幅度,即特征向量在 A 的作用下的缩放比例。
也就是说,矩阵的特征值和特征向量可以帮助我们更好地理解矩阵的变换效果及其缩放比例,从而更好地应用于各种实际问题中。
2. 线性变换的特征值和特征向量线性变换的特征值和特征向量同样具有重要的意义。
例如,在物理学中,线性变换通常表示各种物理量的转换关系。
研究线性变换的特征值和特征向量可以帮助我们更好地理解物理现象和探索物理规律。
此外,在工程领域中,线性变换的特征值和特征向量被广泛应用于自然频率、振动确定和控制等方面的工作中。
三、计算矩阵的特征值和特征向量的方法现在,让我们来看一下计算矩阵的特征值和特征向量的方法。
假设 A 是一个 n 维方阵,我们需要求得它的特征值和特征向量。
其步骤如下:1. 求解特征方程。
由特征值和特征向量的定义可知,Av = λv,即矩阵 A 作用在 v 上,等于将 v 的长度缩放λ 倍。
因此,根据矩阵的定义,我们可以得到以下方程:det(A - λE) = 0其中,E 是单位矩阵。
特征值与特征向量

2 ( 4)( 2)2 0 ,
故 A 的全部特征值为 1 4 , 2 2 (二重).
1.1 特征值与特征向量的概念
当 1 4 时,解齐次线性方程组 (4E A)x 0 :
7 2 1 1 0 1/3
1
由
4E
A
2
2
2
0
1
2/3
得基础解系
p1
2
,故对应于
1
4
的全部特征向量为:
1.2 特征值与特征向量的性质
性质 3 设 是方阵 A 的特征值,则 (1) c 是 cA 的特征值 (c R) ; (2) 2 是 A2 的特征值,进一步推出 k 是 Ak 的特征值; (3)() 是 (A) 的特征值,其中(A) a0 E a1A an1An1 an An 是矩阵 A 的多项式; (4)当 A 可逆时, 1 和 A 分别是 A1 和 A* 的特征值.
5
0
1
0
得
基
础解
系
是
1 1
,
故
k1
1 1
(k1
0)
是矩阵
A
对应于
1
4 的全部特征向量.
当
2
2
时,解齐次线性方程组
(2E
A) x
0
,由
2E
A
5
5
1 5
1
0
1 0
得基
础解系是ຫໍສະໝຸດ 1 5 ,故
k2
1
5
(k2
0)
是矩阵
A
对应于 2
2
的全部特征向量.
1.1 特征值与特征向量的概念
3 2 1
1.2 特征值与特征向量的性质
特征值与特征向量的概念

(3).设 g( x) a0 xm a1xm1 L am
则 g() 是矩阵 g(A) 的特征值
(4).当A可逆时, 1是矩阵 A1的特征值
A 为A的伴随矩阵A*的特征值
定理
设 1, 2 ,L , m 是方阵A的特征值,
p1 , p2 ,L , pm
1 x 2 x
1 2 x 0,
由于1 2 0, 则x 0, 与定义矛盾 .
思考题
设4阶方阵A满足条件: det3E A 0,
AAT 2E,det A 0,求A的一个特征值.
征向量.
二、特征值和特征向量的性质
1. 设n 阶方阵A的特征值为: 则
1, 2 ,L , nபைடு நூலகம்
(1) 1 2 n a11 a22 ann;
(2) 12 n A .
称为矩阵的迹
2. A 与其转置矩阵AT 有相同的特征值,事实上 有相同的特征多项式。
3. 若 是矩阵A的特征值, x 是A的属于的 特征向量,则
x2 x3
0
解得 基础解系:
0
p 1
0 1
,
所以k p1(k 0)是对应于1 2的全部特征值.
当 2 3 1 时 ,由
E A x 0
2 1 0 1 0 1
而
E
A
4 1
2 0
01
~
0 0
1 0
2 0
,
解得 基础解系:
1
p
2
2 1
,
所以k p2 (k 0)是对应于 2 3 1的全部特征值.
2 1
例2 解
求矩阵A
1 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 矩阵的特征向量总是相对于矩阵的特征值 而言的,一个特征值具有的特征向量不唯一; 一个特征向量不能属于不同的特征值.
3的说明 因为,如果设x同时是A的属于特征值1 ,2的
1 2 的特征向量,即有
Ax 1x, Ax 2 x
的特征向量,则向量组
11 ,12 , ,1r1 ;21,22 ,
线性无关。
,2r2 ;
; s1, s2 ,
, srs
定理 是n 阶方阵A的k 重特征值 ,V是其对应的 特征子空间,则特征子空间的维数 dim (V) k , 即几何重数不超过代数重数。
注意 1. 属于不同特征值的特征向量是线性无关的.
称为A 的特征多项式。 注: 在复数域中,特征值有n个(包括重数)
在一般数域中不然。
当 1 4 时 ,由 4E A x 0
4 3 1
4
1
3
x1 x2
0 0
,
即 1 1
解得 x1 x2 ,
1 1
x1 x2
0 0
,
所以对应的特征向量可 取为
p 1. 2 1
例2 解
求矩阵A
征向量.
二、特征值和特征向量的性质
1. 设n 阶方阵A的特征值为:
1 , 2 , , n
则
(1) 1 2 n a11 a22 ann;
(2) 12 n A .
称为矩阵的迹
2. A 与其转置矩阵AT 有相同的特征值,事实上 有相同的特征多项式。
3. 若 是矩阵A的特征值, x 是A的属于的 特征向量,则
例 判断
4 6 0
A
3 3
5 6
0 1
能否对角化?若能对角化,求出矩阵P,使
P 1 AP 为对角阵,并求 An
解
4 6 0
E A 3 5 0 12 2
3 6 1
所以A的全部特征值为 1 2 1, 3 2.
当 1 2 1时, 由 E A x 0
33xx1 166xx2 200 3 x1 6 x2 0
可逆.于是有 x1 p1, x2 p2 ,, xm pm 0,0,,0, 即 x j pj 0 j 1,2,,m.但 pj 0,故 x j 0 j 1,2,,m.
所以向量组 p1, p2 ,, pm 线性无关.
推论
设 1, 2 , , s 是n 阶方阵A的不同的特征值,
i1 ,i 2 , ,iri 是A对应于i 的线性无关
0
p
1
0 1
,
所以k p1(k 0)是对应于 1 2的全部特征值.
当 2 3 1 时 ,由
E A x 0
2 1 0 1 0 1
而
E
A
4 1
2 0
0 1
~
0 0
1 0
2 0
,
解得 基础解系:
1
p
2
2 1
,
所以k p2 (k 0)是对应于 2 3 1的全部特征值.
一特征值与特征向量的概念
一、特征值与特征向量的概念 定义: 设A 是n阶矩阵,如果数 与n维非零列向量 x使得
Ax x
称 为A的一个特征值, x 为对应于特征值 的特征向量。
注:
1. 特征值向量 x 0, 特征值问题是对方阵而言的.
2. n 阶方阵A 的特征值,就是使齐次线性方程组
E A x 0 有非零解的值 ,
把 P 用其列向量表示为 P p1 , p2 ,, pn .
例1 判断下列实矩阵能否化为对角阵?
1 2 2 (1) A 2 2 4
2 4 2
2 1 2 (2)A 5 3 3
1 0 2
解
1 2
(1) 由 EA 2 2
2 4
22 7
2 4
1
A
1
2
2
习题 n阶矩阵A满足 A2 3 A 2E 0
证明:A能相似于对角矩阵。
实对称矩阵的对角化
正交矩阵定义:
若n阶方阵A满足 AT A E,则称A为 正交矩阵 .
正交矩阵的性质:
1 A1 AT ;
(2) 正交矩阵的行向量与列向量都是 标准正交向量组
证明见下页
(3) 若 A 、B 都是正交矩阵, 则AT, A-1, AB 也是正交矩阵
1 2 0
若令P
3 ,1 ,2
1
1
0
,
1 0 1
则有
2 0 0
P 1 AP
0
1 0 .
0 0 1
即矩阵P的列向量和对角矩阵中特征值的位置
要相互对应.
例 设矩阵
1 0 0 0
A
a
1
0
0
2 b 2 0
2
3
c
2
问a,b,c为何值时A 相似于对角阵?
并求出它相似的对角阵
解 显然A的特征值为1,2 并且都是2重特征值 ,因此 对应于=1 ,与=2都应有两个线性无关的特征向量。
P(a0 Bn a1 Bn1 an1 B an E ) P1
P (B) P1.
特别地,若可逆矩阵P使 P1 AP 为对角矩阵,
则 Ak P k P1, ( A) P () P1.
对于对角矩阵 , 有
k 1
k
k 2
,
(1)
k n
(
)
(1)
,
利用上述结论可以 很方便地计算矩阵
1
T 1
2
T 1
n
T 1
1
T 2
2
T 2
n
T 2
1
2
T 1
,
T 2
,,
T n
E
n
1
T n
2
T n
E
n
T n
i
T j
ij
1, 当 i
0,
当i
j; j
i, j 1,2,,n
例 判别下列矩阵是否为正交阵.
1
1 1
2
1 2 1
1 3 1 2,
1 3 1 2 1
2
1
9 8
8 9 1
(1). k 是矩阵 kA 的特征值 (2). m 是矩阵Am的特征值
(3).设 g( x) a0 xm a1 xm1 am
则 g() 是矩阵 g(A) 的特征值
(4).当A可逆时, 1是矩阵 A1的特征值
A 为A的伴随矩阵A*的特征值
定理
设 1, 2 , , m 是方阵A的特征值,
p1 , p2 , , pm
3. 是A 的特征值,则
E A 0
4. 的特征向量的全体加 零向量 构成 Rn 的线性
子空间,记 V ,其维数为 n-r(E- A)
E A 0
a11
a21
a12
a22
an1
an2
a1n a2n 0
ann
这是一个n 次方程,称为矩阵A的特征方程
记 f ( ) E A 它是一个n次多项式,
(1) A 的多项式 ( A).
二、矩阵相似于对角阵的条件 对n阶方阵A,若可找到可逆矩阵P,使得
p1 Ap 为对角阵,称为把矩阵A对角化。
定理 n阶方阵A与对角阵相似(即A能对角化) 的充要条件是A 有n个线性无关的特征向量。
推论 若A有n个不同的特征值,则 A 可对角化。 定理证明:
假设存在可逆阵 P,使P 1 AP 为对角阵,
1 4
1 3
1 0
1 1
0 0
的特征值和特征向量
.
2
0
E A 4 3 0 ( 2)( 1)2,
1 0 2
所以A的特征值为1 2, 2 3 1.
当 1 2 时 ,由
即
21
4 1
1 23
0
2E A x 0
0 x1
2
0
2
x2 x3
0
解得 基础解系:
类推之,有
1k x1 p1 k2 x2 p2 km xm pm 0.
k 1,2,,m 1
把上列各式合写成矩阵形式,得
1 1 1m1
x1
p1
,
x2
p2
,,
xm
pm
1
1
2
m
m2 1
m1 m
0,0,,0
上式等号左端第二个矩 阵的行列式为范德蒙行 列
式,当各i不相等时 , 该行列式不等于 0, 从而该矩阵
(4) 若 A 是正交矩阵, 则
A 1
(5) 正交矩阵的特征值只能为 1
下面给出列向量两两正交的证明
a11
A AT
E
a21
a12
a22
a1n a11 a2n a12
a21
a22
an1 an2
E
an1 an2 ann a1n a2n ann
把矩阵A按行分块
1 x 2 x
1 2 x 0,
由于1 2 0, 则x 0, 与定义矛盾 .
思考题
设4阶方阵A满足条件 : det3E A 0,
AAT 2E,det A 0,求A的一个特征值.
矩阵的对角化
相似矩阵的定义
定义
矩阵A,B 都是n阶方阵,若有可逆矩阵P,使
P-1AP=B 则称B是A的相似矩阵,或说矩阵A与B相似, 记 A~B
即 A 有3个线性无关的特征向量,所以A可对交化。
2 1 2 (2) A 5 3 3
1 0 2
2 1 E A 5 3
1 0
2
3 13
2
所以A的特征值为 1 2 3 1.