大学理论力学__空间力系的平衡方程

合集下载

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

第四章:力系的平衡条件与平衡方程

第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN

已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.

理论力学:第3 章 力系的平衡

理论力学:第3 章 力系的平衡
第 3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R

0,M O

0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则

G sin cos

G sin cos( )
cos( ) 1,

arctan 3
3652'
Pmin

G sin

20

3 5

12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q

G(b
e) 50b a

Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。

理论力学力系的平衡

理论力学力系的平衡

∑F
z E C F
30o
x
= 0, = 0, = 0,
F sin 45o − F sin 45o = 0 1 2
D
F2
B
∑F ∑F
y
FA sin 30o − F cos 45o cos 30o − F cos 45o cos 30o = 0 1 2
z
F cos 45o sin 30o + F cos 45o sin 30o + FA cos 30o −G = 0 1 2
空间力系的平衡条件和平衡方程
空间力系平衡的充要条件是力系的主矢等于零;主矩等于零 空间力系平衡的充要条件是力系的主矢等于零;主矩等于零。
FR = ∑F = 0 i MO = ∑mO (Fi ) = 0
MO
Z
Fz
FR
Fy
Mz
O
Fx
X
Mx
My
Y
平衡方程的坐标投影式
∑F
ix
= 0 ; ∑ F iy = 0 ; ∑ F iz = 0
F y = F cosθ sin 30o AD AD
F = −F cosθ cos 30o, ADx AD
2.列平衡方程。 .列平衡方程。
∑F = 0,
x
F cosθ cos 30° − F cosθ cos 30° = 0 AC AD
∑F = 0,
y
F cosθ sin 30° + F cosθ sin 30° − F cosθ = 0 AC AD AB
x
F sin 30° − F sin 30° = 0 BC BD
F cos 30° + F cos 30° + F cosθ = 0 BC BD BA

理论力学第3章

理论力学第3章
Pz Psin45 Pxy Pcos45 Px Pcos45sin60 Py Pcos45cos60
理论力学
中南大学土木建筑学院
7
mz (P )mz (P x )mz (P y )mz (P z )6Px (5Py )0 6Pcos45sin605Pcos45cos6038.2(Nm)
mx (P )mx (P x )mx (P y )mx (P z )006Pz 6Psin4584.8(Nm)
由 mA (Fi ) 0
P2a N B
3a0,
N B
2P 3
X 0
XA 0
Y 0
YB NB P0,
YA
P 3
理论力学
中南大学土木建筑学院
22
二、平面平行力系平衡方程 平面平行力系的平衡方程为:
Y 0
mO (Fi )0
一矩式
实质上是各力在x 轴上的投影恒 等于零,即 X 0 恒成立, 所以只有两个独立方程,只能 求解两个独立的未知数。
一、空间任意力系的平衡充要条件是:
R '0F 0 M O mO (Fi )0
又 R' (X )2 (Y )2 (Z )2
MO (mx (F ))2 (my (F ))2 (mz (F ))2
所以空间任意力系的平衡方程为:
X 0,mx (F )0 Y 0,my (F )0 Z 0,mz (F )0
再研究轮
mO (F )0
SAcosRM 0 X 0
X O SAsin 0
Y 0
S Acos YO 0
M PR XO P tg YO P
[负号表示力的方向与图中所设方向相反]
理论力学
中南大学土木建筑学院

理论力学第3章 力系的平衡

理论力学第3章 力系的平衡

基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。

说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。

B 点。

过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。

qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。

空间力系的平衡方程式及其应用

空间力系的平衡方程式及其应用

即与各坐标轴相交。因此各力对坐标轴的矩均为零,即式(3-17)中,
M x (F ) 0 , M y (F ) 0, M z (F ) 0 。于是,空间汇交力系的平衡方程
只有三个,即
Fx 0
Fy
0
Fz
0
(3-18)
(2)空间平行力系
若取z轴平行于力系中各力的作用线,则 Oxy 坐标面与各力作用线
衡的必要与充分条件是:力系的主矢和力系对于任意点的主矩矢
都等于零。即
FR 0
MO 0
根据式(3-14)和式(3-16),上述条件可写成
空间任意力系平衡的必要与充分条 件是:力系中各力在任一直角坐标 系中每一轴上的投影的代数和等于 零,以及各力对每一轴的矩的代数 和也等于零。
Fx 0
Fy 0
式中,负号表明 FB ,FC 的实际方向与假设相反,即两杆均受压力。
例3-4
O1 和 O2 圆盘与水平轴 AB 固连,O1 盘垂直于z轴,O2 盘垂直于x轴,
力的矢量和。

FR F1 F2 Fn Fi (3-11)
图3-9
附加力偶系可合成为一个空间力偶,其力偶矩 MO,等于各附加力
偶矩的矢量和,亦即等于原力系中各力对于简化中心O的矩的矢量和。
MO MO (F1) MO (F2 ) MO (Fn ) MO (Fi )
F称R 为原力系的主矢,称为原力系对简化中心O的主矩矢 M。O
Fz 0
M
x
(F
)
0
M y (F ) 0
M
z
(F
)
0
(3-17)
空间任意力系是物体受力的最一般情况,其他类型的力系都可 以认为是空间任意力系的特殊情形,因而它们的平衡方程也可 由方程式(3-17)导出,具体如下。

理论力学课件—力系的平衡

理论力学课件—力系的平衡

分布荷载的合力及其作用线位置 P
q(x)
dP
A
x dx h l
由合力之矩定理:
B
x
Ph dP x q( x) xdx
l 0
q(x)
荷载集度
合力作用线位置:
dP=q(x)dx 合力大小:
P dP 0 q( x)dx
l
q( x) xdx h q( x)dx
0 l 0
q A 2a
M B
C
G 4a
FAx
FB
解:以水平横梁AB为研究对象。
X 0, F 0 M A F 0,
Ax
FB 4a G 2a q 2a a M 0 3 1 FB G qa 4 2
Y 0, F
Ay
q 2a G FB 0
FAx
y
X 0,
M A ( F ) 0,
FAx P 0
FAx P
x
FB 2a M Pa 0
FB P
Y 0,
FAy FB 0
FAy P
2a M
P
a
C
FAy
D
FB
解法2
A
FAx
B
解法3
M A ( F ) 0, M B ( F ) 0, M C ( F ) 0,

2M FA FB ab
§3.3 平面任意力系的平衡条件与平衡方程
1. 平面任意力系的平衡方程
FR=0 ′ Mo=0
X 0 Y 0 M F 0
O

平衡方程
平面任意力系平衡的解析条件:所有各力在两个任选的坐标轴上 的投影的代数和分别等于零,以及各力对于任意一点的矩的代数 和也等于零。 ● 几点说明:

空间力系—空间汇交力系(理论力学)

空间力系—空间汇交力系(理论力学)

直接投影法(一次投影法) 间接投影法(二次投影法)
2、力F沿空间直角坐标轴分解所得分力Fx 、Fy 、Fz的大小,等于该力在相应轴上投影 的绝对值。
3、分力是矢量,投影是代数量。
4、已知投影求力的大小:F Fx2 Fy2 Fz2
g为F 与z轴正向间的夹角,则
z
Fz
F
g
O
b
Fy
Fx
y
x
F Fx2 Fy2 Fz2
例1 设力 F 作用于立方体的点 A,其作用线沿面ABCD对角线。试求力在图示直角 坐标轴上的投影。
解:
45
b 45
F 在Z轴上的投影
FZ Fcos
2F 2
F 在y轴上的投影
Fy Fcosb
2F 2
二、空间汇交力系的平衡
1、平衡条件:力系的合力等于零。即 FR=0
FR Fx 2 Fy 2 Fz 2 0
2、平衡方程:
例1 杆AO,BO,CO用光滑铰链连接在O处,并在O处挂有重物,重力为G。如图所示。各 杆的自重不计,且α=45,OB=OC,试求平衡时各杆所受的力。
解: (1)选取铰链 O为研究对象,画受力图。
cos 45
2F
FB FC
2F 2
FB,FFAC为为负正值值,,说说明明假假设设方方向向与与实实际际方方向向相相反同,,即即ABOO杆杆受和压CO。杆受 拉。
例2 如图所示,起重机起吊重物, 连线CD平行于x轴。已知CE=EB=DE,角α=30,CDB平面与水平面间 的夹角∠EBF= 30,重物G=10 kN。不计起重杆的重量,试求起重杆和绳子所受的力。
FC
O
FB
WF
FA
C
O

理论力学3—空间力系

理论力学3—空间力系

r r ur
uur uur r
i jk
M O (F ) r Fuur = x y z
z MO(F)
kr Oj
ih x
Fx Fy Fz
r
r
ur
( yFz zFy )i (zFx xFz ) j (xFy yFx )k
B F
A(x,y,z) y
3.2.1 力对点的矩以矢量表示-力矩矢
力矩矢MO(F)在三个坐标轴上的投
偶系,如图。
z F1
z M2
z
Fn O
x F2
= M1
y
O
x F'n
F'1
= MO
Mn y
O
F'2
x
F'R y
uur uur
uFuri Fuiur uur
M i M O (Fi ) (i 1, 2,L , n)
3.4.1 空间力系向一点的简化
空间汇交力系可合成一合力F'R:
uur uur uur FR Fi Fi
如图所示,长方体棱长为a、b、c,力F沿BD,求力F对AC之矩。
解:
uur uur uur M AC (F ) M C (F ) AC
uur uur
M C (F ) F cos a
Fba
a2 b2
B
C
F
D
c
A
a
b
uur uur uur
M AC (F ) M C (F ) cos
Fabc a2 b2 a2 b2 c2
(F ) uur
[M O (F )]y M y (F )
uur uur
uur
[M O (F )]z M z (F )

理论力学(大学)课件8.2 空间任意力系的平衡方程及常见的空间约束

理论力学(大学)课件8.2 空间任意力系的平衡方程及常见的空间约束

2、空间任意力系的平衡方程及常见的空间约束空间任意力系平衡的充要条件:空间任意力系的平衡方程:00xy z F FF ===ååå00xyzMMM===ååå空间任意力系平衡的充要条件:力系中各力在任一坐标轴上的投影的代数和等于零,以及各力对每一个坐标轴的力矩的代数和也等于零.该力系的主矢、主矩分别为零.(1) 空间任意力系的平衡方程(基本式)常见的空间约束00xy z F FF===ååå00xyzM M M ===ååå空间任意力系的平衡方程(基本式)平衡方程除了基本式之外,还有四矩式、五矩式、六矩式。

有几个力矩平衡方程,称之为几矩式。

各种形式应该根据实际情况灵活运用。

基本式以外的方程形式,通常不再给限定条件,一般的情况下只要列出的方程能求解出未知量即是未违反限制条件。

常见的空间约束00zxyF MM===ååå空间平行力系的平衡方程各种力系的独立平衡方程个数空间任意力系6个空间汇交力系3个空间平行力系3个空间力偶系3个平面任意力系3个平面汇交力系2个平面平行力系2个平面力偶系2(1)个最一般情形:空间、任意一级特殊情形(包含一种特殊情况):空间问题+特殊力系,或者任意力系+平面情形二级特殊情形(包含两种特殊情况):平面问题+特殊力系。

2、空间任意力系的平衡方程及常见的空间约束(2) 空间常见约束类型柔索二力杆2、空间任意力系的平衡方程及常见的空间约束2、空间任意力系的平衡方程及常见的空间约束径向轴承圆柱铰链铁轨蝶铰链球铰链导向轴承带有销子的夹板导轨空间任意力系及重心的计算f. 6个未知约束量空间固定端约束分析实际的约束时,需要忽略一些次要因素,抓住主要因素,做一些合理的简化。

比如导向轴承和径向轴承之间的区别;蝶铰链和止推轴承之间的区别。

如果刚体只受平面力系的作用,则垂直于该平面的约束力和绕平面内两轴转动的约束力偶都应该为零,相应减少了约束量的数目。

理论力学:第3章 力系的平衡

理论力学:第3章 力系的平衡

1第3章 力系的平衡 3.1 主要内容空间任意力系平衡的必要和充分条件是:力系的主矢和对任一点的主矩等于零,即 0=R F 0=O M 空间力系平衡方程的基本形式 0,0,0=∑=∑=∑z y x F F F 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M空间汇交力系平衡的必要和充分条件是:力系的合力 0=R F空间汇交力系平衡方程的基本形式0,0,0=∑=∑=∑z y x F F F空间力偶系平衡的必要和充分条件是:各分力偶矩矢的矢量和 0=∑i M空间力偶系平衡方程的基本形式 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M平面力系平衡的必要和充分条件:力系的主矢和对于任一点的主矩都等于零,即:0=∑='F F R;0)(=∑=F O O M M 平面力系的平衡方程有三种形式:基本形式: 0)(,0,0=∑=∑=∑F M F F O y x二矩式: 0)(,0)(,0=∑=∑=∑F M F M F B A x (A 、B 连线不能与x 轴垂直)三矩式: 0)(,0)(,0=∑=∑=∑F M F M M C B A (A 、B 、C 三点不共线)平面力系有三个独立的平衡方程,可解三个未知量。

平面汇交力系平衡的必要和充分条件是合力为零,即0=∑=F F R 平衡的解析条件:各分力在两个坐标轴上投影的代数和分别等于零,即0,0=∑=∑y x F F两个独立的平衡方程,可解两个未知量。

平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即∑=0Mi一个独立的平衡方程,可解一个未知量。

3.2 基本要求1.熟练掌握力的投影,分布力系的简化、力对轴之矩等静力学基本运算。

2.能应用各种类型力系的平衡条件和平衡方程求解单个刚体和简单刚体系统的平衡问题。

对平面一般力系的平衡问题,能熟练地选取分离体和应用各种形式的平衡方程求解。

3.正确理解静定和超静定的概念,并会判断具体问题的静定性。

东大14秋学期《理论力学》在线作业3答案

东大14秋学期《理论力学》在线作业3答案

14秋学期《理论力学》在线作业3
一,单选题
1. 4.2 空间平行力系的平衡方程为三个:。

()
A. 对
B. 错
?
正确答案:A
2. 6.2 点作匀速运动,则点的加速度等于零。

()
A. 对
B. 错
?
正确答案:B
3. 8.1 动点的牵连速度是指该瞬时牵连点的速度,它所相对的坐标系是()
A. 动坐标系
B. 定坐标系
C. 不必确定的
D. 定或动坐标系都可以
?
正确答案:B
4. 6.3 点作直线运动,运动方程为x=27t-t3,x的单位为m,t的单位为s。

则点在t=0到t=7s的时间间隔内走过的路程为()
A.
154m
B. 262m
C. 54m
D.
208m
?
正确答案:B
5. 5.2 关于摩擦力,下列哪些说法是正确的()
A. 相互压紧的粗糙物体之间总是有摩擦力的。

B. 一个物体只有在另一个物体表面运动或有相对运动趋势时,才有可能受到摩擦力。

C. 静止的物体一定受到静摩擦力的。

D.
具有相对运动的两个物体,一定存在摩擦力。

?。

理论力学第六章平衡方程及其应用课件

理论力学第六章平衡方程及其应用课件
MA(F) 0 MB(F) 0 Fx 0
其中x轴不垂直A,B两点的连线。
第六章 平衡方程及其应用 >> 一般力系的平衡
(2)三矩式平衡方程
MA(F) 0 MB(F) 0
其中A,B,C三点不共线。
MC (F) 0
3. 平面平行力系的平衡方程
平面平行力系的独立平衡方程的数目只有 两个。为什么?
FC
qa
2 c os
(2)研究整体梁,受力如图(a)所示。列平衡方程
第六章 平衡方程及其应用 >> 一般力系的平衡
Fx 0
FAx FC sin 0
FAx
1 2
qa
tan
Fy 0
FAy 2qa F FC cos 0
FAy
5 2
qa
MA(F) 0 M A 2qa a F 3a FC cos 4a 0
MFG(F) 0
F2
b
F
b
P
b 2
0
3 F2 2 P
第六章 平衡方程及其应用 >> 一般力系的平衡
§6-4 物体系统的平衡 静定和静不定问题 当系统中的未知量数目等于独立平衡方程的数目时,则所有未 知数都能由平衡方程求出,这样的问题称为静定问题。
在工程实践中,有时为了提高结构的刚度和坚固性,常常增加 多余的约束,因而使这些结构的未知量的数目多于平衡方程的数目, 未知量就不能全部由平衡方程求出,这样的问题称为静不定问题, 或超静定问题。
§6-2 力偶系的平衡
一、平面力偶系的平衡方程 平面力偶系平衡的必要和充分条件是:所有各力偶矩的代数和
等于零,即 Mi 0 .
二、空间力偶系的平衡方程
由于空间力偶系可以用一个合力偶来代替,因此,空间力偶系

空间力系的平衡方程及其应用

空间力系的平衡方程及其应用
(即图中的Dyz平面)的夹角=30°时,
求三个轮子A、B、C对地面的压力。
目录
空间力系\空间力系的平衡方程及其应用
【解】 取起重机连同重物为研究对
象,作用于其上的力有起重机的重力W 和重物的重力F,以及地面对三个轮子的 反力FA、FB、和FC,这五个力组成一个 空间平行力系。列出平衡方程
Mx 0
FAa
2
F1
W 0 5
得 F1
5W 2
F2
1 2
F3
1 2
0
得 F2
F3
F3
1 2
F2
1 2
F1
1 0 5
Hale Waihona Puke 得F2F3
F1 5
2 W 2 22
负号表示F2、F3实际上是拉力。
目录
空间力系\空间力系的平衡方程及其应用
【例4.3】图示一起重机简图,机身 重W=100kN,重力作用线通过E点;三 个轮子A、B、C与地面接触点之间的连 线构成一等边三角形;CD=BD, DE=AD/3;起重臂FGD可绕铅垂轴GD 转动。已知a=5m,l=3.5m。载重 F=30kN位于起重臂的铅垂平面GDF内, 当该平面与起重机机身的对称铅垂面
sin
60
W
a 3
sin
60
Fl
cos
30
FA 0

FA=12.3kN
My 0
FB
a 2
FC
a 2
F
l
sin
30
0
Z=0 FB+ FC+ FAWF=0
W F
FB FC
目录
空间力系\空间力系的平衡方程及其应用 联立求解上两式,并将FA=12.3kN代入,得

理论力学 第4章-空间力系

理论力学 第4章-空间力系

mx (P) m y (P) mz (P)
6. 空间力矩的平衡:
M
o
(R) 0 m m m
x

0 0 0
空间力矩的平衡方程
y
z
§4-4 空间一般力系的简化和合成
1. 空间一般力系向一点O简化:
1) O点的空间汇交力系: ( P , P , P , P ); 2) 空间附加力偶系: ( m ( P ), m ( P ), m ( P ), m
2. 力偶系的合成:
1) 合力偶矩定理:空间上力偶系的合力偶矩等于各 (几何法) 个分力偶矩的矢量和 I l
2) 合力偶矩投影定理: 空间上力偶系的合力偶矩在 (解析法) 一根轴上的投影等于各个合力偶矩在同 一 轴上的投影的代数和
Lx Ly Lz

l l l
x
y
z
3. 力偶系的平衡

x0 y0 z0 N A B c o s c o s T1 0 N A B c o s sin T 2 0 N A B sin Q 0
3. 求解 :
cos s in cos 80
2
60
2
145 105 145 80 100 4 5 ;
方向余弦; 方向余弦;
Lx Ly Lz
3. 空间一般力系的再生成:
合成为合力:
当 R 0 , L 0 或 R L 时 大 小: 方向: 作 用 线 : 由 空 间 作 用 线 函 数 方 程 确 定 ; 或 简 单 地 在 L 作 用 面 内 , 以 d=| L R | 及 L 转 向 来 确 定 作 用 线 位 于 R 左 侧 或 右 侧 的 位 置 . R=R 可合为一合力

理论力学

理论力学

题型 空间汇交力系 空间平行力系 传动轴 六力矩式平衡方程
例3 空间支架由三根直杆组成,如图所示,已知W=1kN。α=30° β=60°,φ=45°,试求杆AB、BC、BD所受的力。 解 取B铰为研究对象。
∑ Fz = 0
FBD
∑ Fy = 0
FBD cos α W = 0 W W 2 = = = W = 1.155 kN cos α cos α 3 FBC sin β FBD sin α cos = 0
(2) R ≠0,主矩MO≠0,且 F′ ⊥M ′ FR O,得作用于O’点的一个合力 。 FR
其作用线离简化中心O的距离为: d =
MO FR

R R R
R
R
a)
b)
c)
3.空间力系简化为力螺旋的情形 空间力系简化为力螺旋的情形 力螺旋:由一力和一力偶组成的力系,其中的力垂直于力偶的作用面。
R R R
60m m
例 2 如图所示,铅直力F=500N, 作用于曲柄上。试求此力对轴x、y、z 之矩及对原点O之矩。
30 0m m
30°
36 0m m
解:F对x、y、z之矩 分别为:
M x (F ) = F (300+ 60) = 500× 360 = 180×103 N mm = 180N m M y (F ) = F × 360cos30° = 500× 360× = 155.9 N m M z (F ) = 0
4、Mz(F)为零情况 、 为零情况 力的作用线与轴平行(Fxy=0)或相交(h=0)时,力对该轴的矩为零。 即,当力的作用线与轴线共面时,力对该轴之矩为零。
5、力对轴之矩合力矩定理 、 定理: 定理:合力FR对某轴之矩,等于各分力对同一轴之矩的代数和。 即:M z ( FR ) =

理论力学第3章力系平衡方程及应用

理论力学第3章力系平衡方程及应用

a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx

大学理论力学 空间力系的平衡方程27页PPT

大学理论力学 空间力系的平衡方程27页PPT

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不程
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二力矩式
X 0
M A 0
MB 0
条件是:AB两点的连线不能与 x 轴或 y 轴垂直
三力矩式
M A 0
MB 0
条件是:ABC三点不能共线
M C 0
上式有三个独立方程,只能求出三个未知数。
平面平行力系的平衡条件和平衡方程
如图:物体受平面平行力系F1 ,
y
F2 , …, Fn的作用。
如取 x 轴与各力垂直,不论力系是否
3.1.1平衡条件
从空间力系的简化结果可得到空间力系平衡 的必要和充分条件是力系的主矢和对任一点的主 矩为零,即:
'
FR 0
M0 0
3.1.2空间任意力系的平衡方程
Xi 0 ,Yi 0 , Zi 0
M x( Fi ) 0, M y( Fi ) 0, M z( Fi ) 0
空间力系平衡的必要与充分的解析条件是:力系 中各力在直角坐标系每一坐标轴上投影的代数和为零, 对每一坐标轴之矩的代数和为零。
解得:F 15.01kN Ax
FAy 5. 3 kN
F 17.33 kN
BC
A
D
B
E
3m
1m
2m
C
X 0,
FAx FBC cos30 0
FAy
M A(F ) 0,FBC AB sin30 P AD Q AE 0
A
M B (F ) 0,P DB Q EB FAy AB 0
距为4m。平衡荷重P3,到机中心
距离为6m。求:
P3
(1)保证起重机在满载
6m
和空载时都不致翻倒,平
衡荷重P3 为多少?
P1
P2
12m
(2)当平衡荷重P3 =180KN时,求满载时轨道A 、
B给起重机轮子的反力?
A
B
FA 2m 2m FB
解:选起重机为研究对象。 (1)要使起重机不翻倒,应使作用在起重机上的力系满足平
平衡,恒有
X 0
则平行力系的独立平衡方程为 :
Y 0
O
M A 0
平行力系平衡方程的二力矩式:
M A 0
F1 F2
Fn F3
x
M B0
3.2平面任意力系平衡方程的应用
例1 图示水平梁AB,A端为固定铰链支座,B端为一滚动支座。 梁长为4a,梁重P,作用在梁的中点C。在梁的AC段上受均布载 荷q作用,在梁的BC段上受力偶作用,力偶矩M = Pa。求A和B 处的支座约束力。
衡条件。 满载时,为使起重机不绕点B翻倒,力系满足平衡方程
MB(F。) 在0临界情况下,FA=0。求出的P3 值是所允许的最小值。
MB(F ) 0 P3min(6 2) 2P1 P2(12 2) 0
P3min 1 (10P2 2P1) 75KN 8
空载时,为使起重机不绕点A翻倒,力系满足平衡方
特例:(1)空间平行力系的平衡方程 令z轴与力系各力的作用线平行,有
Zi 0 M x( Fi ) 0 M y (Fi ) 0
(2)空间汇交力系的平衡方程
因为各力线都汇交于一点,各轴都通过该点,故 各力矩方程都成为了恒等式。
X 0 Y 0 Z 0
(3)空间力偶系的平衡方程
由于力偶在任意轴上的投影为零,则方程中 的投影式自然满足,所以空间力偶系的平衡方 程为
M M
x y
0 0
M z 0
( 4)平面任意力系的平衡方程 平面任意力系:各力的作用线在同一平面内,既不汇
交为一点又不相互平行的力系叫平面任意力系.
取力系所在平面为Oxy平面则平面任意力系的平 衡方程为:
X 0 Y 0 Mz 0
结论:任意力系平衡的解析条件是:所有各力在两 个任选的坐标轴上的投影的代数和分别等于零,以 及各力对于任一点的矩的代数和也等于零。上式为 平面任意力系的平衡方程。
空间约束的类型举例
空间约束
观察物体在空间的六种(沿三轴移动和绕三轴转动)可能 的运动中,有哪几种运动被约束所阻碍,有阻碍就有约束反力。 阻碍移动为反力,阻碍转动为反力偶。
1、球形铰链
2
2、向心轴承,蝶铰链, 滚珠(柱)轴承
3
止推轴承
4
带有销子的夹板
5
空间固定端
6
3. 力系的平衡
3.1力系的平衡条件和平衡方程
q=20KN⁄m,l=1
l
30
B
D
° F
3l
P
q
A
解:选T字形刚架ABD为研究对象。
M
l
l
Fx 0 FAX 1 • q • 3a Fcos30 0
2
30 ° F
B
D
Fy 0 FAy p Fsin30 0
3l
P
MA(F ) 0
MA M 1 • q • 3l • l Fsin30 • l Fcos30 • 3l 0 2
解方程得
FAX Fcos30 1 • q • 3a 316.4kN 2
FAy
q
A
MA
FAx
FAy p Fsin30 300kN
MA M 1 • q • 3l • l Fsin30 • l Fcos30 • 3l 1188kN 2
例4 塔式起重机如图。机架重为P1=700KN,作用线通过塔架 的中心。最大起重量P2=200KN, 最大悬臂长为12m,轨道AB的间
q
PM
A
B
2a 4a
FAy 解:选梁AB为研究对象。
q
PM
Fx 0 FAx 0 A
FAx
Fy 0
2a
FAy q 2a p FB 0
4a
MA(F) 0 FB 4a M p 2a q 2a a 0
解方程得
FAx 0
FB 3 p 1 q a 42
FAy 1 p 3 q a 42
FAx
FBC
D
B
E
M A(F ) 0,FBC AB sin30 P AD Q AE 0 M B (F ) 0,P DB Q EB FAy AB 0 MC (F ) 0,FAx AC P AD Q AE 0
例3 自重为P=100KN的T字形刚架ABD,置于铅垂面内, 载荷如图示。其中M=20KNm,F=400KN,
FB
B
例2:如图所示简易吊车,A、C处为固定
C
铰支座,B处为铰链。已知AB梁重P=4kN,
重物重Q=10kN。求拉杆BC和支座A的约
束反力。
解: 以AB及重物作为研究对象;
X 0, FAx FBC cos30 0
Y 0, FAy FBC sin 30 P Q 0
M A(F ) 0,FBC AB sin30 P AD Q AE 0
相关文档
最新文档